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Abstract

This paper demonstrates a novel methodological approach that leverages Large Language Models (LLMs)
to enhance the development of system dynamics models for complex multi-timescale systems. Through a case
study of electrical power systems, we utilized Claude, an advanced AT assistant, to construct, refine, and doc-
ument three conceptual models representing electromagnetic (microseconds), electromechanical (seconds),
and operational (hours) timescales. While these models are necessarily simplified representations designed
for educational and methodological demonstration purposes, they effectively illustrate the distinct dynamics
across timescales and help identify potential cross-scale interactions. Our results show that Al-assisted mod-
eling significantly improves efficiency in model formulation (reducing development time by approximately
60%), facilitates rapid debugging of structural errors, and enhances knowledge integration across disciplines.
The primary limitations include dependence on human verification for physical validity and limited capa-
bility for novel conceptual innovation. The approach demonstrates particular value for educational contexts
and as a foundation for more technically detailed implementations.

1 Introduction

1.1 Context and Motivation

Modern electrical power systems exhibit complex dynamics across multiple timescales, from microsecond elec-
tromagnetic transients to hourly market operations. This multi-timescale reality creates significant modeling
challenges, particularly as renewable energy integration increases system complexity. For instance, Belgium’s
electricity mix - with 29.8% renewable generation in 2024 (11.9% solar, 17.9% wind)[7] - demonstrates the
complex dynamics emerging from rapid renewable integration.

Comprehensive modeling and simulation of these systems are essential for decision-making, system planning,
and optimization across multiple domains:

e System Planning: Analyzing long-term infrastructure requirements to meet renewable integration tar-
gets

e Operation Optimization: Determining optimal dispatch strategies in systems with high renewable
penetration

e Control System Design: Developing controllers that ensure stability across multiple timescales
e Risk Assessment: Evaluating system resilience against various disturbances and contingencies

Traditional modeling approaches often focus on single timescales or employ simplifying assumptions that
limit our understanding of cross-scale interactions. However, the growing penetration of renewable energy
sources introduces several interconnected challenges that span multiple timescales:

e Temporal Coupling: Solar and wind generation create fast transients while affecting hourly market
dynamics

e Reduced System Inertia: Inverter-based resources alter traditional electromechanical response char-
acteristics

e Market-Physics Interactions: Market decisions constrain physical system capabilities through reserve
allocations|3]



These challenges call for integrated modeling approaches that can capture dynamics across multiple timescales
while remaining computationally tractable and conceptually accessible. The EU’s binding 50% renewable elec-
tricity target by 2030[2] further accelerates this system complexity.

It is also important to recognize that modern power systems increasingly operate as hybrid AC/DC networks
with distinct dynamics. Electric power transmission relies on both AC and DC grids, with extensive integration
of conventional and nonconventional energy sources and power converters resulting in demand for high voltage
(HV), extra-high voltage (EHV), and ultra-high voltage (UHV) AC/DC transmission grids in modern power
systems|20]. While our models focus primarily on AC systems for methodological demonstration, these hybrid
AC/DC networks present unique modeling challenges that future work should address, particularly regarding
the interfaces between subsystems and how disturbances propagate across these boundaries.

1.2 Research Objectives and Paper Structure

This study establishes a methodological framework for Al-assisted modeling of power systems through four
contributions:

e Development of three distinct but conceptually linked system dynamics models representing fast (electro-
magnetic), medium (electromechanical), and slow (operational) timescales

e Demonstration of how Al assistance can accelerate the model development process and improve model
documentation

e Identification of common modeling errors and how Al can assist in debugging and refinement

e Assessment of the educational value of Al-assisted modeling for understanding complex multi-timescale
systems

Although our current models focus on AC dynamics, we recognize that HVDC systems significantly influence
power system behavior through fast switching at the electromagnetic timescale and stability implications at the
electromechanical timescale. This understanding informs our methodological approach even as we maintain
focus on AC-dominant representations for demonstration purposes.

It is important to note that our focus is on demonstrating the methodology and educational value of Al-
assisted system dynamics modeling rather than developing production-grade power system models. The models
presented serve as conceptual frameworks that capture essential dynamics while necessarily employing simpli-
fications. Our approach is informed by EnergyVille’s 2050 scenarios[I] and Elia’s development plans[4], which
were used as knowledge sources for the Al to understand key power system characteristics.

The remainder of this paper is structured as follows: Section 2 provides background on multi-timescale
dynamics in electrical systems and describes our Al-enhanced modeling methodology. Section 3 presents the
structure and formulation of the three system dynamics models, including the mapping between electrical and
system dynamics concepts. Section 4 analyzes the model behavior and highlights key AI contributions to the
development process. Section 5 discusses the benefits, limitations, and future directions of Al-assisted modeling,
while Section 6 presents our conclusions.
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Figure 1: Al-assisted modeling workflow showing the iterative process of model development

2 Literature and Methodological Foundation

2.1 Bridging System Dynamics and Power System Concepts

Before describing the specific models, it is essential to clarify the mapping between system dynamics terminology
and electrical power system concepts. System dynamics uses stocks (state variables), flows (rates of change),
and auxiliaries (intermediate variables) to represent dynamic systems:

e Stocks represent accumulations or states in the system. In electrical terms, these correspond to energy
storage elements like capacitive energy (voltage), inductive energy (current), or rotational kinetic energy
(frequency).

e Flows represent rates of change of stocks. In electrical terms, these correspond to power flows into or out
of energy storage elements, such as charging/discharging currents or mechanical power inputs/outputs.

e Auxiliaries represent intermediate variables that influence flows. In electrical terms, these correspond
to control variables, physical relationships, or decision rules that determine how energy flows through the
system.

Modern power systems increasingly operate as hybrid AC/DC networks. While our current models primarily
represent AC dynamics, we recognize that hybrid systems present unique modeling challenges, particularly re-
garding the interfaces between AC and DC subsystems and how disturbances propagate across these boundaries.
The system dynamics approach offers a valuable framework for conceptualizing these complex interactions, even
as detailed technical implementation would require specialized tools.

Table [1) shows the mapping between system dynamics elements and electrical power system concepts across
the three timescales addressed in this paper.

Table 1: Mapping between System Dynamics and Electrical Power System Concepts

System Dynamics Electromagnetic Electromechanical Operational

Stock Electromagnetic energy Rotational kinetic energy  Fuel/energy reserves
Flow Current /power Mechanical power Generation/demand
Auxiliary Voltage relationships Frequency control Market clearing




2.2 Multi-Timescale Dynamics in Electrical Systems

Electrical power systems exhibit three distinct dynamical regimes, each with characteristic time constants and
governing principles:

Electromagnetic Dynamics (us-ms): At the fastest timescale, electromagnetic energy storage in fields
and charges dominates system behavior. These dynamics include voltage transients, electromagnetic wave
propagation, and switching behavior in power electronic converters. TRENA’s research shows that these fast
dynamics are becoming increasingly important as inverter-based resources proliferate[q].

Electromechanical Dynamics (0.1-30s): At intermediate timescales, the mechanical inertia of rotating
generators interacts with electrical properties to govern frequency stability. This regime includes primary
frequency response, governor action, and the early stages of automatic generation control. Elia’s studies show
how Belgium’s reduced inertia from nuclear phase-out affects these dynamics[8].

Operational Dynamics (1h-days): At the slowest timescale, economic dispatch, unit commitment, and
market operations determine system behavior. This regime includes demand forecasting, reserve scheduling,
and resource adequacy assessment. Belgium’s Capacity Remuneration Mechanism implementation highlights
these operational challenges[5].

Traditional modeling approaches typically focus on a single timescale, with simplified representations of
other timescales. However, increasing renewable penetration creates stronger coupling between timescales,
necessitating integrated approaches|[9].

2.2.1 HVDC Transmission Considerations

HVDC transmission systems play an increasingly important role in modern power systems, influencing dynamics
across all timescales. At the electromagnetic timescale, converter stations introduce fast switching behavior and
harmonic interactions. At the electromechanical timescale, HVDC links can either isolate disturbances or
provide dynamic support, depending on their control strategy. At the operational timescale, HVDC capacity
influences market dispatch and reserve requirements.

While our current models focus primarily on AC systems for methodological demonstration, it’s important to
recognize that HVDC systems impact all three timescales represented in our models. Modern HVDC converter
technologies (particularly Voltage Source Converters) enable independent control of active and reactive power,
black start capabilities, and multi-terminal configurations that substantially alter system dynamics compared
to traditional AC-only systems.

2.3 Al-Enhanced Modeling Methodology

Our implementation combines system dynamics principles with Al-assisted model development through four
methodological steps, as illustrated in Figure

1. Knowledge Acquisition: Using Perplexity’s Deep Research to gather domain knowledge about electrical
system dynamics across timescales. Deep Research is the current state-of-the-art where LLM models are
not only using Chain of Thought reasoning but also more time to process (reducing hallucination) while
also giving access to navigate real-time information on the world wide web. [14]. The prompts and outputs
from Perplexity can be found in the additional material of this paper.

2. Model Formulation: Leveraging Claude Sonnet 3.7 with the latest Extended function to generate
XMILE model structures based on the hierarchical feedback framework. Claude Sonnet 3.7 is currently
the strongest mathematical and coding LLM available to the public. [I5]. Again, the prompts and outputs
from Claude can be found in the additional material of this paper.

3. Iterative Refinement: Collaborative debugging and improvement of models based on simulation results
and observed behavior. When models exhibited unrealistic behavior, the AI analyzed the structure and
parameters to identify sources of error.

4. Cross-Scale Integration: Conceptual mapping of interactions between the three timescale models.

It’s important to note that the EnergyVille and Elia data were used as knowledge sources for the AI, not
as training data or validation datasets. The AI used these references to understand typical system parameters,
behavior patterns, and constraints in Belgian and European power systems, which informed the conceptual
model development.

The Al-assisted approach offered several advantages:

e Rapid generation of model structures with comprehensive documentation

e Systematic identification and correction of model errors



e Integration of knowledge across electrical engineering and system dynamics domains

The model development process included multiple iterations, with Al assistance particularly valuable in
diagnosing and correcting feedback mechanisms that led to unrealistic behavior. This approach aligns with the
EU’s recent focus on system dynamics for innovation analysis[10].

3 Model Structure and Formulation

3.1 Fast Timescale Model: Electromagnetic Dynamics

Our fast timescale model captures electromagnetic energy storage and the associated voltage dynamics, op-
erating in the microsecond range. This model represents a conceptual approach to electromagnetic dynamics
suitable for educational purposes and methodological demonstration, though it employs simplifications com-
pared to detailed electromagnetic transient (EMT) simulations used in power engineering practice.

In this model, we represent the electromagnetic energy storage in a simplified power system using system
dynamics concepts:

Stock: The primary stock (Sfqst) represents electromagnetic energy stored in fields and charges (measured
in joules):

t
Sfast :/ (Iz *Iout)dt (1)
to
Here, unlike traditional electrical models that work with current and voltage directly, we model the energy
balance, which is the integral of power (product of voltage and current). This is analogous to a capacitive
energy storage element in electrical systems, where energy stored is proportional to the square of voltage.
Flows:
Ly = 150 - (1 + STEP(I' turey) (2)

Iowt = fEMB (3)

Where I22%¢ is the baseline power input (in joules/microsecond), I S is the magnitude of a step change,

size

tstep is the time of the step change, and fgap is the electromagnetic balancing function.

Key Auxiliaries:
g 0.5
_ nom fast
Vbus — Vbus (Sref ) (4)

fast

2
f _ Ibase . VE’US .
EMB = {out V/nom
bus

(1 + Kaist - Sin(t/Tosc)) (5)

Where Vs is the bus voltage, V;%™ is the nominal bus voltage, S;Z{t is the reference energy level, 1295¢ is
the baseline power output, kg;s is a disturbance factor, and T, is the oscillation period.

The square-root relationship between energy and voltage is based on the physical relationship in capacitive
systems where E = %C’VQ7 making V o VE. The voltage-dependent balancing function creates a stabilizing
feedback loop where power outflow increases with the square of voltage (representing the physical relationship
where power is proportional to voltage squared).

The sinusoidal term in the electromagnetic balancing function represents small-scale oscillatory disturbances
that commonly occur in power systems due to switching events, control actions, or natural system resonances.
This simplified representation allows testing of the system’s damping characteristics without modeling detailed
electromagnetic wave equations.

In production implementations, detailed representation of power electronic interfaces would be necessary,
particularly DC transformers and active front ends that significantly impact fast timescale dynamics. Active
front ends used between AC and DC buses typically implement either voltage regulation or power regulation
control schemes that affect system behavior. These interfaces fundamentally alter system response character-
istics at this timescale, especially in modern hybrid AC/DC systems where power electronic conversion is the
primary interface mechanism.

3.2 Medium Timescale Model: Electromechanical Dynamics

Our medium timescale model represents the mechanical energy storage in rotating machinery and its relationship
to system frequency, operating in the seconds range. This conceptual model captures key electromechanical



relationships for educational and methodological demonstration purposes, while acknowledging that full power
system stability studies would require more detailed representations of generator dynamics, network topology,
and control systems.

Stock: The primary stock (Speq) represents mechanical energy storage in rotating machinery (in joules),
which is directly related to the system frequency:

t
Smed - / (Pmech,in - Pmech,out)dt (6)
to
Flows:
Pmech,in - Pib:se . (1 + kload : STEP(17 tload)) (7)
Prech_out = fdroop (8)

Where Pf’;}se is the baseline mechanical power input, kj,qq is the load change factor, ¢;,44 is the time of load
change, and fgro0p is the droop control function.
Key Auxiliaries:

g 0.5
f: fnom . < :r;efd) (9)

Smed
fdroop = ngfe . (1 + kl . (f - fnom)) (10)
Mode = IF (| Prech_in — Pmech-out| > 7, Grid-Forming”, ” Grid-Following” ) (11)

Where f is the system frequency, f,om is the nominal frequency, S:neef 4 is the reference mechanical energy,

PPase is the baseline mechanical power output, k; is the droop coefficient, and v is the mode-switching threshold.

The square-root relationship between energy and frequency is based on the physical relationship in rotating
systems where kinetic energy is proportional to the square of angular velocity (Ekinetic = %sz), making
wox VE.

The droop control function implements primary frequency regulation, a fundamental stability mechanism
in power systems. When frequency increases above nominal, the power output increases to reduce frequency,
creating a negative feedback loop. The droop coefficient k; (typically in the range of 0.05-0.5 in real systems)
determines the strength of this response.

The operating mode represents a conceptual distinction between grid-following and grid-forming operation.
In grid-following mode, the system primarily responds to small deviations to maintain stability. In grid-forming
mode (activated during large imbalances exceeding threshold «), the system takes a more active role in es-
tablishing system conditions, analogous to how inverter-based resources must switch operating modes during
significant disturbances.

3.3 Slow Timescale Model: Operational Resource Dynamics

Our slow timescale model captures operational resource dynamics and market-based generation dispatch, oper-
ating in the hours to days range. This conceptual model illustrates operational principles for educational and
methodological demonstration purposes, while recognizing that production-grade models would require more
sophisticated market clearing algorithms, detailed cost functions, and network constraints.

Stock: The primary stock (Sg0w) represents operational resource storage (in megajoules):

Sslow = /t(G - D)dt (12)

to
Flows:
G = fuca (13)
D= Dforecast . (1 + ,r]) (14)

Where G is generation, fiscq is the market clearing generation function, D is demand, Df°r¢c@st is forecasted
demand, and 7 is the forecast error.
Key Auxiliaries:

fuca = min(maX(DfO’I‘ECast’ Gmm)

3

Gmax) ) (1 + Rmargin - fstorage) (15)

Dforecast _ Dbase . (1 + kdaily . sin(27r . t/24)
+ kweekiy - sin(2m - t/168)) (16)
fstorage = max(O, kadj ! (Sslow - Zzgug}et)/ ;’fgf,) (17)



Where G™™ and G™* are minimum and maximum generation limits, Rinargin 1s the reserve margin,
fstorage is the storage adjustment function, Dbase ig baseline demand, kdaily and kyeeriy are daily and weekly
pattern coefficients, S’E%jet is the target storage level, ST/5% is maximum storage capacity, and k,q; is a storage
adjustment coefficient.

The simplified market clearing mechanism ensures generation meets forecasted demand while respecting
operational constraints. The reserve margin (typically 5-15% in actual systems) ensures adequate capacity is
available to handle unexpected events, while the storage adjustment function provides a balancing mechanism
to prevent continuous resource accumulation.

The sinusoidal representations of daily and weekly demand patterns are simplified approximations of the
cyclical nature of electricity demand. While actual demand patterns are more complex, this representation
captures the essential periodicity needed for educational understanding. For production models, historical load
profiles would be used instead.

The energy conservation error metric is used for validation purposes to assess how well the model maintains
energy balance over time. It is not an actual physical quantity but a numerical check on model behavior, where
values close to zero indicate proper conservation.

3.4 Cross-Scale Integration Concepts

While our three models operate independently in this implementation, they conceptually link through several
mechanisms:

e Downward Causation: Operational decisions at the slow timescale constrain electromechanical opera-
tions (e.g., through reserve margins), which in turn affect electromagnetic responses

e Upward Causation: Electromagnetic disturbances propagate to affect electromechanical stability, po-
tentially triggering reserve activation at the operational timescale

e Temporal Aggregation: Fast dynamics can be aggregated to inform slower timescale decisions, while
slow dynamics provide boundary conditions for faster dynamics

In hybrid AC/DC systems, the interaction complexity increases as HVDC elements can significantly influence
power flows in both AC and DC subsystems. Power converters at the interfaces between AC and DC subsystems
play a crucial role in disturbance propagation and system stability across timescales. The ability of HVDC links
to rapidly modulate power flow provides both challenges and opportunities for system stability that would be
important considerations in more detailed models.

This framework allows for conceptual understanding of cross-scale interactions while maintaining compu-
tational tractability through separate models. Such integration reflects Fluxys’ North Sea Integration Model
approach[I2] at a conceptual level.

4 Results and Analysis
4.1 Model Behavior and Validation

Each model was simulated independently to assess its response to characteristic disturbances:

Fast Timescale Model: The electromagnetic model demonstrated rapid adjustments to step changes in
input current. Following a 20% step increase in input current, the voltage initially rose by approximately 10%
before the electromagnetic balancing feedback stabilized the system within a few microseconds. The sinusoidal
disturbance was similarly dampened by the voltage-dependent feedback. Seen in figure 1.
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Figure 2: Fast timescale electromagnetic model showing voltage stabilization after step change in input current.

Medium Timescale Model: The electromechanical model showed characteristic frequency regulation
behavior. When a 10% increase in mechanical power input was applied at t=20s, the system frequency initially
increased before the droop control mechanism stabilized the system at a new operating point. The operating
mode successfully switched between grid-following and grid-forming based on the power imbalance magnitude.
Seen in Figure 2.
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Figure 3: Medium timescale electromechanical model demonstrating frequency regulation through droop control.

Slow Timescale Model: The operational model exhibited balanced behavior with daily and weekly os-



cillations around the target storage level. The storage adjustment mechanism effectively prevented continued
accumulation of resources, while the reserve margin ensured adequate reserves for reliability. The energy con-
servation error stabilized rather than growing continuously, confirming numerical stability of the simulation.
Seen in Figure 3.
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Figure 4: Slow timescale operational model showing resource balance with daily and weekly fluctuations.

Complete validation would require comparison with experimental data from hybrid AC/DC systems to verify
model behavior across all timescales. While our current validation focuses on qualitative behavioral assessment,
production implementations would benefit from quantitative comparison with data from real power systems or
detailed simulation results from industry-standard tools.

4.2 Al Contribution to Model Development

The AT assistance was particularly valuable in several aspects of model development:
Error Identification and Resolution: When the medium timescale model exhibited unrealistic expo-
nential growth (see Figure , the AI quickly identified the problem in the droop control equation:

Table 2: Al-Identified Error in Medium Timescale Model
Original (Erroneous) Equation  Corrected Equation

fdr00p = ngfe : (1 + k- (fnom - f)) fdr00p = ngtse ’ (1 + ki (f - fnom))

The original equation created a positive feedback loop (when frequency increased, power output decreased,
further increasing frequency), while the corrected equation implements proper negative feedback control. Sim-



ilarly, when the slow timescale model showed continuous resource accumulation, the Al diagnosed the missing
balancing feedback and implemented the storage adjustment mechanism.
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Figure 5: Medium timescale model exhibiting exponential growth due to incorrect droop control equation
Parameter Selection: The AI suggested reasonable parameter values based on understanding of typical

system characteristics. Table [3] shows examples of Al-suggested parameters compared to typical values from
power system literature and grid codes.

Table 3: Comparison of Al-Suggested Parameters with Typical Values

Parameter Al Suggestion Typical Range in Literature
Droop coefficient (k1) 0.8 0.05-0.5 (ENTSO-E grid code)
Reserve margin (Ryqrgin) 0.1-0.15 0.10-0.15 (Belgium CRM)
Oscillation period (Tpsc) 10ps 5-20ps (power electronics)

Development Time: The Al-assisted approach significantly reduced development time compared to man-
ual coding. Table [4] shows the estimated time comparison based on our experience.

Table 4: Development Time Comparison

Task AT-Assisted (hours) Manual (estimated hours)
Initial model formulation 2 8

Debugging structural errors 1 4

Documentation 1 6

Total 4 18

Comprehensive Documentation: The Al automatically generated detailed documentation for each
model component, including units, purpose, and expected behavior. This documentation enhanced model
transparency and facilitated understanding.

5 Discussion and Implications

5.1 Benefits of AI-Enhanced System Dynamics Modeling

Our experience with Al-assisted modeling revealed several key benefits:

Reduced Development Time: The Al’s ability to rapidly generate model structures and equations
significantly accelerated the model development process. As shown in Table [d] what might have taken days of
manual coding was accomplished in hours, with an estimated 60-70% reduction in development time.

Improved Model Documentation: The AI consistently provided comprehensive documentation for each
model component, enhancing transparency and facilitating understanding. For example, each model element
included purpose, units, and references to underlying physical principles.
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Enhanced Error Detection: The AI systematically analyzed model behavior and identified structural
issues that led to unrealistic outcomes, then proposed specific corrections. In the case of the medium timescale
model, the Al correctly diagnosed the sign error in the droop control equation when asked to identify and fix
the model behaviour.

Knowledge Integration: The Al effectively combined domain knowledge from electrical engineering with
system dynamics principles, bridging disciplinary boundaries. This aligns with the EU’s system dynamics
working group objectives[IT].

5.2 Limitations and Challenges

Despite its benefits, the Al-assisted approach also revealed important limitations:

Domain Knowledge Dependencies: The quality of Al-generated models remained dependent on the
quality of available domain knowledge. The AI could not compensate for fundamental gaps in understanding,
as evidenced by the initially inaccurate droop control formulation that required human correction.

Need for Human Verification: Human oversight remained essential to ensure models were physically and
conceptually valid. The Al occasionally suggested implausible formulations that required correction, particularly
regarding unit consistency and physical relationships. One example in this work was the formulation of the If
Then Else, where it used a typical programming notation, instead of iSee Stella notation. However, easy to
correct by a skilled modeler.

Parameter Calibration: While the Al could suggest reasonable parameter values, proper calibration
against empirical data still required human expertise. As shown in Table [3] some Al-suggested parameters fell
outside typical ranges from literature.

Conceptual Boundaries: The Al excelled at implementing known concepts and relationships but was
limited in generating novel conceptual frameworks. The models largely represent established relationships
rather than innovative approaches to power system modeling.

5.2.1 Technical Limitations and Future Refinements

Our models, while valuable for demonstrating the methodology and educational purposes, have several technical
limitations that would need to be addressed for production-grade applications:

Fast Timescale Model: The electromagnetic model employs a highly aggregated representation that
does not account for detailed network topology, transmission line characteristics, or advanced power electronic
controls. Production implementations would require:

e Integration with standardized electromagnetic transient (EMT) simulation frameworks like PSCAD[IT]
or EMTP-RV[1§]

e Detailed representation of power electronic switching dynamics and control algorithms
e Incorporation of transmission line models with wave propagation effects

Our fast timescale model employs a highly aggregated representation that does not account for detailed
DC transformer dynamics or advanced power electronic controls. Production implementations would require
integration with EMT simulation frameworks that can represent these elements, particularly for hybrid AC/DC
systems where converter dynamics significantly impact system behavior.

Medium Timescale Model: The electromechanical model uses simplified relationships between mechan-
ical energy and frequency that do not capture the full complexity of generator dynamics. Production imple-
mentations would require:

e Detailed generator models with appropriate order differential equations (e.g., 6th order synchronous ma-
chine models that capture subtransient, transient, and steady-state dynamics)[19]

e Network representation with power flow constraints

e Explicit modeling of various control loops (AVR, PSS, governors)

Slow Timescale Model: The operational model employs a greatly simplified market clearing mecha-
nism that does not account for locational constraints, detailed cost functions, or strategic bidding behavior.
Production implementations would require:

e Integration with established unit commitment and economic dispatch algorithms
e Incorporation of transmission constraints and locational marginal pricing

e More sophisticated representation of renewable generation uncertainty

These limitations do not diminish the methodological value of our approach but highlight the need for
domain-specific extensions when moving from conceptual understanding to technical implementation.
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5.3 Future Directions

Building on our methodology and addressing the technical limitations identified above, several promising direc-
tions for future research emerge:

Enhanced Technical Implementation: Future work should focus on integrating the system dynamics
approach with established power system modeling frameworks, potentially through co-simulation approaches
that maintain conceptual clarity while adding technical rigor. Specific implementations could include:

e Coupling with PowerFactory, PSCAD, open source Julia libraries (PowerModels ACDC)[16], or other
industry-standard power system tools. PowerModels ACDC was selected for mention due to its ability to
handle the increasingly important AC-DC interactions in future power systems.

e Incorporation of detailed generator models and control systems
e Implementation of standardized renewable generation models

Future work should incorporate validation against industry-standard tools with AC/DC capabilities such
as PowerModels ACDC, which was selected for mention due to its ability to handle the increasingly important
AC-DC interactions in future power systems.

Cross-Scale Integration: Building on our three separate models, future work could develop truly inte-
grated models that directly capture cross-scale interactions through:

e Development of formal temporal aggregation methodologies
e Implementation of automated boundary condition exchanges between timescales
e Exploration of variable time-step approaches that adapt to system dynamics

AlI-Assisted Calibration: Extending Al assistance from model formulation to parameter calibration and
validation could further enhance modeling efficiency through:

e Integration with optimization algorithms for parameter tuning
e Pattern recognition in historical operational data
e Automated validation against standardized test cases

Expanded Model Libraries: The approach could be extended to develop comprehensive libraries of power
system components across timescales:

e Al-generated libraries of renewable generation models
e Interactive educational modules for power system concepts
e Cross-validated component models for different power system technologies

Hybrid AC/DC System Extension: While our current models provide a foundation, future work should
extend to hybrid AC/DC systems by:

e Incorporating detailed DC component models at each timescale
e Addressing the unique control strategies of HVDC converters
e Examining interactions between converters and between converters and the grid

e Developing standardization approaches that consider both AC and DC protection requirements for hybrid
systems, drawing lessons from established AC standards while developing DC-specific approaches

5.4 Methodological Contributions

Beyond the specific models developed, this work makes several methodological contributions to the field of
system dynamics modeling;:

AI-Enhanced Model Development Framework: We have demonstrated a systematic approach to lever-
aging Al capabilities for model development that could be applied across domains. This framework establishes
a workflow that combines human expertise with Al assistance at key stages of the modeling process.

Error Pattern Recognition: Our approach revealed that LLMs can effectively recognize common model-
ing errors through behavioral pattern analysis. This capability could be further formalized into diagnostic tools
for system dynamics modeling.
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Cross-Domain Knowledge Integration: The methodology showed particular strength in bridging knowl-
edge across electrical engineering and system dynamics domains, suggesting value for other interdisciplinary
modeling challenges.

Educational Scaffolding: The approach demonstrates significant potential for creating educational mate-
rials that scaffold learners from conceptual understanding to technical implementation, potentially addressing
a key gap in system dynamics education.

These methodological contributions represent valuable advances even independent of the specific power
system application domain.

6 Conclusion

This study demonstrates the potential of Al-assisted modeling to enhance our understanding of multi-timescale
dynamics in electrical power systems. By leveraging Large Language Models to assist in model formulation and
refinement, we developed three conceptual models capturing electromagnetic, electromechanical, and operational
dynamics. The models, while necessarily simplified for educational and methodological demonstration purposes,
effectively illustrate the distinct feedback mechanisms and characteristic behaviors at each timescale.

The AI proved particularly valuable in identifying and correcting model errors, generating comprehensive
documentation, and integrating knowledge across domains. While the technical implementation has recognized
limitations compared to production-grade power system models, the primary contribution lies in the method-
ological approach and the demonstration of how Al assistance can transform the model development process.

Human expertise remains essential for conceptual framing, validation, and technical extension, but Al assis-
tance can significantly accelerate the modeling process and improve model quality, particularly for educational
applications and initial conceptual exploration. This approach offers a promising pathway for addressing com-
plex multi-timescale phenomena, potentially accelerating how we develop and use system dynamics models in
both educational and research contexts.

Future work should focus on enhancing technical implementation through integration with established power
system modeling frameworks, developing more tightly integrated multi-timescale models, and expanding Al
assistance to parameter calibration. Such work would build upon the methodological foundation established
here while addressing the technical limitations identified for production applications, particularly the extension
to hybrid AC/DC systems that increasingly characterize modern power grids.
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