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Abstract
We introduce a theory of FEthical Attractors—low—entropy basins of cooperation that are
detectable and stable in multi—agent interaction graphs. Our contribution is three—fold:
1. We formalise attractor existence in potential games observed through partial, noisy sensors
aggregated by an observer network.
2. We prove that common adaptive rules—soft—-majority imitation and Q-learning—ascend
the potential, converging to the attractor with high probability.

3. We validate the theory in a new open—source codebase: an agent—based lattice model and
an iterated—prisoner’s—dilemma reinforcement—learning suite reach the predicted attractors
and exhibit the ordering of cooperation rates forecast by the potential.

The observer—network framing turns ethics from a philosophical aspiration into an engineering
target: by publishing coarse cooperation metrics, institutions can locate and enlarge ethical
attractors, reducing governance cost.

Keywords: evolutionary game theory; system dynamics; potential games; cooperation; observer
networks.

1 Introduction

Complex socio-technical systems—f{rom open—source projects to climate accords—mneed to maintain
cooperation despite local incentives to defect. Traditional governance relies on ex ante rules and
costly enforcement. We pose a sharper question: Can cooperation emerge as a structural attractor
that is both visible and self-reinforcing?

Drawing on statistical physics and evolutionary game theory, we posit that certain update dy-
namics concentrate probability mass in basins of high social welfare— FEthical Attractors. Crucially,
these basins are detectable by an observer network that pools noisy local observations into coarse
global statistics such as mean cooperation p and payoff entropy H. If the basin is wide and the
detector is fast, a system can recover from shocks with minimal intervention.

Related work. Our approach connects three strands of literature. First, evolutionary cooper-
ation studies such as Axelrod’s tournaments[I] and spatial games[2] identify conditions for sus-
tained cooperation but do not treat detectability. Second, potential games and population—game
formalisms[3], [4] provide Lyapunov functions for adaptive dynamics, yet governance interpretations
are rare. Third, institutional analyses of commons governance, notably Ostrom’s design princi-
ples [10], motivate our governance corollaries.



2 Theoretical Framework

2.1 Game & Graph setup

We consider N agents on an undirected graph G = (V, E); each node plays a two—action game
(cooperate 0, defect 1) with its neighbours. The one-shot payoff for agent i is

ui(s): Z M5i3j7 (1)
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where M is a 2 x 2 payoff matrix (R, T, S, P). Here R denotes the mutual-cooperation reward, T'
the temptation payoff to a defector facing a cooperator, S the sucker payoff to a cooperator facing a
defector, and P the mutual-defection punishment. The global potential (sum over unordered edges
(i,7) to avoid double counting) is

(I)(S) = Z (R 1{3¢:0,5j:0} +T 1{si:1,5j:0} +8 1{8i=0, sj=1} +P 1{si:1,s]~:1})' (2)
(i.j)eE
To couple welfare and diversity we define the composite potential

U(s) =D(s) +rH(s), k>0,

where H(s) = — ) pqlogp, is the payoff entropy and s (units of utility per nat) restores dimen-
sional consistency. The parameter k balances welfare and diversity in the composite potential. All
formal convergence proofs concern ®; the composite ¥ is deployed only as a heuristic in simula-
tions. Updating only one agent at a time turns the game into an ezact potential; synchronous
lattice—wide updates preserve only the ordinal property. We therefore restrict our formal conver-
gence theorem to the asynchronous regime (Appendix ; Section 3.1 provides empirical evidence
that the synchronous dynamic also converges in practice.

2.2 Observer networks & coarse statistics

Each agent publishes a local feature vector ¢;(s;, N'(i)). An observer network with weight matrix
W aggregates to a low—dimensional signal 2 = W®. A detector D outputs 1 when € lies within a
tolerance ball By around the attractor signature. We assume that the noise in the local observations
is bounded by some o, which affects the accuracy of the detector.

2.3 Definition of an Ethical Attractor

An Ethical Attractor A C {0, 1}V satisfies:

(a) Convergence: 37 such that Pr(s; € A | s9) — 1 for all sy in a neighbourhood N (A) and
t>T.

(b) Stability: For s; € A, expected Hamming drift E[||s;41 — s¢|l1] < e.

(c) Observability: 3 D with false-positive/negative rate < § using only .



2.4 Existence sketch

Soft—majority imitation implements a stochastic gradient ascent on ®; with small noise it defines a
reversible Markov chain whose stationary distribution concentrates near the maxima of ®. Applying
metastable Freidlin—Wentzell theory [5] yields that the expected escape time from a local maximiser
scales as 7 ~ exp(8 A®) and the stationary mass outside any J-ball around a maximiser is O(e~#?),
so the chain spends exponentially long times in the metastable set A. Q-learning with decreasing e
implements an asynchronous best-response dynamic that approximates the same ascent, ensuring
cross-model consistency.

2.5 Governance corollaries

The observer network lowers the information barrier for coordination. Given a target accuracy 9,
the required number of pooled sensors scales as O(6~2). Hence data-sharing arrangements enlarge
the effective attractor basin by accelerating detection and enabling earlier corrective action.

3 Simulation Methods

3.1 Agent—Based Model

We simulate a 64 x 64 periodic lattice. Each agent updates synchronously using either (i) strict—
majority imitation or (ii) soft—majority with probability o(k(n. — 2)), where n. is co—operative
neighbours and k is the slope (this & is identical to the macroscopic slope used in the logistic fit).
Site—flip noise p injects exploration. We record u(t) and fit a three-parameter logistic.

3.2 Reinforcement—Learning Model

Agents play iterated Prisoner’s Dilemma variants against fixed opponents. While our agent is
tabular, the framework can embed policy—gradient or self-play systems[d] without altering the
observer-network protocol. Our learning agent is tabular Q—learning with one—step memory, decay-
ing €, and learning rate o = 0.2. Horizon H = 100, episodes F = 5000, seeds S = 30. Opponents:
Tit—for-Tat and Bernoulli(0.5). Metrics: mean cooperation ¢ over the evaluation window.

3.3 Observer metrics & detection threshold
We expose two coarse metrics: p(t) and payoff entropy H(t). An attractor detector flags conver-

gence when y(t) > 0.9 and |du/dt| < 1073 for 50 steps.

Reproducibility. All code, configuration files, and data needed to replicate the experiments are
available at this GitHub repository (commit 18 Jul 2025). Running ‘bash reproduce.sh® executes
the entire pipeline—simulations, analysis, and figure generation—exactly reproducing all results.

4 Results

4.1 ABM convergence & logistic fits

The trajectory is well described by the logistic form; however, these synchronous-update simula-
tions are illustrative only—the formal convergence guarantee proven in Appendix [A] applies to the


https://github.com/zauhj/ethical-attractors
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Figure 1: Mean cooperation p(t) for the best ABM parameter set (k = 4, noise 0, steps 800). The
logistic fit attains R? = 0.92 (RMSE = 0.03).

asynchronous dynamic.
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with best-fit parameters po ~ 0.82, k =~ 4 (95% CI 3.8-4.2), and to ~ 400 (95% CI 380-420). The
macroscopic slope matches the microscopic parameter via kmacro =~ ck with ¢ =~ 0.2 for a 64 x 64
lattice (see Appendix A).

4.2 Residual diagnostics

Figure [2| shows the residuals of the logistic fit together with the Ljung—Box test statistic }1 = 0.31,
indicating no significant autocorrelation.
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Figure 2: Residuals of the logistic fit with Ljung-Box @ statistic (no significant autocorrelation,
p > 0.05).



4.3 Topology robustness

We repeated the ABM on two heterogeneous networks—Watts—Strogatz small-world and Barabasi—
Albert scale-free—each with N = 4096 nodes. Figure [3] compares the mean cooperation trajec-
tories; all topologies converge to the same o, within 800 steps, validating structural robustness.
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Figure 3: ABM convergence across lattice (regular), WS small-world, and BA scale—free networks.

4.4 RL cooperation ordering

After 5000 training episodes with epsilon—decay (egtart = 0.2 — 0.01) the Q-learning agent exhibits
the cooperation rates summarised in Table

Payoff variant ¢ (Qvs TFT) ¢ (Q vs Random)

prosocial 0.985 £+ 0.004 0.116 £+ 0.009
symmetric 0.985 + 0.003 0.043 + 0.007
competitive 0.507 + 0.021 0.044 + 0.006

reward-reversed 0.044 &+ 0.005 0.032 4+ 0.004

Table 1: Mean cooperation for each payoff variant (mean £ s.e.m., n = 30 seeds).

The cooperation rate declines as the temptation to defect increases, matching the predicted
ordering from the potential-game analysis. A two-sample Kolmogorov—Smirnov test (two-sided)
finds this ordering to be statistically significant (p = 0.004).

4.5 Cross—model validation

Both curves share (i) an inflection point at ¢/7 & 0.5, (ii) the equilibrium cooperation level jo, =
0.82, and (iii) the logistic slope k ~ 4. Quantitatively, the agent—action trajectories differ by a
Kolmogorov—Smirnov statistic D = 0.31 (p = 0.002), supporting cross—model validity.



Cross-model convergence
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Figure 4: Overlay of ABM logistic trajectory and cumulative cooperation curve of the prosocial
RL variant, demonstrating rule-agnostic convergence to the same attractor.

5 Discussion

5.1 Implications for real-world governance

The observer—network framing makes ethical attractors detectable and therefore actionable. Gover-
nance bodies can deploy coarse metrics as early—warning signals for drift out of the attractor basin.
Pooling K sensor streams lowers detection error by O(K -1/ 2), so open data-sharing and federated
learning consortia directly translate to faster re—entry times after perturbations. In practice this
suggests:

1. Publishing live cooperation dashboards for distributed institutions (supply—chain consortia,
climate compacts).

2. Adopting attractor—widening policies (e.g. subsidies for pro—social defaults and caps on temp-
tation payoffs) to reduce enforcement cost.

3. Concretely, a city-wide electric-vehicle charging network could publish the live fraction of
stations in “green” (renewable-powered) mode. If this cooperation signal drops below a
legislated threshold, a dynamic congestion-pricing surcharge automatically activates, nudging
drivers back toward the green equilibrium—an institutional mirror of the lattice model’s local
reinforcement mechanism.

5.2 Limitations & future work

Our ABM is a stylised lattice; real networks are heterogeneous and dynamic, often displaying
scale—free[7] or small-world[§] structure. The RL experiments use simple tabular agents and short
horizons. Future work will (i) generalise to temporal graphs, (ii) incorporate deep—RL policies
with richer memory, (iii) test robustness under adversarial sensor noise, and (iv) validate attractor
detection on empirical datasets.



6 Conclusion

We formulated Ethical Attractors as observable basins of cooperation and demonstrated their
emergence under both imitation and learning dynamics. Our simulations achieved a logistic fit
with R? = 0.92 and a monotone cooperation ordering across payoff variants, confirming theoretical
predictions. By instrumenting real systems with coarse cooperation metrics and distributing them
through observer networks, we can locate and sustain ethical attractors in the wild.

Data Availability & Ethics

The full simulation code, analysis notebooks, and raw JSON outputs are available open-source at
this GitHub repository (commit 18 Jul 2025, MIT License). All data are synthetic; no human
or animal subjects were involved, and no personally identifiable information was processed. The
work complies with open science and transparency guidelines and requires no Institutional Review
Board approval. Reproduction instructions and deterministic seeds are provided in ‘reproduce.sh’
to enable bit—level reproducibility.

References

[1] R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.
[2] M. A. Nowak. Evolutionary Dynamics: Ezxploring the Equations of Life. Belknap Press, 2006.

[3] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior 14, 124-143
(1996).

[4] W. H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press, 2010.

[5] M. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems (3rd ed.).
Springer, 2012. doi:10.1007/978-3-642-25847-3.

[6] L. E. Blume. The statistical mechanics of strategic interaction. Games and Economic Behavior
5, 387-424 (1993).

[7] A.-L. Barabési and R. Albert. Emergence of scaling in random networks. Science 286, 509-512
(1999).

[8] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature 393,
440-442 (1998).

[9] D. Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science 362, 1140-1144 (2018). doi:10.1126/science.aar6404.

[10] E. Ostrom. Governing the Commons. Cambridge University Press, 1990.

Funding and Conflicts of Interest

The author declares no competing interests and received no specific grant from any funding agency
for this work.


https://github.com/zauhj/ethical-attractors

A Asynchronous convergence bound

We analyse the asynchronous soft—-majority imitation dynamic in which a single uniformly random
agent updates at each step. Following Blume[6], this dynamic is a reversible Markov chain with
stationary distribution 7(s) o exp(8®(s)), where 8 = (1 — 2p)/2p for flip-noise rate p < 1/2.
Because asynchronous updates render ¢ an exact potential, the process satisfies E [(ID(sHl) —P(sy) |
St] > 0.

Theorem A.l. Let G be a finite graph with mazimum degree A. For the asynchronous soft—
magority imitation with slope k and noise p < 1/2, the expected hitting time to the attractor set
A = argmax ® obeys

El7a | so] < (L+o(1)) NAe™, 5= (1-2p)/(2p).

The bound is linear in network size N and exponential in slope k, matching the runtime budget used
in Section 3.1. In practical terms, such asynchronous updates mirror real-world deployments—e.g.,
Internet-of-Things devices that update on heterogeneous clocks—thereby underscoring the applied
relevance of this bound.
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