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Abstract 

Seasonal flu causes morbidity and mortality issues affecting all parts of the world. Understanding 

the transmission dynamics of the disease is crucial for implementing effective public health 

measures. This study aims to gain insights on the transmission dynamics of the influenza type 

H3N2 in Türkiye by using an age stratified compartmental SEIR model. Upon verification 

and validation of the model using the surveillance data from Türkiye, the effects of different public 

health policies on key variables of disease burden such as infections, hospitalizations, and deaths 

are analyzed. These policy scenarios include increased vaccination rates, adoption of healthy 

behaviors like physical distancing, mask use, hand hygiene, and increased isolation of 

symptomatic school age children. The experiments with different scenarios showed the intricate 

relationship between the age groups and that one healthy behavior adopted by an age group often 

also significantly benefits the other groups.  

1. Introduction 

     Seasonal outbreak of influenza occurs annually in many regions of the world leading to 

productivity losses and even deaths, especially in high-risk individuals such as immune-

compromised people, elderly, and people with chronic conditions.  There are 4 types of influenza 

viruses (types A, B, C, and D), two of which (types A and B) causes seasonal epidemics. Influenza 

A is subdivided in various subtypes according to the protein combinations on the surface of the 

virus [1]. Among them, the H3N2 type is of particular importance and the focused type in this 

study due to its relative dominance across seasons and its association with more severe flu seasons 

[2].  
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     The pathogen’s specific features as well as local settings and behavioral patterns of the 

susceptible and infected people play an important role in the dynamics of the epidemics. The 

transmission dynamics of the disease is unique to the country in which it spreads because of the 

different lifestyles and health measures in different countries. Additionally, people interact at 

different rates based on the groups which they belong such as their age groups, professions, and 

socio-economic status. That is why, any attempt to analyze the dynamics of the disease spread 

should be both country and at least a sub-group specific. Analyzing the transmission dynamics is 

essential for implementing cost-effective health policies specific for the disease.  This study aims 

to model and analyze the seasonal flu spread in Türkiye with respect to the age groups and 

symptom-status of the infected people.  

2. Model Description 

The model is built on the classical SEIR (Susceptible-Exposed-Infected-Recovered) framework. 

It includes the Symptomatic and Asymptomatic stock variables to account for the differing 

behavioral patterns and infectivity of these individuals as well as the Hospitalized and Infected at 

Home stock variables to address the epidemic burden and isolation of the people from the general 

population. The Immune stock variable represents both the people who are effectively vaccinated 

and the people who recovered. The population is stratified by their age since people in different 

age groups interact at different contact rates with each other. Age groups 0-19, 20-64, and 65+ are 

used in the model. Figure 2.1 shows the Stock-Flow Diagram of the model. 
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Figure 2.1 The Stock-Flow Diagram 

2.1 Model Variables and Formulations 

     Some of the key variables and their formulations are listed below (the units are given in 

parentheses): 

vaccination fraction: A graphical function representing the fraction of people who are getting 

vaccinated over time, arrayed by age groups. (dmnl)  

     The flu vaccine takes about 2 weeks to confer immunity [3]. For this reason, the flu vaccination 

usually starts 2 weeks before the influenza season to prevent infections during this period. 

Therefore, most people who are eventually going to get the vaccine do so, just before or at the 

beginning of the season. And since the most inclined people will get the vaccine earlier, less people 

will get the vaccine later in the season. Figure 2.2 shows the graphical functions.  
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        (a)                                           (b) 

Figure 2.2 vaccination fraction over time; (a) for age groups 0-19 and 20-64, (b) for age group 65+ 

 

infectivity: The probability of becoming infected after a close contact with an infectious individual 

took place, arrayed by infection type to reflect the different infectivity values of Symptomatic and 

Asymptomatic people (dmnl).  

contact matrix: A 2D array variable which shows the average number of contacts between the age 

groups per day (1/day). The variable is arrayed by age group and age group. There is a study that 

provides the contact matrix estimations for 152 countries, including Türkiye [4].  

distancing coefficient: A behavioral variable which reflects the different contact patterns of 

Symptomatic and Asymptomatic people (dmnl). It can be defined as the coefficient which excludes 

people who will not transmit the disease because they took distancing measures (e.g., physical 

distancing, mask use, hand hygiene etc.). The variable can take a value from 0 to 1 for each 

infectious group—with 0 meaning the utmost caution took place and 1 meaning no distancing 

measures took place at all.  

infectious pressure: A derived variable representing the risk of infection that individuals in a 

specific age group are exposed to per day (1/day). The equation showing the total infectious 

pressure on a person in the Age Group ‘a’ is as follows: 

𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒[𝑎]

= 1 𝑐𝑜𝑛𝑡𝑎𝑐𝑡	𝑚𝑎𝑡𝑟𝑖𝑥[𝑏; 𝑎]
!∈#$%&'()*

∗ 	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔	𝑐𝑜𝑒𝑓[𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐] ∗ 𝑆𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐[𝑏] + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔	𝑐𝑜𝑒𝑓[𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐] ∗ 𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐[𝑏]

𝑡𝑜𝑡𝑎𝑙	𝑚𝑜𝑏𝑖𝑙𝑒[𝑏]

∗ 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 
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3. Model Validation 

     The values of the parameters and variables are grounded from the literature if there are 

addressing studies and the others are calibrated. However, obtaining high-quality data for the 

calibration is difficult due to several reasons. Firstly, only a fraction of the Symptomatic people 

will have a chance to and be willing to consult a physician. Secondly, in clinical practice, people 

are not tested to check for the viral strain since the diagnosis is made clinically and the treatment 

is generally “supportive”, meaning no specific drug is recommended unless the flu is so severe 

and usually only NSAIDs, bed rest, and fluid intake are recommended. Thirdly, only a minute 

fraction of the physicians is reporting test results for surveillance. The surveillance system is 

mostly concerned with detecting the major strains to decide which strains should be included in 

the annual vaccine. Although the data has its limitations, we can make use of it by adjusting it to 

obtain a comparable data with the model output [5]. This can be achieved by finding the 

percentages of the positive H3N2 cases in the samples to infer an approximation to the incidence 

ratio, and eventually to the daily incidence of the Symptomatic people. The respective comparable 

output from the model is the sickness flow in Figure 2.1. Figure 3.1 shows the adjusted daily 

incidence data and the total sickness graph from the model.  

 

 
                                   (a)                                                                                    (b) 

Figure 3.1 (a) The adjusted daily incidence data for the 2022-2023 flu season,  

(b) The graph of the sum of the sickness flows 
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4. Results 

     The baseline results for the key stock variables are given in Figure 4.1. The Susceptible graph 

shows the classical S-shaped epidemic pattern. The epidemic reaches a peak at around day 68 

depicted in the Symptomatic graph.  

 

Figure 4.1 Baseline results for the Susceptible (left) and Symptomatic (right) variables, arrayed by age 

groups. 

5. Scenario and Policy Experiments 

     Possible public health measures could lead to behavioral changes among the population. These 

changes may include increasing vaccination fraction, isolation fraction, and decreased distancing 

coefficient. Among the many simulation experiments with changes in these variables the most 

notable ones regarding gaining new insights are given in this section.  

5.1 Increased vaccination fraction for the Age Groups 0-19 and 20-64 

     In the baseline run, the initial maximum vaccination fraction for the Age Groups 0-19 and 20-

64 were estimated as 0.0002, a significantly low fraction. If we were to increase this fraction to 

0.02, all age groups will have less disease burden, including the elderly people who did not change 
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their vaccination status. The total number of symptomatic people, hospitalizations, and deaths will 

be lowered in all age groups. Figure 5.1 shows the effects of this scenario on the age group 65+.  

 

Figure 5.1 Key outputs of the age group 65+ comparing the baseline with the increased vaccination 

fraction for age groups 0-19 and 20-64. 

5.2 Decreased distancing coefficient for Symptomatic People 

     If symptomatic people were more cautious and were to take more distancing measures such as 

physical distancing, use of mask, hand hygiene etc. (in this scenario it is analyzed 0.5 distancing 

coefficient for the Symptomatic, instead of the initial 0.75) there would be less disease burden in 

all the age groups, similar to the effects of increased vaccination numbers. Figure 5.2 shows some 

of the key outputs representing this scenario vs. the baseline results.  
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Figure 5.2 Key outputs representing the distancing coefficient 0.5 for Symptomatic people vs. the baseline 

with 0.75 distancing coefficient. 

6. Conclusion and Future Work 

     Modeling the disease spread aims to alleviate the unavailability of the high-quality data in order 

to gain insights on public health measures. But the model also suffers from this data unavailability 

in the validation process. Upon (limited) output validation, different scenarios which can be 

achieved by setting realistic public health policies are analyzed. Promoting healthy behaviors of 

the symptomatic people and decreasing the distancing coefficient are almost as equally effective 

as increasing the vaccination fraction. It is also observed that one public health measure for one 

age group positively affects the spread of the disease for all the age groups, including the death 

rates of the elderly population.  

     This initial research can be extended in the future in two dimensions. First, by obtaining more 
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data on certain type of influenza dynamics in a selected city, the model can be custom-tailored and 

validated for the given city. Policy analysis can then be carried out to assist the city’s health 

managers. Secondly, the model structure can be used to build models to address other epidemic 

problems with similar structures that may be important for the nation in different years and/or 

regions. 
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