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Introduction 
Travel demand models typically include transportation supply options (e.g., drive, transit, walk/bike) 
whose characteristics are largely exogenous.  But today, there are travel options, such as on-demand 
shared mobility services, which respond, in near-real time, to market cues.  In some cities, such services 
account for a substantial portion of traffic and resulting congestion, particularly in central business 
districts.  A survey of vehicles in New York City’s borough of Manhattan revealed that for-hire vehicles 
(including transportation network company (TNC) vehicles plus taxis) made up approximately half of the 
traffic sampled (NYC Taxi and Limousine Commission and DOT 2019).  TNCs, who typically pay 
contractors on a trip-by-trip basis to use their own vehicles to pick up and drop off travelers who book 
trips via mobile application, were also found to be a substantial contributor to traffic congestion in San 
Francisco (Erhardt et al. 2019). Therefore, it matters that these travel options are not well-modeled. 

In some cases, vendors of trips compete for shared resources. For example, TNCs, such as Uber and Lyft, 
compete for drivers, and we can envision a possible future world in which shared mobility services using 
automated driving systems (ADS) compete for available vehicles.  Not only do shared mobility services, 
whether TNC or automated, compete for travel supply, but this competition affects the price offered to 
would-be travelers in near-real time, with accompanying effect on user response. It is perhaps not a 
surprise that travel demand models struggle to account for the behavior of travel options that have this 
real-time feedback. While the literature does address how drivers respond to the driver pay offered, 
and, separately, how users respond to the price of a trip, current models do not represent the complete 
feedback loop.  

In a multi-operator shared mobility environment, several TNC operators compete for both drivers 
(supply) and travelers (demand), creating a complex system of interdependent relationships. This 
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includes how travelers respond to operational strategies; how drivers make choices in response to these 
strategies; and how operators adjust their strategies based on demand and supply conditions.  

Several studies focus on how users respond to operator strategies. Wang, Correia, and Lin (2022) 
developed a multinomial logit model in an agent-based modeling framework to examine how travelers 
adjust their decisions based on fleet size, fare structures, and assignment strategies of different 
operators. However, this study does not capture competition between operators, or operator-side 
responses to demand. Similarly, Wong et al. (2024) used a logit-based discrete choice model calibrated 
from a stated preference survey collected in Hong Kong to study shared mobility acceptance in the 
context of app-based car-pooling and taxi ride-sharing. They identified key factors that influence traveler 
and driver decisions, but did not address how operators react to changes in demand. 

Other studies emphasize how TNC drivers respond to operators' strategies. Guo et al. (2023) applied a 
Bayesian estimation-based structural model to investigate the behavior of freelance drivers in multi-
operator environments, particularly decisions of drivers regarding switching between platforms or 
operating across multiple services. While this study captures the interaction between driver behavior 
and operator strategy, it does not explicitly model demand responses or inter-operator competition. 
Regarding the operator-side response to demand fluctuations, Martin (2022) examined how operators 
adjust strategies in response to spatio-temporal variations in demand, by implementing fleet 
rebalancing strategies. However, this study focuses on operational decisions and fleet-based ownership, 
and does not consider further demand feedback to operator strategies, nor systems, such as typical 
human-driven TNCs, where each driver owns their own vehicle. 

While these studies provide insights into individual components of demand-supply interactions in a 
multi-operator shared mobility environment, they fail to capture the complete feedback loop—where 
user responses impact drivers; drivers impact operator strategies; and operators in turn influence both 
users and drivers. Additionally, the models mentioned above primarily focus on short-term operational 
strategies, such as ride assignment and pricing decisions, rather than long-term planning, such as fleet 
size optimization in a competitive TNC landscape. 

To address multi-operator competition, some studies explore strategic interactions between operators 
in shared mobility markets. Huang, Ding, and Jian (2024) introduced a game-theoretic model to study 
cooperative competition between transportation service providers, analyzing resource-sharing and 
price-setting decisions. While the study captures interactions between operators, and supply-demand 
characteristics, it focuses on markets such as electric vehicle charging stations and hence has limited 
applicability in shared mobility markets which have dynamic spatio-temporal demand and supply 
variations. Jiang and Ouyang (2022) used Generalized Nash Equilibrium models to study competition in 
the context of docked bike-sharing systems, examining fleet sizing, station locations, and pricing 
decisions over short time periods (hours in a day). Pandey et al. (2019) employed optimization models to 
analyze the impact of competition and cooperation in ridesharing, finding that competition can degrade 
service quality, particularly when operators prioritize their own optimization over system-wide 
efficiency. 
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Despite these contributions, existing studies primarily address real-time operational decisions and 
individual aspects of demand-supply endogeneity. They do not simultaneously capture the full feedback 
loop where users, drivers, and operators continuously influence each other. Furthermore, most models 
focus on immediate operational adjustments rather than long-term fleet planning, making them 
unsuitable for strategic decision-making in a competitive multi-operator TNC environment. 

System dynamics (SD) modeling offers a promising approach for strategic planning in multi-operator 
TNC markets by capturing the full feedback cycle between demand, supply, and operator competition. 
However, there is very limited literature employing SD models in this context. One relevant study is by 
Ruutu, Casey, and Kotovirta (2017). Their study explores how digital service platforms evolve and 
compete, using the case study of what they call mobility-as-a-service platforms. It examines the 
interactions between platform providers and users, emphasizing the role of network effects, platform 
innovation, and competition strategies. The study highlights how factors like pricing, investment in 
innovation, and user adoption influence platform dominance or failure. By simulating different 
scenarios, the research provides insights into strategic decisions that platforms can take to sustain 
growth and outperform competitors in a rapidly evolving market. However, while the study effectively 
evaluates the evolution of operator market shares, it does not delve into specific mid-term operational 
decisions service providers must make, such as fleet size planning or resource allocation. 

There remains a critical gap in understanding the effects of the decisions of shared-mobility operators 
and of travelers on fleet sizes, traveler mobility, and congestion. Current literature does not 
comprehensively capture the endogeneity of feedback between both demand and supply of trips on the 
operator’s side – that is, between the operator adjusting prices to bring in more or fewer human-driven 
or ADS trips - and between demand and supply seen from the traveler’s perspective - that is, between 
wait times and mode choice. The model developed here, however, shows how a decision on one side 
impacts a decision on the other. It further represents the feedback between multiple operators (such as, 
for example, Uber and Lyft) who are competing for both drivers and customers.  

By integrating demand-side responses, driver behavior, and operator strategies, the present model 
provides a long-term planning framework for multi-operator TNC markets. It can point towards how 
anyone looking to offer a shared mobility service – with or without automated driving – can strategically 
plan fleet sizes while responding to both demand fluctuations and competitive interactions. 
Furthermore, it can help cities estimate how vehicle miles travelled attributable to shared mobility may 
change if ADS-based shared mobility services are deployed in their communities. 

 Approach 
The model presented in this paper represents vendors' competition for both supply (trips offered by 
drivers or ADS vehicles) and demand (traveler trips), shown as one complete loop, to reflect not only 
competition among vendors but also induced trips and demand-mediated changes in the price of adding 
trip capacity. While fare is still exogenous, scenarios address several business models, such as a vendor 
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who aims to make money off of high volume, and one who aims to maximize profit per trip. (In the 
model, the term vendor, rather than operator, is used, to align with larger literature on multi-vendor 
competition.) 

A stock-flow model represents the offerings of several providers of shared mobility services, and how 
they might respond to market cues.  The supply side of the model includes a common pool of regional 
shared mobility resources (e.g., drivers and vehicles, with capacity represented as trips per month); and 
several service vendors with their own characteristics (fare, cost structure, and target utilization in terms 
of trips served divided by trip capacity).  The demand side of the model includes traveler wait time for 
each vendor, which is a function of vendor characteristics and the number of travelers.  Wait time feeds 
into a simple nested logit model that first considers traveler response to the several shared mobility 
vendors, and then the competition between shared mobility, other modes, and whether or not trips are 
made  - that is, the level of induced travel. 

Figure 1 shows the entire stock-flow diagram. 
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Figure 1 Model diagram 
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Feedback loops 

Six key loops, one reinforcing and five balancing, comprise the model. 

The first three loops focus on the vendor’s business choices: 

Reinforcing loop 1: Growing and re-investing 

Each vendor begins with a certain number of trips served per month (“trips using vendor”). 
From this, they earn revenue, which increases their cash on hand. More cash on hand leads to a 
higher maximum capacity that they can afford (“vendor max capacity affordable”). This feeds 
the vendor’s capacity increase, which in turn reduces the fraction of that vendor’s capacity that 
is used (the vendor’s utilization). A lower utilization leads to a lower wait time, which improves 
the vendor’s utility in the eyes of potential customers. Higher utility means a higher mode share 
and more travelers wishing to take trips (“desired trips using vendor”), and thus, a higher 
number of trips served. 

Balancing loop 2: Victim of your own success 

However, serving a higher number of trips means that the vendor’s utilization increases. This, all 
else being equal, lengthens the wait time, leading to lower utility, lower mode share, and lower 
desired and actual trips using that vendor. 

Balancing loop 3: Perils of growing too fast 

If the vendor’s cash on hand increases, the maximum capacity that the vendor can afford and 
the vendor’s (actual) capacity also increase. But supporting all that capacity costs money, so the 
vendor’s total operating cost increases, leading to them spending more money, which in turn 
reduces their cash on hand. 

The remaining three loops address the details of how unused regional capacity interacts with vendors’ 
desires to add (or, indeed, drop) capacity. Vendors looking to increase their capacity all compete for a 
common stock of unused regional capacity. This reflects the fact that many TNC drivers are willing and 
able to drive for both Uber and Lyft, and may in fact be selling trips to both within the same month (or 
even within the same day).  And companies purchasing ADS-enabled vehicles will be competing for ADS 
vehicles or for trips using non-company-owned vehicles, at least during an initial period when 
manufacturing is still ramping up. 
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Balancing loop 4: Regional capacity limits growth 

The higher the sum of actual capacity increase by all vendors, the greater the capacity taken by 
vendors, so the stock of unused regional capacity goes down. All else equal, this leads to a lower 
rate of actual capacity increase. 

Balancing loop 5: Law of supply and demand 

However, all else is not equal. As the stock of unused regional capacity decreases in relation to a 
fixed reference capacity, the cost of each unit of remaining available capacity (the “spot price”) 
increases. This represents both surge pricing in today’s world, as well as a presumed increase in 
unit price of ADS-enabled vehicles in times of vehicle shortage. As spot price rises in the ADS 
world, vehicle developers and manufacturers should take note, seeking to ramp up production. 
And in the human-driven world, more drivers are tempted to sign up to drive, thus creating new 
capacity. This is somewhat of a simplification of how surge pricing works, since surge pricing 
operates on a much shorter timescale than trips per month and is intended to attract more 
drivers to sign in at that moment for a particular vendor, rather than to enter the overall pool of 
TNC drivers writ large.  

Balancing loop 6: Vendor capacity adjusts to demand 

This loop returns to the dynamics of individual vendors. As a particular vendor’s capacity 
increases, their desired capacity increase diminishes, because the gap has narrowed between 
their current capacity and their target capacity, which is determined by the degree to which 
their existing capacity is being utilized. A lower desired capacity increase means a lower rate of 
actual capacity increase (via a mechanism mediated by the amount of unused regional capacity 
remaining). This slows the growth of the stock of the vendor’s capacity. 

Calibrating the model for the human-driven world 

Publicly-available data for TNC trips in the five boroughs of New York City provided a rich dataset to 
establish a reference mode and permit calibration of the model. The city’s Taxi and Limousine 
Commission (TLC) records and posts publicly the following information for each TNC trip originating in 
New York City: 

· Origin zone (New York tracks trip origin and destination by taxi zones, a list of 265 sub-areas 
across the five boroughs.) 

· Destination zone 
· Date and time of trip 
· Trip time and mileage 
· Waiting time 
· Price charged to the traveler 
· Driver pay 

https://usdot.sharepoint.com/teams/volpe-proj-VP33/Shared%20Documents/General/ISDC%20paper%20drafts/superceded/SDConference_draft_paper_v3.docx#_msocom_3
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Some TNC trips with pick-ups in New York City, thus making them subject to TLC tracking,  end outside 
the city, in an “Outside of NYC” zone. Newark Airport, while not within New York City, is also a taxi zone 
in the data, and trips originating there are also included.  For the present analysis, we grouped trips into 
a smaller set of analysis zones: Upper Manhattan, Lower Manhattan, Brooklyn, Bronx, Queens, Staten 
Island, and the region’s three major airports (JFK, LaGuardia, and Newark Airport),  plus a zone for all 
other non-NYC destinations. 

Using the approximately 19 million TNC trips recorded in New York City in September 2024, we 
calculated the number of trips beginning within each hour-long period (summed across the month) for 
each origin-destination pair of analysis zones. For example, for all days of September 2024 combined, 
9,659 TNC trips traveled from the Bronx to Lower Manhattan with origin times between 00:00 and 00:59 
inclusive. These calculations grouped the 19 million trips into slightly more than 2,000 records. For each 
line, we calculated mean trip distance, mean trip duration, mean total price of the trip (before any tip 
paid to the driver), the mean wait time for the passenger, and the mean pay the driver received (again, 
excluding any tip).    

The TLC reports, at an aggregate level, the number of vehicles registered for TNC service, as well as their 
average utilization (time with a passenger divided by total on-duty time).  However, the data does not 
include information on the number, distance, or distribution of repositioning – the mileage that TNC 
drivers drive without a passenger, to pick up their next fare. The public data also does not include any 
unique driver identifier, so the total number of drivers working at any one point is not directly revealed. 
While these gaps may be understandable from the perspectives of protecting corporate-sensitive trip-
assignment algorithms and driver privacy, they nevertheless represent significant hurdles for modeling 
the system. 

We estimated the amount and distribution of repositioning trips by looking at the imbalances between 
loaded trips into and out of each zone. For example, trips into Lower Manhattan during the morning 
rush hour exceed those headed out. For each morning hour, the imbalance reveals how many empty 
vehicles, on average over the month, must have left Lower Manhattan empty in order to bring back the 
next load of commuters or shoppers. The imbalances are pairwise among zones, so the empty 
repositioning trips can be assigned not only to Lower Manhattan as origin, but also to a destination 
borough.  With this analysis, interborough and airport empty repositioning miles were found to total 
approximately 15% of the number of loaded miles, thus representing about 13% of total miles.  The 
imbalance was greatest in early morning. From 5:00 - 5:59  AM, empty miles represent about 33% of 
total miles, an imbalance driven largely by many loaded trips going to the airports but few TNC 
passengers leaving airports. Empty miles were lowest around 6 PM, with trips more-or-less evenly 
distributed across the boroughs.   

The imbalance analysis yielded the total number of trips (loaded and empty repositioning) for each 
origin-destination pair, for each of the 24 hours of the day. Assuming an average borough-to-borough 
trip distance for each pair yielded an estimate of the total miles driven by TNCs – both with and without 

https://usdot.sharepoint.com/teams/volpe-proj-VP33/Shared%20Documents/General/ISDC%20paper%20drafts/superceded/SDConference_draft_paper_v3.docx#_msocom_7
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passengers -  each hour. From this we derived an hourly estimate of the TNC fleet size active in New 
York City. 

We also examined patterns in travelers’ wait times, finding 

- An average of approximately 5 minutes 
- Some variability due to both the number of trips between specific boroughs, during specific 

hours   (fewer trips tend to be correlated with slightly longer wait times) 
- Some variability due to empty imbalances (more trips leaving than entering the analysis zone 

was associated with longer wait times).  This was especially true for the airports late in the 
evening.   

 Based on this analysis, the wait time model in the system dynamics model has three elements 

- A constant term, set to 3 minutes 
- A term that approximates the traveler’s wait for an empty vehicle. By a fundamental result from 

queuing theory, it is proportional to   .  At 0.72 utilization (defined as trips / 
capacity, and calculated from the data as (loaded+empty time) / total time), this term 
contributes about 2.7 minutes to the wait time.  To avoid divide-by-zero issues, this term is 
capped at 120 minutes. 

- A term that is proportional to 1 �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄  which contributes between 0.3 and 0.5 minutes 
to the wait time.  In a situation where available vehicles are randomly and evenly distributed 
over a region, the expected distance to the nearest available vehicle is proportional to a constant 
divided by the square root of the number of vehicles.  This is 0.5 / √𝑛𝑛 (straight line distance), or 
approximately 0.625 / √𝑛𝑛 (right angle distance) where n is the number of available vehicles per 
square mile (Larson and Odoni 1981, p. 151). 

The system dynamics model includes a simple nested logit travel demand model.  At the top level, there 
are two travel modes, shared mobility (denoted by s) and everything else (a).  A third “mode” (n) 
represents a pool of trips, currently not taken, that could be taken should the travel options become 
more attractive (e.g., a substantial reduction in fare for a shared mobility option).  

  

Figure 2 Nesting structure for the travel demand model 

Looking towards impacts of a potential deployment of ADS vehicles in TNC service, the model was 
calibrated to produce a pool of potential additional trips from which induced travel can be drawn. Based 
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on the suggestion in Stephens et al. (2016) of a potential 20-percent increase in overall travel resulting 
from increased travel by the transportation-disadvantaged, this pool was set at 20 per cent of existing 
trips. Additional evidence of potential induced travel comes from Harper et al. (2016), who reviewed 
data from the 2009 National Household Travel Survey, comparing overall travel with the amount of 
travel by the elderly, non-motorists, and those with travel-restrictive conditions. They noted that “If 
ADS-equipped vehicles enable the amount of travel by these populations to increase to the amount of 
travel (VMT) observed in the remainder of the population, overall annual light-duty VMT could increase 
by 14 percent.” 

The resulting system dynamics model was calibrated for the reference mode of New York City in 
September 2024. New York’s data also records for each trip whether it was taken using Uber or via Lyft, 
the only two TNCs operating in New York City at that point. While overall dead-heading miles and trips 
were calculated for all vendors together (since drivers can switch between the two platforms 
throughout the day), the vendor-specific trip totals were used for the reference mode. We refined wait 
time, cost structure and mode choice assumptions in the system dynamics model to yield these trip 
totals in equilibrium. To calibrate the mode choice part of the model, we took advantage of publicly-
available high-level ridership data from New York’s Metropolitan Transportation Authority (MTA), as 
well as the results of a recent city-wide travel survey.  Among the motorized-trips surveyed (including 
transit, but excluding walk and bike), TNC trips represented about 4% of the total.  

The appendix provides a full model description and complete initial values. 

Experiments and results 
After calibration with the new incumbent vendors (vendor i, representing Uber, and vendor j, 
representing Lyft), a new vendor, k, was added.  Two experiments were performed with that vendor. In 
both experiments, the vendor started with a low initial capacity (600,000 trips / month).  Some have 
argued that ADS may lead to lower fares, so we tested two notional lower-fare scenarios.  

- Experiment 1 gave vendor k similar characteristics to vendor j, except for a slightly lower fare 
($35 rather than $38) 

- Experiment 2 reduced both the variable cost and the fare considerably for vendor k, compared 
to the incumbent vendors. Variable cost per trip was reduced from $28 to $18.  Fare was 
reduced from $38 to $25.   

Vendor k begins each experiment with no trips; it must build its market share. 

Figure 3 shows the trips using each vendor, as a monthly time series over a 5-year (60-month period).  
The reference mode (before vendor k is introduced) shows a nearly constant number of trips for 
vendors i and j; vendor k does not appear in the reference mode.   
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Figure 3  Trips using vendor 

The results labeled test1 and test2 show the growth in trips for vendor k, taking market share from the 
incumbents in each of the two experiments run. Table 1 shows the trips at the start and end of the 
simulation.  Test 1 adds approximately 2.4 million TNC trips, of which 1.9 million came from other 
modes, while 0.5 million are new trips.  Test 2 adds approximately 7.2 million TNC trips, of which 5.7 
million came from other modes, and 1.5 million are new.   

Table 1  TNC trips 

  Monthly trips (millions) 
Experiment Vendor Start at 

month 0 
End at 
month 60 

Total 
TNC 
trips at 
end 

Difference 
from 
reference 
mode 

New 
trips 

Trips shifted 
from other 
modes 

ReferenceMode I 15 14.811 
    

ReferenceMode J 5 4.888 19.698 n/a n/a n/a 
test1 I 15 12.184 

    

test1 J 5 4.018 
    

test1 K 0 5.919 22.121 2.423 0.500 1.923 
test2 I 15 8.712 

    

Vendor k, test 2 

Vendor i, Ref. Mode 

Vendor i, test 1 

Vendor i, test 2 

Vendor k, test 1 
Vendor j, Ref Mode 
Vendor j, test 1 
Vendor j, test 2 
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  Monthly trips (millions) 
Experiment Vendor Start at 

month 0 
End at 
month 60 

Total 
TNC 
trips at 
end 

Difference 
from 
reference 
mode 

New 
trips 

Trips shifted 
from other 
modes 

test2 J 5 2.869 
    

test2 K 0 15.352 26.933 7.234 1.490 5.744 

Each vendor’s desired utilization was set so that average wait times would be about 5 minutes, similar to 
what was observed in the data.  Figure 4 shows the evolution in wait times.  For the reference mode, the 
wait times stay constant at about 5 minutes.  When the new vendor is introduced, it takes between 20 
and 26 months to restore the equilibrium.    

 

Figure 4  Wait time 

Several mechanisms lead to this result: 

1. The legacy vendors (i, j) now have a new competitor.  Their utilization declines, with a corresponding 
short-term reduction in wait time for their services.  Eventually, they shed trip capacity in response 
to this loss of business, and the desired utilization (with resulting wait time of about 5 minutes) is 
restored. 

Vendor k, test 2 
Vendor k, test 1 and 2 

Vendors i and j, test 2 
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2. Meanwhile, the new vendor (k) is trying to grow, but is constrained by available funding, and the lag 
in acquiring trip capacity.  Therefore, vendor k’s utilization and resulting wait time start off high, until 
vendor k’s capacity has grown enough to serve the new split in demand among the three vendors, at 
which point utilization has reached vendor k’s desired level and wait times stabilize. 

3. The spike at month 23 for test 2 with vendor k represents an interaction with the common pool of 
supply and the spot price.  In this case, the vendor is drawing down from the common pool of supply 
until the stock of unused common capacity is low enough to trigger an increase in the spot price 
after month 21.  This further constrains vendor k’s ability to grow, leading to an increase in its 
utilization and wait time.  Eventually, vendor k’s growth slows, the market readjusts, and the 
vendor’s desired utilization (with a resulting wait time of 5 minutes) is reached.   

Discussion 
This endogenous model of transportation supply with multiple service providers includes (1) 
competition for upstream resources,  (2) competition for customers, and (3) traveler responses to the 
offered services.  It allows for recalculation of NYC data attributes at an aggregate level to account for 
different scenarios of price of travel and level of service; outputs include implications for congestion and 
wait time. The stock-flow model runs by itself, or it can be integrated with the U.S. Department of 
Energy’s POLARIS agent-based model of travel supply and demand, which allows for much more detailed 
modeling of traveler response to changes in supply.  Either way, the model provides insights to 
policymakers regarding traveler mobility and road congestion, enabling testing of various policy options.   

Results indicates a significant increase in overall car travel in the modelled scenarios, which in New York 
City primarily means a shift away from transit. Aside from implications for MTA’s revenue, this suggests 
that even if automated driving systems lead to a lower dollar-value fare on a shared mobility service, 
there may be increases in the time cost of a trip, as vehicle congestion is likely to rise. Fare and vehicle 
speed are currently exogenous; a worthwhile extension to the model would be to endogenize both the 
dynamics of changes in fare as a result of lengthening trip times, as well as the impact of such changes 
on supply and on demand. This could be accomplished by making total vehicle miles traveled, on an 
hourly and zone basis, endogenous to the model in the form of a congestion term. The congestion term 
would affect the price of adding capacity, as well as wait time, travel time, and fare. Such a model would 
both more completely reflect how the utility of a TNC trip changes when demand is high, and how 
demand reacts in turn.  

The model requires vendors to earn revenue by providing trips. Another extension to the model would 
be to more fully represent the ways that vendors can replenish their stock of cash on hand, such as by 
turning to venture capital funding. 

A model with the above-mentioned enhancements – both a more complete representation of utility, as 
well as vendor financing – would also highlight one of the model’s existing contributions: it represents 
competition among vendors for a limited regional pool of trip capacity, with a price that increases as 
supply runs short. 
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The calibration approach taken in and of itself represents a research contribution. The use of zone-by-
zone trip imbalances to calculate the level of empty repositioning trips, and thus the minimum TNC fleet 
size active at any given hour of the day, represents a practical workaround for one of the recognized 
challenges of working with NYC’s public TNC data, which is rich in trip-related characteristics but poor in 
details about the fleet supplying the trips.  

Additionally, this work demonstrates how SD and agent-based models can complement each other, and 
in particular, the value of pairing a fast, easy-to-run SD model with a downstream agent-based model 
that takes more details into account but is much more time-intensive to run. Calibrating the SD model 
with real data allows it to provide initial fleet estimates to POLARIS.  In turn, the agent-based simulation 
performed by POLARIS can provide updated wait times, mode shares, empty miles and loaded miles, 
which can be used to fill a current gap in models that treat transportation supply as fixed. Linking the SD 
model to POLARIS allows the more-detailed model to benefit from the endogeneity of the SD model.    
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Appendix – Detailed model description 
Model inputs for the two initial vendors, i and j, are listed below in Table 2.  Some variables have an 
array of values, one for each shared mobility service vendor; for these, initial values are shown for i and 
then for j. 

Table 2 Model inputs  (working clockwise around the diagram) 

Exogenous inputs Initial Value Units Comment 

trip adjustment 
time 

1 months Asserted, used to regulate how fast trips for a 
vendor go up or down 

v 28,28 $/ trip Variable cost to the vendor per trip.  Driver 
pay per trip (including 15% tip) is $21 

f 2.7, 2.7 $ / (trip / 
month) 

Asserted; fixed cost to the vendor which 
scales with vendor capacity.  For example, if 
the vendor has a capacity of 10,000 trips / 
month, and f = 2.7, then the fixed cost is 
$27,000  / month.  

Initial cash on 
hand 

$50M, $20M $  

capacity 
adjustment time 

1 Month Asserted; used to regulate how fast vendor 
capacity can change.  

Reference 
capacity 

15M Trips / month Used to scale the variation in spot price 

Monthly wear-
out fraction 

0.05 Dimensionless Fraction of unused regional capacity that 
wears out each month 

System maximum 
price 

5 $/(Trip/Month) Maximum for spot price 

Create capacity 
parameter 

2M Dimensionless Scaling parameter to indicate how fast new 
capacity can be created 

Capacity rebuild 
time 

0.5 Month Time constant for rebuilding the pool of 
unused regional capacity 

information from 
other vendors 

0 
 

Placeholder for variable representing the 
degree to which vendors have information 
from or about other vendors, to inform the 
desire to increase capacity 

target utilization 
(rho) 

0.7, 0.7 dimensionless Asserted.  May vary by vendor. This is the 
desired fraction of time a shared vehicle is 
serving travelers. It includes both the time 
that vehicles are repositioning themselves, 
empty, to pick up a traveler, and time with 
the traveler(s) on-board. 
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Exogenous inputs Initial Value Units Comment 

vendor’s initial 
capacity 

21M, 7M Trips / month Asserted: trips / month for each vendor.  
Capacity of 0 will lead to a floating point 
(divide by 0) error 

r 0.5,0.5 minutes Wait time parameter that varies with vendor 
utilization.  This drives about 3 minutes of 
wait time at 0.667 utilization 

d 60,60 minutes/hr Wait time parameter that varies with vendor 
capacity (represents empty travel time for a 
nearby vehicle) 

c 3,3 minutes Minimum wait time.  Based on regression 
with actual wait times 

Vehicle speed 15 Mi / hr Used in calculation of wait time 
Region area 300 Mi*mi Area of the region 
Working hour per 
month 

300 Hr  

fare 38,38 $ Fare for each vendor. Taken from NYC data 
value-of-time 15 $ / hour Asserted, used to relate fare and wait time in 

the utility equation 
asc 0.79, 0.36  Alternative specific constant, adjusted to 

match modeled mode shares with those from 
POLARIS, or from observed data 

wait time 
coefficient 

-0.05  Wait time coefficient for the logit model 

theta  θ 0.39  Logsum parameter (should be between 0 and 
1).  This value taken from POLARIS.  

asc s -1  Alternative specific constant, for all of the 
shared mobility services, adjusted to make 
modeled mode shares roughly match those in 
New York 

utility a 0.8  Utility for other modes 
utility n -0.45  Utility for no travel (used to model induced 

trips) 
total trips 500M Trips / month Trips in the region to be served by the 

vendors 

The equation for vendor’s total operating cost ($ / month) is  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

The equation for utilization (dimensionless) is  

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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The equation for wait time (minutes) is 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐 +  
𝑑𝑑

𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚
+ min (120,

𝑟𝑟
1 −  𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

) 

 

Its three components are  

- c, a constant, in minutes;   
- d, set to 60 minutes / hour.  Represents empty travel time.   
- r, a parameter to represent the wait time for the next available vendor, which is inversely proportional to 1 - 

utilization.   

Within the lower level nest (shared mobility vendors competing with each other), the equation for utility 
is  

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

60 𝑚𝑚𝑚𝑚𝑚𝑚/ℎ𝑟𝑟
∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� + 𝑎𝑎𝑎𝑎𝑎𝑎 

The equation for sum of utilities is 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =  ∑ exp(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢[𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣] /𝜃𝜃)𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣    and    𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠 = ln (𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) 

The equation for vendor mode share within the lower level nest is 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎[𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣] =
exp(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢[𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣]/𝜃𝜃)

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 

Moving to the higher-level nest, the combined utility for the shared mobility services is 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 𝑠𝑠 + 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 

The equations for sum of utilities and mode shares are as expected, where x represents the three upper 
level modes:  shared service, all other, no travel (s, a, n).  

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 =  � exp(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢[𝑥𝑥])
𝑥𝑥= 𝑠𝑠,𝑎𝑎,𝑛𝑛

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) = exp(𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢[𝑥𝑥]) /𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑎𝑎𝑎𝑎𝑎𝑎 

Desired trips for each vendor is  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

Total trips is the universe of possible trips, including potential new trips via induced travel.  
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The equation for vendor capacity increase (trips / month) is 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣max  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = max (0,
 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑟𝑟′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑜𝑜𝑜𝑜 ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
) 

The equation for vendor target capacity (trips / month) is 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 

The equation for spot price is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ exp (
−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
) 

 

Figure 5 Spot price (reference capacity=15000, system maximum price=5) 

Creation of new capacity has a simple linear relationship with spot price and unused regional capacity 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∗ 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
) 

The equation for actual capacity increase for each vendor is 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= (MaxAffordable(1 − 𝑎𝑎 exp (
−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

1 + MaxAffordable
)))/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
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Where 

- a is an exponent modifier for testing, now set to 1.   
- Interim capy is based on unused regional stock and the vendors desired capacity increase 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(1 − exp �−
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

1 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 �) 
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