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Abstract  
The transition to decentralized renewable energy systems is shaped by complex socio-technical 
dynamics, where individual investment decisions play a crucial role. However, energy models largely 
underrepresent behavioral factors that shape the energy transition. This study develops a System 
Dynamics model based on a theory-based approach to analyze influencing factors of adopting 
renewable energy technologies. The model builds on the stage model of self-regulated behavior and 
provides a feedback perspective on the psychological theory. As such, the model effectively combines 
psychological and systemic perspectives, emphasizing the interplay between individual decision-
making processes and external systemic influences in the transition to renewable energy adoption. The 
model integrates broad insights from different studies on the attitude-behavior gap and behavioral 
sciences and incorporates key feedback loops, such as peer effects, social norms, and infrastructure 
availability. By simulating different adoption pathways, we capture the attitude-behavior gap in 
investment decisions, showing how discrepancies between intention and action emerge across 
different decision stages. The System Dynamics model is designed in a generic approach, so that it can 
be adopted for different (energy) decisions, supporting the field of behavioral modeling. 

1. Introduction 
The widespread adoption of renewable energy technologies is decisive to achieve decarbonization 
targets and transitioning to sustainable energy systems. The energy transition is a complex development 
towards a climate-neutral, economic, safe, and fair energy system. Particularly, the adoption of different 
renewable technologies requires a deep understanding of the willingness of investment of private 
actors. The dynamics driving individual adoption behaviors of renewable energy technologies remain 
complex. Shaped by an interplay of systemic and individual decision factors, renewable energies are 
picking up on growth, partially at impressive rates. However, at absolute numbers, they remain low 
compared to the massive deployment required [1].  While decentralized renewable energies, such as 
solar power, battery storage, or heat pumps often enjoy a positive public perception, the effective 
installation rates lag far behind the decarbonization pathways. Various studies have investigated the 
factors relevant to social acceptance, consumer preferences, and decision processes for renewable 
energy technologies and emphasized their importance. These topics are increasingly getting attention 
in current research on modeling the energy transition [2], [3]. Energy models play a crucial role in energy 
policy-making. The models are regularly used to develop scenarios, optimize potential end states, or 
simulate transition pathways [4]. The large share of optimization models does not take into account the 
links between human behavior and changes in the energy system [2],[5]. At the same time, energy 
models that address the behavioral aspects of the energy transition represent these in an oversimplified 
manner [6], [7]. 
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This study follows three objectives:  

i. Synthesize key findings from studies examining the factors influencing behavioral change and 
decision-making in renewable energy contexts.  

ii. Develop a generic modeling framework to capture the attitude-behavior gap in the context of 
renewable energy technology investments  

iii. Test the modeling framework conceptually at the hand of a set of decentralized renewable 
energy technologies 

With the three objectives, we aim to contribute to (a) a more holistic understanding of the attitude-
behavior gap in the context of renewable energy technologies, and further (b) provide a modeling 
approach to bring human behavioral change into the loop of energy modeling that could be adopted by 
different energy models.  

2. Background 
In this background section, we discuss the current stage of the literature regarding where (a) a gap 
between attitude and behavior can be observed for renewable energy technologies, (b) how renewable 
energy technology diffusion has been modeled with System Dynamics in prior studies, (c) the dominant 
interpretation of dynamics of social acceptance in the field of renewable energies, and (d) what models 
of human behavior are used in behavioral science that can inspire broader modeling efforts.  

Gap between Attitude and Behavior 

The example of heat pumps has triggered a considerable debate in Germany. In terms of technical 
potential, around 75 % of residential buildings are already suitable for the installation of heat pumps [8]. 
Public opinion is somewhat mixed but still promising: 59 % of people expressing a positive attitude 
toward heat pumps [9]. Despite this potential and generally favorable perception, only 6 % of residential 
buildings in Germany currently use heat pumps for heating [10], with fossil fuels remaining the dominant 
energy source. This highlights a significant gap between public attitudes and actual adoption, indicating 
that technical feasibility and positive perceptions alone are not sufficient to drive widespread 
behavioral change. The observed discrepancy between sustainable attitudes and unsustainable 
behavior, known as the attitude-behavior-gap [11], has already been much studied in the literature. 
Kollmuss and Agyeman [12] propose an own framework (model of pro-environmental behavior) 
distinguishing demographic, external, and internal factors in explaining the gap between environmental 
awareness and pro-environmental behavior. Similarly, Wintschnig [13] identifies two categories of 
influencing factors of the attitude-behavior-gap: individual-related and environmental determinants. 
The interplay between these diverse factors highlights the need for a holistic, tailored approach 
combining various tools to promote sustainable behavior and bridge the attitude-behavior gap 
effectively. Park and Lin [14] investigate the intention-behavior gap in sustainable fashion, highlighting 
perceived value, risk, and consumer effectiveness as key determinants. ElHaffar et al. [15] explore the 
"green gap" in their review, finding that attitudes alone weakly predict eco-friendly behaviors unless 
integrated with self-related factors. On a technology-specific level, Kastner and Matthies [16] identify 
interactions between value orientation and external factors and Kastner and Stern [17] find financial 
and ecological expectations more predictive than demographic factors, focusing both on household 
energy investments. Plananska [18] generates a novel conceptual framework of the electrical vehicle 
purchase process and underlines the critical role of different systemic factors. Together, these studies 
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reveal the importance of individual and systemic/contextual interplay in understanding and fostering 
sustainable behavior and further renewable energy adoption. The adoption of renewable energies from 
a bottom-up perspective can also be described and analyzed using energy technology diffusion models.  

Energy Technology Diffusion Models in System Dynamics 

Different models have been developed in the field of system dynamics to simulate the diffusion of new 
energy technologies based on the bass diffusion model [19]. In the paper by Maallaa and Kunschb [20] 
they analyze with System Dynamics the possible diffusion of micro-systems for combined heat-power 
generation. The model shows how the spread of new technology is promoted by social influences and 
advertising based on aspects of innovators and imitators. It divides the population into two stocks: 
potential and already active users of the technology. Adoption by imitation is influenced by word-of-
mouth and willingness to adopt. Adoption through advertising depends on the attractiveness of the 
technology and the effectiveness of the advertising. Two feedback loops reinforce the process: the first 
motivates imitation, and the second promotes interest through advertised attractiveness [20]. Also 
Castaneda et al. [21] chose the bass diffusion model to examine the effect of the diffusion of 
Photovoltaic technology on the revenues of utilities and customers with a system dynamic model. The 
number of households is derived based on population development. A proportion of households are 
willing to adopt PV systems, which is reinforced by advertising and word-of-mouth. The decision to 
install is also influenced by PV costs and electricity tariffs. The model contains three feedback loops: 
The more households install PV systems, the greater the interest of other households. Falling PV costs 
and rising electricity tariffs can also increase interest in PV. Overall, the model describes how economic, 
social and tariff factors influence the spread of PV and how this reduces the demand for grid electricity 
[21].  

Kubli and Ulli-Beer [22] present a model-based theory-building approach to explore the diffusion of 
energy consumption concepts linked to distributed renewable generation, highlighting key causalities 
and network effects. The model has been developed and further applied to a concrete policy problem 
of justice of grid tariff designs in the context of the diffusion of rooftop solar PV and home storage 
batteries Kubli [35] shows how the diffusion of solar and battery installations in households is driven by 
economic and social factors. Households that generate their energy (prosumers) save on electricity 
costs and can sell surplus electricity, which shortens their payback period and makes investments more 
attractive (cost recovery feedback loop). The path dependency is also represented by the three stocks: 
Grid users, prosumers, and finally prosumers with storage. The model also takes social effects into 
account expressed by different feedback loops: If more households install solar systems, the interest 
of others grows as neighbors and acquaintances also use the technology (peer effect). The availability 
of suitable roofs (investor roof match) and the use of technical potential (scarcity effect) also influence 
the growth of prosumers [23]. When considering these factors of economic, socio-political, and societal 
influence on technology diffusion, the term “social acceptance” is also used in a broader context. 
However, in order to gain a more comprehensive understanding of the social acceptance of renewable 
energy technologies, it is helpful to link these considerations to existing theoretical frameworks.  

Dynamics of Social Acceptance of Renewable Energies 

The term “social acceptance” is often mentioned in politics but is rarely clearly defined. Wüstenhagen 
et al. [24] conceptualize social acceptance of renewable energies as a complex interplay of three 
dimensions that together can promote or hinder the diffusion of renewable energies. The authors 
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distinguish three dimensions: socio-political acceptance, community acceptance, and market 
acceptance, to understand the acceptance of renewable energies more comprehensively. Socio-
political acceptance describes the general social approval of renewable energies and political 
measures. Acceptance by relevant political and economic actors is key for renewable energies and 
hence can be a major obstacle to the implementation of projects if not present. Surveys often show 
broad support for renewable energy technologies on a socio-political level [9], [25], [26]. The support 
however often decreases when it comes to the implementation of specific projects and the local 
community is surveyed. Community acceptance refers to local approval for specific projects, especially 
from residents and local authorities. This is often called the NIMBY (Not-In-My-Backyard) phenomenon, 
which means that people generally support renewable energy but have reservations about projects in 
their neighborhood [24]. Nevertheless, some studies show that acceptance often increases again after 
the completion of such projects [27]. Factors such as distributive justice and trust play a key role here 
[24]. In this context, the power dynamics and time dynamics of social acceptance are closely related, 
as described in [28]. Market acceptance refers to the spread and acceptance of renewable energies on 
the market. This includes acceptance by consumers and investment decisions by companies. The 
economic attractiveness and accessibility of the technologies are crucial, but existing structures and 
the power of large energy suppliers can put smaller investors at a disadvantage and slow down the 
deployment of renewable energy [28]. Another dynamics of social acceptance discussed in [28] is the 
scale dynamics linking the consideration to macro, meso, or micro scales. Transferred to the bottom-
up modeling of renewable energy adoption, in addition to systemic phenomena, also processes on the 
individual level (micro-scale) need to be considered. For this reason, the literature on human behavior 
must be analyzed from a psychological or behavioral science perspective.  

Models of Human Behavior 

The question of how humans make decisions is the core of behavioral sciences. Various models have 
already been developed to model the (sustainable) behavior of individuals. Stern [29] underlines the 
complexity of environmental behaviors, proposing the Attitude-Behavior-Context Theory (ABC) to 
capture the influence of values, norms, and especially contextual factors based on the well-known 
Theory of Planned Behavior (TPB) [30]. The Behavioral Reasoning Theory (BRT), as discussed by Westaby 
[31] and later by Claudy et al. [32], is also based on the TPB [30] and highlights the dual role of reasons 
for and against adoption, with a stronger negative impact of the latter on adoption intentions. Other 
advanced theories such as Yun & Lee's [33] extension of the TPB incorporate societal and technological 
influences, while Sussman and Gifford [34] demonstrate reciprocal effects between intentions and 
behavioral components within the TPB. Groening et al. [35] categorize in a large-scale review of green 
consumer behavior research and models into groups based on their main focus, emphasizing the 
diversity of theoretical approaches: values and knowledge, beliefs, attitudes, intentions, motivation, 
and social confirmation.  

The Stage Model of Self-Regulated Behavioral Change (SSBC) by Bamberg [36] describes pro-
environmental behavior change as a process that occurs in four distinct stages: predecisional, 
preactional, actional, and postactional. Figure 1 shows the scheme of the SSBC model as presented in 
[36]. Each stage is influenced by psychological constructs derived from well-established theories on 
pro-environmental behavior. Rather than assuming a direct link between environmental attitudes and 
behavior, the SSBC captures the gradual progression from forming an initial intention to taking concrete 
action. This distinction is particularly relevant for investment decisions, which often require overcoming 
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financial, informational, and psychological hurdles [37]. Considering this large literature base on social 
acceptance and research on the attitude behavior gap, the question arises which bandwidth of factors 
lead to the observed and how causal relationships could be simplified for further quantitate modeling. 

 

Figure 1: Scheme for the stage model of self-regulated behavioral change, from [36] 

3. Conceptual Framework 
The theoretical framework shows how systemic and individual factors shape the decision-making 
process related to renewable energy adoption from a behavioral change perspective. It builds on the 
Stage model of Self-regulated Behavioral Change (SSBC) [36],  the framework presented by Kubli [38] 
and a literature search and structuring efforts on the individual and systemic factors influencing 
renewable energy investments. In this work, the SSBC is contextualized to the application for renewable 
technology investments. Within the SSBC, intentions (goal, behavioral, and implementation intentions) 
serve as key transition points between four stages: predecisional, preactional, actional, and 
postactional.  Instead of explicitly representing intentions, they are implicitly captured through changes 
in the number of adopters. The behavioral and implementation stages have been merged, as no clear 
quantitative distinction can be made in the case of renewable energy adoption. Additionally, systemic 
feedback mechanisms, as in [38], have been integrated to account for the influence of social norms, 
building availability, and peer effects. By integrating feedback loops, the framework offers a nuanced 
perspective on fostering sustainable behaviors at both individual and systemic levels. The framework 
shown in Figure 2 models the adoption process of renewable energy technologies by structuring it into 
three main stages: the Predecision Stage, (Pre-)Action Stage, and Postaction Stage, and integrates both 
individual and systemic factors that influence decision-making and behavioral transitions from non-
adoption to technology adoption. In the Predecision Stage, individuals are classified as non-adopters, 
meaning they have not yet formed a goal intention to adopt renewable energy technologies. Individual 
factors include perceived goal feasibility and positive emotions, which shape how realistic and 
desirable the goal appears. Systemic factors such as personal norms, formed by the ascription of 
responsibility and social norms, further shape goal intention by embedding the decision within a 
broader societal and moral context. Once individuals develop a goal intention, they enter the (Pre-
)Action Stage as potential adopters. At this point, behavioral control and investment valuation (as a 
representer of self-efficacy) play a role in determining which technology is suitable. Availability 
constraints (scarcity effects) related to building conditions may limit adoption, while peer effects (social 
influence on technology-specific attitude) can reinforce the motivation to proceed. Finally, in the 
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Postaction Stage, individuals become technology adopters and contribute to broader system behavior 
by adopting technologies such as heat pumps, solar PV, or batteries. This stage also reinforces systemic 
feedback loops, where adoption trends influence future potential adopters via social norms and peer 
effects, thereby shaping the diffusion process of renewable energy technologies.  

Based on the discussed literature in behavioral fields, existing frameworks, and models, influencing 
factors of behavioral change are collected and then categorized. The following gives an overview of the 
different individual and systemic factors in each stage, summarized in categories (clusters), that can 
influence the parts of the conceptual model.  

3.1. Predecision Stage 
In the predecision stage, different individual factors focus on determinants shaping the perceived goal 
feasibility. The first cluster, energy literacy, highlights the importance of knowledge: factual knowledge 
[13], literacy [29] as well as behavior-specific knowledge and skills [29] enable individuals to make 
informed decisions. Investor compatibility due to building property refers to how well an investment 
aligns with personal circumstances and capabilities: the tenant share indicates whether individuals 
have the required power of energy investment decisions. Also, technical system constraints like 
Infrastructure [13] can influence the intention: Speich et al. [39] describe the lock-in effect of 
technology alternatives in the heating sector. Positive emotions are an important individual influencing 
factor for goal intention in SSBC [36]. Also in other studies, emotions [13], or emotional involvement 
concerning environmental consequences [12] can enhance sustainable behavior. In the SSBC personal 
norm is a central determinant in forming intentions and is defined as a perceived obligation to align their 
behavior with personally valued moral standards [36]. Similar to this, the subjective norm as mentioned 
in [14] and [31] refers to the perceived social pressure an individual feels to perform or not perform a 
particular behavior and is a key component in the TPB [30]. In our conceptual model, the personal norm 
is mainly influenced by the ascription of responsibility, descriptive social norms, and public discourse. 
Not only a sense of responsibility [13] drives individuals to form the ascription of responsibility. 
Perceived consumer effectiveness focuses on an individual’s belief in their ability to make a meaningful 

Figure 2: Theoretical framework for consumers' decision in renewable energy investments 
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impact with their behavior and is mentioned by several studies [13], [14], [15]. Similarly, locus of control 
[12] refers to the extent to which individuals feel they have control over outcomes, linking to their 
perceived ability to create change. An important cluster in this context is the environmental concern 
and awareness which explores the role of awareness. Environmental concerns [13], [14], awareness of 
consequences [13], or environmental awareness [12] are mentioned frequently in literature. Another 
key cluster is social norm, which underscores the role of societal expectations. Social norms, as 
outlined by Stern [29], Wintschnig [13], and Park and Lin [14], establish benchmarks and push 
individuals to adopt technologies. The role of cultural factors [12], or dominant cultural paradigm [13], 
is also discussed in the literature. Public discourse refers to how societal information dissemination 
affects the personal norm. The perception of a technology’s image and related stereotypes, 
communication efforts, and information utility and credibility as noted by Wintschnig [13], play a critical 
role in shaping public opinion. Advertising, as Stern [29] highlights, is another powerful driver that 
frames technologies and their appeal as well as information sources, as explored by Plananska [18]. 
Other influencing systemic factors such as values [12], [14] or social status [29] are not explicitly 
mentioned in the conceptual model, but are assumed to be taken into account through the explicit 
description of personal norm or social norm. 

3.2. (Pre-)Action Stage 

In the (pre-)action stage of the conceptual model, several factors shape the behavioral or 
implementation intention. Behavioral control focuses on individuals' perceptions of their ability to 
perform a behavior and is also an important determinant of behavioral intention. While perceived 
behavioral control [13] reflects how confident individuals feel about their ability to engage in a behavior, 
in our conceptual model it is assumed to be influenced by two systemic factor clusters. The first cluster, 
energy policy, underscores the importance of political and regulatory frameworks. Supportive policies, 
such as subsidies or incentives discussed by Stern [29], play a key role in encouraging investments. 
Similarly, public policy [13], or laws and regulations [29] provide a stable regulatory environment that 
supports decision-making. Another cluster is supply chain and quality risks, which focuses on risks and 
uncertainties that influence investor confidence. Availability risks [14], or low availability of proven 
technologies [29], can deter investments due to concerns about disruptions. Perceived quality 
underscores the importance of technological quality and affordability. Product performance [13], 
guarantee extent [16], and material costs and rewards [29] contribute to this effect. The investment 
valuation highlights the important role of financial and economic considerations when individuals form 
implementation intention and is the representative of self-efficacy in our conceptual model. The largest 
cluster is the economic valuation of different renewable energy technologies. This emphasizes cost 
considerations like (general) economic factors [12], price of behavior [13], switching costs [13], 
investments costs [16] , cost saving potential [16], perceived costs and benefits of action [29] or other 
economic benefits [32]. Financial resources [29] and cost barrier [32] indicate the availability or 
shortage of capital required to make behavioral changes. Income, as noted by Park and Lin [14], 
determines an individual’s ability to consider and adopt new technologies. Risk tolerance is also one 
important cluster within the investment valuation: Kubli [23] captures the heterogeneity among 
investors in terms of their tolerance for the perceived payback period of different technology. Economic 
risks [14] and risk barrier [32], play also a significant role in shaping decisions regarding perceived 
uncertainties. Mortgage preferences as evaluated in the survey of [26] indicate how financing 
preferences may influence investment decisions. Technological learning curves are used by several 
technical studies like reports of the Fraunhofer Institute for Solar Energy Systems [40] and influence 
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behavior by reducing financial barriers and increasing trust in technology. Non-financial influences are 
also considered in the valuation processes: Time & effort [13] points to the perceived effort needed to 
engage in behavior change, which is also discussed by Park and Lin [14] as utilitarian value. Another 
determinant of behavioral intention, both in the SSBC [36] and in other well-known theories such as the 
TPB [30], is attitude towards behavior. In our conceptual model, this is a composite of several clusters. 
The peer effect , as modelled in the work of Kubli [38], highlights the influence of social networks on the 
technology specific attitude. Observing (significant) others' investment decisions can influence the 
confidence in similar actions [13]. Similar to this, expert interaction emphasizes the role of trusted 
individuals or groups influencing attitudes. For instance, car dealers, as discussed by Plananska [18], 
or the person of trust as described in the Consumer Barometer of the University St. Gallen [26], shape 
perceptions during sales interactions. The trustworthiness of experts [16] or social trust [33] is also 
described in literature. The scarcity effect due to availability or building compatibility, or incompatibility 
barriers [32] in literature, is integrated into the framework accordingly to Kubli's investor-roof-match [38] 
in order to map systemic effects on intentions. Action planning or cognitive planning [36] are not 
explicitly included in the presented framework for the application of renewable energy technologies. 

3.3. Postaction Stage 
The postaction stage is represented in the conceptual model primarily by the installation delay, which 
represents the time delay between making the investment decision and the actual use of the 
technology. The individual path dependency of the adopters is also reflected here: Further investments 
at a later time result in multiple technology adoption. Co-benefits of technologies, such as cost savings 
or sector coupling, as noted by Kubli [23], influence further investment behavior. The cluster Investment 
timing captures temporal considerations influencing behavior: Responsibility and priorities, mentioned 
by Kollmuss and Agyeman [12] reflect how individuals allocate attention to these investments. Further 
perceived lack of urgency & advantageousness [13] describes why individuals might delay investments, 
perceiving little need for immediate action. In the context of renewable energy investment, these 
investment timing considerations are positively expressed by the direct technology adoption for newly 
constructed building units. To simulate this technology adoption in context of the discussed systemic 
and individual influencing factors a System Dynamics model is build and explained in the following.  

4. System Dynamic Model 
To pursue the objective of integrating behavioral aspects in energy technology diffusion models, we 
follow a System Dynamics approach. System Dynamics [41], [42] is a method particularly well suited to 
model processes, feedback loops, and delays. For our study, this is an ideal combination, since the 
stage model of self-regulated behavior applies a process view (the stages) on behavior change. If seen 
over time, the model inevitably will also have to capture delays between the stages, as at each decision 
stage the behavioral change requires time to form. Furthermore, based on the literature and the 
conceptualization, it becomes evident that a feedback perspective on the stage model of self-regulated 
behavior appears promising. 

Our research approach began with selecting an appropriate theoretical model to capture behavioral 
change (see background section), a review of the factors addressed in empirical and theoretical 
research on energy and sustainability behaviors, and led to the above presented conceptual model (see 
section conceptualization). The conceptual model provides a qualitative overview on the feedback 
processes relevant to the behavior change required for renewable energy technology adoption. In the 
subsequent paragraphs, we present how we tackled the challenge of formalizing and operationalizing 



9 

the feedback perspective on the stage model of self-regulated behavior change to the case of renewable 
energy technology diffusion. First, the causal structure of the simulation model is presented. Thereafter, 
the core equations and parameters are introduced. We then present the (preliminary) validation process 
that has been undertaken and the experimental setup for the analysis.  

4.1. Causal Structure of the Simulation Model 

The basic structure of the model captures the consumer decision of four adopter groups represented 
as stocks: the non-adopters, potential adopters with positive attitude towards renewable energies, 
consumers of a single technology and consumers of multiple technologies after investment decision. 
We categorize our stocks according to the SSBC stages to align behavioral states with the decision-
making process described in the conceptual model, see Figure 2. The sum of all adopter groups 
represents all residential buildings in the modeled area. Non-adopters can transition to potential 
adopters through two inflows: based on forming a goal intention for adoption of renewable energies or 
based the coincidence of a renovation project that forces homeowners to reflect on their energy 
investments. Potential adopters become adopters of a single technology at a technology change rate, 
indicating their decision to invest in a single renewable energy technology. Some of these adopters later 
transition to adopters of multiple technologies at an additional technology change rate, reflecting the 
expansion of their renewable energy portfolio. There is also a multiple technologies change rate, 
allowing individuals to more than one renewable energy technology. Additionally, there is a direct inflow 
into the adopters of multiple technologies category from newly constructed buildings, represented by 
the new building construction rate, as new buildings may integrate multiple technologies from the 
outset. The decision to hire an installer, which occurs between the actional and postactional stage, is a 
crucial step in the adoption process. However, the model accounts for the planning phase through an 
installation delay in the technology adoption. While non-adopters and potential adopters are 
considered technology-independent (without subscript) due to the assumption that they are in the 
predecicion or preaction stage, technology adopters (single and multiple technologies) are modeled as 
vectors by using subscripts that represent the different technologies. This structure captures not only 
the stepwise adoption process, but also simultaneous investments in several technologies and thus 
also represents the path dependency of the decision process.  

Several feedback loops shape the model’s dynamics. One reinforcing feedback loop is the social norm, 
which describes how society influences goal intentions toward the adoption of renewable energies. The 
dotted feedback loop represents the implicit consideration in the subscripts. As more people express 
the intention to adopt renewable energies, the descriptive social norm increases [43]. This, in turn, 
affects personal norms [44], intensified by public discourse and the sense of individual responsibility. 
Consequently, goal intention rises further, ultimately leading to a greater adoption rate. In contrast, a 
balancing feedback loop emerges due to compatibility constraints, which limit the adoption: Some 
potential adopters are unable to install renewable energy technologies due to building or location-
related restrictions, reducing the share of feasible adoptions and representing a scarcity effect over 
time [23]. Another key mechanism is the peer effect, which acts as a reinforcing feedback loop. As more 
people adopt renewable energy technologies, social imitation effects become stronger [45]. A growing 
number of adopters positively influences their peers, leading to an increasing share of positive attitudes 
toward adoption.  
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Figure 3: Simplified diagram of the system dynamic model 

4.2. Model Equations  

The overall structure of the model described in the previous section is represented through a set of 
integral, differential, and auxiliary equations. In this section, the most important equations are 
presented, further equations can be found in the appendix. A stock value represents the integral of all 
inflows and outflows over time, starting with its initial value. The different subscripts represent different 
renewable technologies. The flows are usually determined by the increase in the share of decisions and 
the decision time. Since all stock and flow equations follow the same principle for each subscript, they 
are not explicitly shown here. The increase in the share of decisions is determined from various 
composite variables that result in the indicated share. The composite variables are calculated by 
multiplying the various contributing variables and parameters. For the indicated share of goal intentions 
getting non-adopters to potential adopters the descriptive social norm and the resulting personal norm 
is very important. The descriptive social norm results from the current share of goal intentions and is 
adjusted with a sigmoid function, similar to the study of Eker et al. [46], to consider the non-linear 
behavior of social norm. The social and personal norm are represented by the following equations:  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ (1 +
1

1 + 𝑒𝑒−10∗(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−0.5) (1) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∗ (1 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

(2) 

The ascription of responsibility is a composite variable consisting of exogenous parameters from 
surveys: the share of persons with environmental awareness [47], the share sense of responsibility [48] 
and the perceived consumer effectiveness.  
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The availability of suitable buildings in the form of the share of prevented adopters is taken into account 
when potential adopters decide on single or multiple technologies for the first time. This scarcity effect 
is technology specific and dependent on the initial technical potential based on the building conditions.  

 

 

This 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be defined for each technology 𝑇𝑇 as  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [𝑇𝑇]
= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑇𝑇] − 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑇𝑇] 

(3) 

The indicated share of doing decisions is equally influenced by the attitudes for the specific technology, 
reinforced by the peer effect, a perceived behavioral control factor, and the investment valuation, 
representing self-efficacy. Values for the indicated positive attitude and the positive influence of experts 
as input variables for the share of positive attitude are based on the literature [9]. The 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝑇𝑇] is 
endogenously modelled for each subscript also taking technology-cross-over effects from adopters of 
technology combinations or other subscripts into account. For a specific technology 𝑇𝑇𝐴𝐴 the peer effect 
would be dependent on the specific 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑇𝑇𝐴𝐴]: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒[𝑇𝑇𝐴𝐴] = 1 + (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑇𝑇𝐴𝐴] ∗� 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑇𝑇]
 

𝑇𝑇
 (4) 

The overall investment valuation is a composite variable of the influence of waiting time for grants as a 
representative of policy risks [49] , expressed as the function 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), and the share of 
investors deciding profitability independently [50],  and the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇].  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇]
= 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + �1 − 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �
∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑇𝑇] ∗ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

(5) 

The economic valuation consists of the tolerance for payback period collected from the Consumer 
Barometer [26] and the technology-specific payback period itself, calculated from the investments per 
technology unit, the annual savings or cash flow, and the investments grant share. All economic 
parameters are assumed to be exogenous parameters from studies [40], [51].  

4.3.  Model Validation 

The presented model underwent multiple validation tests recommended by Barlas [52]. Besides 
structure and parameter verification tests and extreme conditions tests, also a behavior sensitivity test 
was performed. 

4.4.  Experimental Setup  

The simulation is conducted for a hypothetical region with 10,000 building units in total, 1000 of them 
already in the stock of potential adopters. It is assumed that there are no technology adopters at the 
start of the simulation. The assumptions for different technologies are outlined in Table 1. The 
simulation runs for a period of 30 years, from 2020 to 2050 to capture long-term system dynamics. It is 
assumed that no replacement of technology will be necessary during this time. For the first simulations, 
5 subscripts were implemented, which represent different renewable technologies and their 
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combinations: only heat pumps, heat pumps and solar PV, only solar PV, solar PV and batteries, solar 
PV and heat pumps. The order of the technology investments is relevant for the path dependency in the 
two-stage process from single technology adopter to multiple technology adopter. 

 

Table 1: Parameter values for basic simulation run 

Parameter Value Reference 
Initial non adopter  9000 building units own assumption 
Initial potential adopter 1000 building units own assumption 
Initial technical potential of building units [HP] 0.6889 [53] 
Initial technical potential of building units [PV] 0.9 own assumption 
Share of potential adopter due to building property 0.5 based on [54] 
Environmental awareness 0.8 [47] 
Sense of responsibility 0.7127 [48] 
Perceived consumer effectiveness 1 own assumption 
Peer effect coefficient 0.0469 [45] 
Indicated positive attitude [PV] 0.7 [9] 
Indicated positive attitude [HP] 0.5 [9] 
Positive expert influence 0.138 based on [18] 
Share of investor deciding profitability independent 0.57 [50] 
Investment in RE per unit [HP], 10 kW 33,196 € [51] 
Investment in RE per unit [PVB], 5 kW + 5 kW 11,250 € [40] 
Investment in RE per unit [PV], 5 kW 7,500 € [40] 
Investment grant as share [HP] 0.5 based on [51] 
Investment grant as share [PV] 0 [51] 

The following section presents the simulation results from the developed System Dynamics model, 
focusing on generic adaption behavior for different renewable energy technologies rather than precise 
numerical forecasts.  

5. Results 
Figure 4 shows the growth of technology adopters over time. Non-adopters and potential adopters are 
considered technology independent, whereas single technology adopters and multi-technology 
adopters are split into subscripts. The number of non-adopters converges to the share of prevented 
adopters, which remains constant due to limitations such as tenancy or technical constraints. A small 
number of potential adopters remain at the end of the simulation period. The number of heat pumps 
and PV adopters reaches a maximum around 2040, after which the number decreases due to additional 
technology adoption. The multiple technology adopters increase steadily, partly due to new 
construction rate and additional technology change. The adoption of particular technologies differs 
slightly as technology-specific assumptions were made, see Table 1. At the end of the simulation, the 
sum of all adopters is equal to the sum of all buildings, which is higher than the initial value due to the 
rate of new construction.  
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The system behavior aligns well with expectations, as also confirmed by sensitivity analyses involving 
repeated simulations with varying model parameters, see Figure 5. Here, the constants were varied 
within the specified limits for the analysis of non-adopters, potential adopters, and all technology 
adopters (cumulated). This approach effectively demonstrates the model's behavioral boundaries and 
ensures the robustness of model results. 

6. Discussion  
The theory-based approach based on the Stage model of Self-regulated Behavioral Change (SSBC) 
theory represents a promising approach for mapping the complex behavioral patterns in a system 
dynamic model. Nevertheless, it requires careful consideration of the representation of behavioral 
transitions and the factors influencing them. Key aspects include integrating intentions as a change to 
technology adoption, modeling the causal linkages influencing the intention change, and ensuring 
accurate stage mapping. Merging the preaction and action stages as an important step contextualizes 
the generic literature to the application of renewable energy adoption and enables the quantitative 
modeling of the theoretical model. The correct assignment of individuals to each stage is essential for 
modeling but can be challenging, especially when empirical data is based on self-reported attitudes 
and adoption rates of renewable energy technologies rather than actual intentions. If we evaluate the 
representation of behavior in the model based on the common determinants of human behavior from 
psychology [55] [56], it becomes clear that the proposed framework can represent a large part of these 
either explicitly or implicitly. Furthermore, condensing the number of determinants included in the 

Figure 4: Sensitivity run for non-adopters, potential adopters and the sum of technology adopters 

Figure 5: Distribution of non-adopter to different renewable energy technologies adopters for the basic scenario 
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model - while retaining the most influential factors (key determinants) - helps to maintain the feasibility 
of quantitative modeling without sacrificing explanatory power. By considering these determinants, an 
SD model based on the SSBC can accurately capture the stage-dependent, non-linear nature of 
investment decisions in renewable energy. The simulation results and sensitivity analysis demonstrate 
that the model effectively captures the different stages and behaviors in renewable energy investment 
decisions. The attitude-behavior gap becomes particularly evident through the distinctions between 
these stages, highlighting the discrepancy between potential, intention, and actual adoption of different 
technologies. However, the magnitude of these effects is highly dependent on the input parameters, 
emphasizing the importance of accurate parameterization in shaping the model outcomes. Our 
approach, incorporating multiple behavioral alternatives in the form of different technologies, enhances 
realism but increases model complexity due to subscripts. A few basic assumptions were made though 
on the technical side of the generic System Dynamic model itself. All installation units of a certain 
technology have the same investment costs and annual savings. The service life of the systems is not 
taken into account, and potential replacement is not included in the initial investment amounts. These 
assumptions could be further diversified by integrating different technology unit sizes and explicit 
operating costs in further research. 

Based on this first generic modeling framework, there will be further applications for investment 
decisions in heat pumps, solar PV plants, and home battery storage. Additionally, further refinements 
could be incorporated in the future. These include an income-dependent tolerance for payback periods, 
a technology-specific distribution of new buildings, a more detailed differentiation of technology unit 
sizes, and a refined representation of public discourse to capture polarizing effects more accurately, as 
discussed in Eker et al. [46]. This would allow for a better depiction of the heterogeneity within the 
population. Based on the theoretical analysis shown here, other sustainable behaviors or social tipping 
points could also be examined using the model. Another application of the model framework will be the 
combination with the technical energy system optimization models, such as the urbs model [57]. The 
bandwidths resulting from the SD model for the adaptation of the individual renewable energies 
represent realistic input parameters for the optimization, whereas the more precise technical and 
economic calculations can be used in the SD model. The findings resulting from the application can not 
only be used for other energy system models but can also further close the blind spots of energy system 
models regarding human behavior discussed in the beginning.  

References 
[1] International Renewable Energy Agency (IRENA), "World Energy Transitions Outlook 2024: 1.5°C pathway," 

Abu Dhabi, 2024. [Online]. Available: www.irena.org/publications 
[2] H. S. Galster, A. J. van der Wal, A. E. Batenburg, V. Koning, and A. Faaij, "A comprehensive review of 

integrating behavioral drivers of technology adoption and energy service use in energy system models," 
Renewable and Sustainable Energy Reviews, vol. 214, p. 115520, 2025, doi: 10.1016/j.rser.2025.115520. 

[3] L. Niamir and F. Creutzig, "Closing the gap: Integrating behavioral and social dynamics through a modular 
modelling framework for low-energy demand pathways," Energy Research & Social Science, vol. 122, p. 
103988, 2025, doi: 10.1016/j.erss.2025.103988. 

[4] L. Braunreiter and Y. B. Blumer, "Of sailors and divers: How researchers use energy scenarios," Energy 
Research & Social Science, vol. 40, pp. 118–126, 2018, doi: 10.1016/j.erss.2017.12.003. 

[5] E. Trutnevyte et al., "Societal Transformations in Models for Energy and Climate Policy: The Ambitious Next 
Step," One Earth, vol. 1, no. 4, pp. 423–433, 2019, doi: 10.1016/j.oneear.2019.12.002. 



15 

[6] G. Holtz et al., "Prospects of modelling societal transitions: Position paper of an emerging community," 
Environmental Innovation and Societal Transitions, vol. 17, pp. 41–58, 2015, doi: 
10.1016/j.eist.2015.05.006. 

[7] A. Krumm, D. Süsser, and P. Blechinger, "Modelling social aspects of the energy transition: What is the 
current representation of social factors in energy models?," Energy, vol. 239, p. 121706, 2022, doi: 
10.1016/j.energy.2021.121706. 

[8] Forschungsstelle für Energiewirtschaft e. V. (ffe), Ed., "Regionale Wärmepumpen-Potenziale," 2022. 
Accessed: Mar. 15 2025. [Online]. Available: https://waermepumpen-ampel.ffe.de/karte 

[9] Agentur für Erneuerbare Energien (AEE), "Schluss mit fossiler Abhängigkeit: Deutsche wollen innovative, 
nachhaltige Energie: Umfrage von YouGov im Auftrag der Agentur für Erneuerbare Energien," 2024. 
Accessed: Mar. 13 2025. [Online]. Available: https://www.unendlich-viel-energie.de/akzeptanzumfrage-
2024 

[10] Bundesverband der Energie- und Wasserwirtschaft (BDEW), Ed., "Struktur der Heizungsanlagen in 
Wohngebäuden in Deutschland nach Heizsystemen im Jahr 2023," 2023. Accessed: Mar. 15 2025. [Online]. 
Available: https://de.statista.com/statistik/daten/studie/376102/umfrage/heizungsanlagen-in-
wohngebaeuden-in-deutschland-nach-heizsystem/ 

[11] K. Peattie, "Green Consumption: Behavior and Norms," Annual Review of Environment and Resources, vol. 
35, no. 1, pp. 195–228, 2010, doi: 10.1146/annurev-environ-032609-094328. 

[12] A. Kollmuss and J. Agyeman, "Mind the Gap: Why do people act environmentally and what are the barriers 
to pro-environmental behavior?," Environmental Education Research, vol. 8, no. 3, pp. 239–260, 2002, doi: 
10.1080/13504620220145401. 

[13] B. A. Wintschnig, "The Attitude-Behavior Gap Drivers and Barriers of Sustainable Consumption," Junior 
Management Science, 2021. 

[14] H. J. Park and L. M. Lin, "Exploring attitude–behavior gap in sustainable consumption: comparison of 
recycled and upcycled fashion products," Journal of Business Research, vol. 117, pp. 623–628, 2020, doi: 
10.1016/j.jbusres.2018.08.025. 

[15] G. ElHaffar, F. Durif, and L. Dubé, "Towards closing the attitude-intention-behavior gap in green 
consumption: A narrative review of the literature and an overview of future research directions," Journal of 
Cleaner Production, vol. 275, p. 122556, 2020, doi: 10.1016/j.jclepro.2020.122556. 

[16] I. Kastner and E. Matthies, "Investments in renewable energies by German households: A matter of 
economics, social influences and ecological concern?," Energy Research & Social Science, vol. 17, pp. 1–9, 
2016, doi: 10.1016/j.erss.2016.03.006. 

[17] I. Kastner and P. C. Stern, "Examining the decision-making processes behind household energy 
investments: A review," Energy Research & Social Science, vol. 10, pp. 72–89, 2015, doi: 
10.1016/j.erss.2015.07.008. 

[18] J. Plananska, "Touchpoints for electric mobility: Investigating the purchase process for promoting sales of 
electric vehicles in Switzerland," Energy Research & Social Science, vol. 69, p. 101745, 2020, doi: 
10.1016/j.erss.2020.101745. 

[19] F. M. Bass, "A New Product Growth for Model Consumer Durables," Management Science, vol. 15, no. 5, pp. 
215–227, 1969, doi: 10.1287/mnsc.15.5.215. 

[20] E. M. Ben Maalla and P. L. Kunsch, "Simulation of micro-CHP diffusion by means of System Dynamics," 
Energy Policy, vol. 36, no. 7, pp. 2308–2319, 2008, doi: 10.1016/j.enpol.2008.01.026. 

[21] M. Castaneda, M. Jimenez, S. Zapata, C. J. Franco, and I. Dyner, "Myths and facts of the utility death spiral," 
Energy Policy, vol. 110, pp. 105–116, 2017, doi: 10.1016/j.enpol.2017.07.063. 

[22] M. Kubli and S. Ulli-Beer, "Decentralisation dynamics in energy systems: A generic simulation of network 
effects," Energy Research & Social Science, vol. 13, pp. 71–83, 2016, doi: 10.1016/j.erss.2015.12.015. 

[23] M. Kubli, "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for 
solar prosumers," Energy Policy, vol. 114, pp. 173–188, 2018, doi: 10.1016/j.enpol.2017.11.054. 

[24] R. Wüstenhagen, M. Wolsink, and M. J. Bürer, "Social acceptance of renewable energy innovation: An 
introduction to the concept," Energy Policy, vol. 35, no. 5, pp. 2683–2691, 2007, doi: 
10.1016/j.enpol.2006.12.001. 

[25] D. Baur, P. Emmerich, M. J. Baumann, and M. Weil, "Assessing the social acceptance of key technologies for 
the German energy transition," Energ Sustain Soc, vol. 12, no. 1, 2022, doi: 10.1186/s13705-021-00329-x. 



16 

[26] J. Cousse, M. Kubli, and R. Wustenhagen, "10th Consumer Barometer of Renewable Energy," 2020. 
[27] R. Wüstenhagen and E. Menichetti, "Strategic choices for renewable energy investment: Conceptual 

framework and opportunities for further research," Energy Policy, vol. 40, pp. 1–10, 2012, doi: 
10.1016/j.enpol.2011.06.050. 

[28] G. Ellis, N. Schneider, and R. Wüstenhagen, "Dynamics of social acceptance of renewable energy: An 
introduction to the concept," Energy Policy, vol. 181, p. 113706, 2023, doi: 10.1016/j.enpol.2023.113706. 

[29] P. C. Stern, "New Environmental Theories: Toward a Coherent Theory of Environmentally Significant 
Behavior," Journal of Social Issues, vol. 56, no. 3, pp. 407–424, 2000, doi: 10.1111/0022-4537.00175. 

[30] I. Ajzen, "The theory of planned behavior," Organizational Behavior and Human Decision Processes, vol. 50, 
no. 2, pp. 179–211, 1991, doi: 10.1016/0749-5978(91)90020-T. 

[31] J. D. Westaby, "Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior," 
Organizational Behavior and Human Decision Processes, vol. 98, no. 2, pp. 97–120, 2005, doi: 
10.1016/j.obhdp.2005.07.003. 

[32] M. C. Claudy, M. Peterson, and A. O’Driscoll, "Understanding the Attitude-Behavior Gap for Renewable 
Energy Systems Using Behavioral Reasoning Theory," Journal of Macromarketing, vol. 33, no. 4, pp. 273–
287, 2013, doi: 10.1177/0276146713481605. 

[33] S. Yun and J. Lee, "Advancing societal readiness toward renewable energy system adoption with a socio-
technical perspective," Technological Forecasting and Social Change, vol. 95, pp. 170–181, 2015, doi: 
10.1016/j.techfore.2015.01.016. 

[34] R. Sussman and R. Gifford, "Causality in the Theory of Planned Behavior," Personality & social psychology 
bulletin, vol. 45, no. 6, pp. 920–933, 2019, doi: 10.1177/0146167218801363. 

[35] C. Groening, J. Sarkis, and Q. Zhu, "Green marketing consumer-level theory review: A compendium of 
applied theories and further research directions," Journal of Cleaner Production, vol. 172, pp. 1848–1866, 
2018, doi: 10.1016/j.jclepro.2017.12.002. 

[36] S. Bamberg, "Changing environmentally harmful behaviors: A stage model of self-regulated behavioral 
change," Journal of Environmental Psychology, vol. 34, pp. 151–159, 2013, doi: 
10.1016/j.jenvp.2013.01.002. 

[37] E. Keller, C. Eisen, and D. Hanss, "Lessons Learned From Applications of the Stage Model of Self-Regulated 
Behavioral Change: A Review," Frontiers in psychology, vol. 10, p. 1091, 2019, doi: 
10.3389/fpsyg.2019.01091. 

[38] M. Kubli, Decentralization Dynamics of Energy Systems: From Prosumer Preferences to System-Level 
Perspectives. Dissertation. St. Gallen, 2019. 

[39] M. Speich, J. Chambers, and S. Ulli-Beer, "Current and future development of thermal grids in Switzerland: 
an organizational perspective," Frontiers in Sustainable Cities, vol. 6, 2024, doi: 
10.3389/frsc.2024.1379554. 

[40] Fraunhofer Institute for Solar Energy Systems ISE, Ed., "Levelized Cost of Electricity Renewable Energy 
Technologies," 2024. 

[41] J. D. Sterman, "System Dynamics Modeling: Tools for Learning in a Complex World: Tools for Learning in a 
Complex World," California Management Review, vol. 43, no. 4, pp. 8–25, 2001, doi: 10.2307/41166098. 

[42] W. Auping et al., The Delft Method for System Dynamics: TU Delft OPEN Publishing, 2024. 
[43] C. R. Schneider and S. van der Linden, "Social norms as a powerful lever for motivating pro-climate 

actions," One Earth, vol. 6, no. 4, pp. 346–351, 2023, doi: 10.1016/j.oneear.2023.03.014. 
[44] J. I. de Groot, K. Bondy, and G. Schuitema, "Listen to others or yourself? The role of personal norms on the 

effectiveness of social norm interventions to change pro-environmental behavior," Journal of Environmental 
Psychology, vol. 78, p. 101688, 2021, doi: 10.1016/j.jenvp.2021.101688. 

[45] B. Bollinger and K. Gillingham, "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing 
Science, vol. 31, 2012, doi: 10.1287/mksc.1120.0727. 

[46] S. Eker, G. Reese, and M. Obersteiner, "Modelling the drivers of a widespread shift to sustainable diets," Nat 
Sustain, vol. 2, no. 8, pp. 725–735, 2019, doi: 10.1038/s41893-019-0331-1. 

[47] Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) and 
Umweltbundesamt (UBA), Eds., "Umweltbewusstsein in Deutschland 2022: Ergebnisse einer 
repräsentativen Bevölkerungsumfrage," 2023. Accessed: Mar. 13 2025. [Online]. Available: https://



17 

www.umweltbundesamt.de/sites/default/files/medien/3521/publikationen/umweltbewusstsein_2022_bf-
2023_09_04.pdf 

[48] K. L. van den Broek, L. de Jager, R. Doran, and G. Böhm, "Expert and citizen perceptions of the drivers of the 
energy transition: A mental model approach," Journal of Cleaner Production, vol. 494, p. 144949, 2025, doi: 
10.1016/j.jclepro.2025.144949. 

[49] B. Petrovich, S. Carattini, and R. Wüstenhagen, "The price of risk in residential solar investments," 
Ecological Economics, vol. 180, p. 106856, 2021, doi: 10.1016/j.ecolecon.2020.106856. 

[50] P. Balcombe, D. Rigby, and A. Azapagic, "Investigating the importance of motivations and barriers related to 
microgeneration uptake in the UK," Applied Energy, vol. 130, pp. 403–418, 2014, doi: 
10.1016/j.apenergy.2014.05.047. 

[51] R. Meyer, N. Fuchs, J. Thomsen, S. Herkel, and C. Kost, "Heizkosten und Treibhausgasemissionen in 
Bestandswohngebäuden," 2024. 

[52] Y. Barlas, "Formal aspects of model validity and validation in system dynamics," Syst. Dyn. Rev., vol. 12, no. 
3, pp. 183–210, 1996, doi: 10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4. 

[53] McMakler, Verteilung der Energieeffizienzklassen bei Immobilien in Deutschland im Jahr 2021. [Online]. 
Available: https://de.statista.com/statistik/daten/studie/1284714/umfrage/verteilung-
energieeffizienzklassen-immobilien/ (accessed: Mar. 13 2025). 

[54] D. Setton, "Soziale Nachhaltigkeit Wagen – Die Energiewende aus Sicht der Bevölkerung: Eine umfassende 
Auswertung der Daten des Sozialen Nachhaltigkeitsbarometers der Energiewende 2017 und 2018 mit den 
Schwerpunkten gerechte Kostenverteilung, Windausbau an Land sowie Digitalisierung und 
Verbraucherpräferenzen," 2020. 

[55] D. Albarracín, B. Fayaz-Farkhad, and J. A. Granados Samayoa, "Determinants of behaviour and their 
efficacy as targets of behavioural change interventions," Nat Rev Psychol, vol. 3, no. 6, pp. 377–392, 2024, 
doi: 10.1038/s44159-024-00305-0. 

[56] A. M. van Valkengoed, W. Abrahamse, and L. Steg, "To select effective interventions for pro-environmental 
behaviour change, we need to consider determinants of behaviour," Nature human behaviour, vol. 6, no. 11, 
pp. 1482–1492, 2022, doi: 10.1038/s41562-022-01473-w. 

[57] J. Dorfner, "Open Source Modelling and Optimisation of Energy Infrastructure at Urban Scale," Dissertation, 
Technische Universität München, 2016. 

 

Appendix 
The following appendix shows the stock equations of the model, important parameters for the basic 
simulation runs and an overview of the system dynamic model. 
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Figure 6: Detailed system dynamic model overview 
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