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Abstract

Bias in recommender systems not only distorts user experience but also perpetu-
ates and amplifies existing societal stereotypes, particularly in sectors like fashion
e-commerce. This study employs a dynamic modeling approach to scrutinize the
mechanisms of bias activation and reinforcement within Fashion Recommender
Systems (FRS). By leveraging system dynamics modeling and experimental sim-
ulations, we dissect the temporal evolution of bias and its multifaceted impacts
on system performance. Our analysis reveals that inductive biases exert a more
substantial influence on system outcomes than user biases, suggesting critical
areas for intervention. We demonstrate that while current debiasing strategies,
including data rebalancing and algorithmic regularization, are effective to an
extent, they require further enhancement to comprehensively mitigate biases.
This research underscores the necessity for advancing these strategies and extend-
ing system boundaries to incorporate broader contextual factors such as user
demographics and item diversity, aiming to foster inclusivity and fairness in FRS.
The findings advocate for a proactive approach in recommender system design
to counteract bias propagation and ensure equitable user experiences.
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1 Introduction

Recommender systems are a cornerstone of artificial intelligence applications, boasting
a robust track record in the field. Hence, the recent shifts in research priorities have
increasingly focused on enhancing algorithmic fairness and implementing bias miti-
gation strategies. While a substantial body of work has concentrated on optimizing
accuracy and system performance, there remains a notable scarcity of studies specifi-
cally addressing the manifestations and impacts of bias within AI systems. Moreover,
the exacerbation of these biases through feedback loops underscores the need for inves-
tigations into the dynamic, rather than static, nature of these systems in real-world
scenarios [1, 2]. In response to this gap, our paper explores the temporal dynam-
ics of bias within Fashion Recommender Systems (FRS), employing system dynamics
modeling and experimental simulations to understand and mitigate biases [3, 4]. We
focus on FRS because their rapidly evolving trends, diverse user tastes, and strong
visual/components expose biases more starkly than other domains.

The analysis of human beauty standards and the historical changes in fashion
products and their representations in the media reveal the deep-seated biases inher-
ent in the fashion industry. These biases, which manifest as preferences for certain
body shapes, skin tones, and facial features, often lead to negative body images and
misrepresent diverse identities [5]. Indeed, the concept of bias in AI, as it pertains
to fashion, is not limited to overt discriminatory behaviors but also includes precon-
ceived limitations of AI in recognizing diverse forms of beauty, the intricate nature of
cultural identities, and various data quality issues that affect outcome accuracy and
objectivity [6–8].

On the other hand, fashion recommendation systems(FRS) often decontextualize
‘fashion identity’ by prioritizing statistical objectives over the nuanced understanding
of individual user identities. This reductionist approach can inadvertently reinforce
biases, ignoring the complex interplay of gender, race, body shape, and cultural norms,
which are crucial for enhancing user satisfaction and shaping brand perception [9].
In contrast, considering user feedback and socio-cultural contexts in the algorithmic
modeling process results in more inclusive and representative recommendations [10].

In addition, the increase in diversity of recommendations and product exposure
can enhance customer engagement and help mitigate inherent social biases. However,
there exists a delicate balance between maintaining system accuracy and achieving
fairness. Integrating personality-based data into FRS can potentially enhance user
satisfaction, albeit at the potential cost of reduced precision [11].

Furthermore, feedback loops in FRS can amplify existing biases, such as popular-
ity and presentation biases, through the recurrent use of biased data and interactions.
By incorporating multiple types of interactions—ranging from individual item selec-
tions to entire outfit choices—and contextualizing these within user-specific data
frameworks, FRS can begin to effectively counteract these biases [12–15].

Please note that we assume that any debiasing intervention (e.g., re-balancing,
regularization) yields a net improvement in recommendation quality. This assumption
guides our feedback-loop analysis; its limitations are noted in Section 5. In this paper,
we aim to make a significant contribution to the literature by addressing the temporal
dynamics of biases within Fashion Recommender Systems (FRS). Through system
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dynamics modeling and experimental simulations, we have developed a comprehensive
conceptual framework that identifies and mitigates the reinforcing effects of biases
using a multidimensional feedback approach. By integrating user, item, and interaction
data, our dynamic framework systematically explores and addresses potential origins of
bias while adapting to evolving user behaviors and shifting market trends. Please note
that we specifically chose FRS due to their unique blend of rapidly changing trends,
diverse user preferences, and complex item-user interactions. However, our model is
also applicable to other domains, such as music, movie, and e-commerce recommender
systems, where similar dynamics impact recommendation quality and fairness.

Several recent works address dynamic biases in recommender systems. For instance,
[16] proposes a probabilistic framework to disentangle popularity and position biases
through counterfactual evaluation in a dynamic setting. Similarly, [17] develops a
graph-based method that tracks bias evolution over time by continuously updating
user–item interactions. However, these approaches focus primarily on localized bias
estimation rather than capturing the full feedback-loop dynamics across data, user
behavior, and algorithm updates. In contrast, our system-dynamics model explic-
itly simulates the nonlinear interactions among data- and design-induced biases,
user interactions, and recommendation performance within Fashion Recommender
Systems.

2 Key Concepts: Bias and Recommendation Quality
in Fashion Recommender Systems

To effectively address bias and enhance recommendation quality in Fashion Recom-
mender Systems (FRS), it is crucial to first clarify the key concepts that underpin this
study. Bias plays a central role in shaping the performance and overall quality of rec-
ommender systems, influencing various nodes within these systems. In this section, we
define and contextualize the different types of biases relevant to FRS, considering both
explicit and unintentional forms. By clearly distinguishing these biases and exploring
their implications on recommendation quality, we lay the foundation for understand-
ing the dynamics of bias within FRS and justify the modeling choices and mitigation
strategies discussed later in the paper.

Bias in Recommender Systems: Bias in recommender systems refers to sys-
tematic and unfair tendencies that influence the recommendations presented to users.
In the context of Fashion Recommender Systems (FRS), biases can stem from various
sources, each with unique implications. Position bias, for example, occurs when items
displayed in prominent positions (e.g., at the top of a recommendation list) receive
disproportionately more attention than those listed further down [18]. This bias is
particularly impactful in FRS, where visual placement heavily influences user inter-
actions and purchasing decisions. Another common issue is popularity bias, where
algorithms tend to favor items that are already popular, further boosting their vis-
ibility while sidelining niche or diverse styles [19]. This homogenization effect limits
exposure to underrepresented products, reinforcing trends that may not align with the
varied tastes and identities of all users.
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Biases within recommender systems can be categorized based on their origin and
intent. Explicitly injected biases are deliberately introduced by enterprises to influ-
ence user behavior and achieve specific business objectives [20]. While intentional,
this type of bias can be controlled and strategically leveraged to benefit the business.
On the other hand, unintentional biases arise from errors or oversights in data col-
lection, skewed training datasets, or flaws in the algorithm’s design [21]. Such biases
negatively impact the system’s performance, fairness, and user experience, often lead-
ing to ethical concerns and the marginalization of specific user groups. Understanding
these distinctions is key to developing strategies for mitigating bias while maintaining
system objectives.

Importantly, these biases are not isolated but often interact in complex ways. For
instance, position and popularity biases can collectively skew the visibility of items,
leading to feedback loops where popular items continue to dominate [22], further
marginalizing diverse or less conventional fashion choices. These interactions under-
score the need for a nuanced approach to bias mitigation that considers both the
origins of bias and their dynamic evolution over time.

Recommendation Quality: Recommendation quality in FRS is generally
assessed by evaluating the relevance, diversity, and personalization of suggested items.
However, it is essential to consider different dimensions of quality, especially when bias
mitigation is a priority. Relevance, typically linked to precision and accuracy, refers to
how well the recommended items align with the user’s preferences and needs. This rel-
evance can be compromised when biases distort what is deemed “relevant,” often due
to skewed data or historical trends. Diversity, on the other hand, involves offering a
broad range of recommendations that span various styles, categories, and cultural per-
spectives. High-quality recommendations should not only be relevant but also ensure
users are exposed to a diverse array of options, which is crucial in fashion, where per-
sonal expression and cultural identity are key factors in user satisfaction [23]. Fairness
is another critical aspect of recommendation quality, directly tied to bias mitigation.
Fairness ensures that the system does not systematically disadvantage certain groups
or unduly favor specific trends based solely on biased data. Achieving fairness often
requires balancing competing algorithmic objectives to avoid reinforcing stereotypes
or excluding underrepresented preferences [24].

Temporal Dynamics of Bias: A core contribution of this work is the exploration
of bias as a dynamic, evolving phenomenon rather than a static issue [17]. In FRS,
biases can intensify over time due to feedback loops, where biased interactions lead
to biased recommendations, which in turn generate further biased interactions. For
example, if users consistently click on items positioned at the top of a list, position
bias becomes more pronounced, encouraging the algorithm to continue prioritizing
similar items. Additionally, biases in FRS are often nonlinear, meaning their effects
can escalate or diminish in unpredictable ways depending on user behavior, market
trends, and system interventions [1, 4, 25].
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3 Methodology

Building on the understanding that bias can be both explicitly and unintentionally
injected into recommender systems, our methodology focuses on modeling and control-
ling these biases within Fashion Recommender Systems (FRS). We acknowledge that
explicit biases are often strategically introduced to align with business goals, while
unintentional biases stem from systemic flaws like skewed data or inherent algorithmic
limitations. Both forms of bias can significantly impact recommendation quality and
fairness, leading to undesired consequences such as reinforcing stereotypes or limiting
diversity in fashion recommendations.

Given the complex, nonlinear interactions between different types of bias, our
approach begins by hypothesizing the dynamic and evolving nature of these biases in
real-world scenarios. Specifically, we posit that biases in FRS are not static; they are
subject to feedback loops and nonlinear dynamics that can either amplify or mitigate
their effects depending on user behaviors and market trends. To explore this hypoth-
esis, we develop a structured system dynamics model that represents these nonlinear
interactions across various nodes of the recommender system. The model captures the
propagation of bias through feedback loops and allows for simulations that reveal how
different biases interact and evolve over time.

Our methodology is designed to rigorously test these dynamics by simulating var-
ious scenarios within the FRS environment. We employ experimental simulations to
examine how explicit and unintentional biases emerge, interact, and evolve within
the system. By simulating interventions and adjustments, we aim to understand the
critical points at which bias mitigation can be most effective. Ultimately, our struc-
tured model serves as a robust tool for predicting and controlling the impact of bias
in dynamic FRS settings, offering actionable insights for improving both fairness and
recommendation quality.

3.1 Nonlinear Dynamics of Bias

In the context of system dynamics, very similar to flow charts, ‘nodes’ refer to specific
points or elements within a system where data, decisions, or interactions converge.
These nodes can represent users, items, feedback mechanisms, or any other critical
variables that contribute to the functioning of the recommender system. When biases
impact these nodes, they can propagate through the network, affecting the accuracy,
fairness, and effectiveness of the recommendations provided.

Recommender Systems (RS) experience reinforcement and amplification of biases
stemming from a variety of sources. Inductive biases introduced by researchers during
data collection, sampling, and processing, along with the design and modeling choices
made by developers, significantly affect the distribution of training and testing datasets
and ultimately, the system’s performance [26]. These biases in data and design are
further compounded by user interactions, including selection, exposure, conformity,
and position biases within recommendations [16, 26–28]. Such interactions amplify
existing biases, thereby deteriorating the quality of the recommendations.

Figure 1 illustrates the direct and indirect reinforcing feedback loops in a recom-
mender system, where biases can significantly impact the quality of recommendations.
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Fig. 1 Feedback Loop for Reinforcing Bias Distribution

This loop consists of three main components: Biased Recommendations, Effects of Bias
on Quality of Recommendations, and Biased Interactions.

1. Biased Recommendations: When a recommender system produces biased rec-
ommendations, these recommendations inherently favor certain items or preferences
over others. Bias can be explicitly injected into the system as a strategic tool by
enterprises to steer user behavior towards specific outcomes, such as promoting
certain products, increasing sales, or enhancing user engagement.

2. Effects of Bias on Quality of Recommendations: The biased recommen-
dations subsequently affect the overall quality of the recommendations provided
by the system. If the recommendations align with the intended strategic goals of
the enterprise, the perceived quality might improve from a business perspective.
However, if these biases are unintentional, they degrade the quality of recommen-
dations by misrepresenting user preferences and reducing the system’s effectiveness
in personalizing content.

3. Biased Interactions: As users interact with the biased recommendations, their
interactions become biased as well. Users might engage more with the promoted
items, further reinforcing the initial bias. This biased interaction data is then fed
back into the system, influencing future recommendations and perpetuating the
cycle.

Additionally, Bias in Data and Learning, as illustrated in Figure 1, encom-
passes the inherent prejudices and skewed distributions that are present during the
data collection, processing, and model training phases. Specifically, biases in data and
learning processes can result from sampling biases, where certain user groups or item
categories are over- or under-represented, and algorithmic biases, where the model
inherently favors certain patterns due to its training parameters and objectives. These
biases propagate through the system, leading to a lower quality of recommendations.
Poor quality recommendations, in turn, influence user interactions in a biased man-
ner, perpetuating the cycle. This foundational bias has a more profound and insidious
impact compared to the more observable bias in user interactions, as it sets the stage
for systemic issues that compromise the entire recommendation pipeline from the
outset.
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3.2 Model Architecture

To provide a focused and precise analysis, we developed a structured model that
captures the nonlinearity of bias and allows for simulations to assess and control
its impact within dynamic recommender systems. The scope of our model is con-
strained to internal factors that are directly involved in bias activation. These factors
encompass essential processes across various components of AI systems, such as
Data Management, System Design and Learning Algorithms, and Human-Interaction
Dynamics.

Our work builds upon foundational methodologies presented by previous studies on
dynamic recommender systems [16, 17, 29]. We seek to distill the complexity of bias in
Fashion Recommender Systems (FRS) into abstract, manageable components through
system dynamics modeling [30]. While a more comprehensive model might include
numerous biases and exogenous variables, this would have led to excessive complexity.
Instead, we prioritized essential variables to establish a conceptual framework that
can be expanded in future research. Moreover, we will check structural validity (e.g.,
sign and causal polarity of each loop) and later calibrate key coefficients using real

Fig. 2 The Stock and Flow Diagram of Bias in FRS
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FRS clickstream logs (e.g., from a partner retailer). Until then, the model remains
conceptual.

It is important to note that we deliberately excluded exogenous factors, such as
broader societal biases that often influence decision-making. While these external ele-
ments are significant in introducing bias into FRS, our study focuses on biases that
emerge directly within the AI system’s decision-making processes. Grounded in exist-
ing literature, this approach allows us to concentrate on the internal mechanisms most
relevant to bias dynamics [31]. For dynamic modeling and simulations, we utilized
VensimPLE [32].

The architectural model shown in Figure 2 illustrates these key variables and their
relationships, providing a foundation for understanding and addressing bias within rec-
ommender systems. The figure serves as a visual summary of the conceptual framework
that guides our analysis and simulations.

Figure 2 highlights distinct colored boxes representing different sections of the
bias dynamics model. These boxes, marked in green, red, pink, and blue, indicate
the primary areas where bias originates and propagates. The green box focuses on
how bias is introduced during data management and design processes, while the red
box captures user behavior and how it influences skewness within the system. The
pink box represents the dynamics of human-computer interaction, detailing how user
engagement reinforces or mitigates bias over time. Finally, the blue box examines how
bias impacts recommendation performance and quality, closing the loop by showing
how biased recommendations feed back into future interactions.

These boxes are marked to allow for a clear separation of different subsystems
within the overall model. By isolating these critical areas, we can better understand
how bias interacts across data, design, user behavior, and system performance. Each
box contributes to the overall problem by emphasizing the distinct yet interconnected
mechanisms that drive bias within Fashion Recommender Systems, enabling a more
targeted approach to mitigation strategies.

3.2.1 Data Management and Design Biases (Green Box):

This Green box captures the biases introduced during data management and system
design stages. It includes factors like popularity bias and inductive bias that emerge as
new data is processed and integrated into the system. Debiasing methods such as re-
balancing and regularization are also represented here, as they aim to counterbalance
these initial biases. The design and data handling processes here set the foundation for
bias activation because the choices made during data selection, feature engineering,
and algorithmic adjustments can either amplify existing biases or introduce new ones.
This box is crucial because it represents the point of origin for biases that later cascade
throughout the system.

Contribution to Bias: The green box is where biases are initially encoded into
the system. Design choices and data curation decisions can inadvertently embed and
perpetuate biases, which are then inherited by other parts of the system, leading to
skewed recommendations from the outset.
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3.2.2 User Behavior and Interaction Biases (Red Box):

The red box focuses on user-related biases and the resulting skewness in recommen-
dations. It models how user preferences, ratings, and interactions influence the overall
skewness and accuracy of the recommendations. Elements like propensity scores and
debiasing efforts are included here to showcase how these interventions aim to correct
the bias. The box emphasizes how user behavior directly feeds back into the recom-
mendation loop, either amplifying or mitigating biases over time. For instance, biased
user ratings can distort the perceived quality of items, which in turn biases the model’s
future recommendations, locking users into a feedback loop of biased content.

Contribution to Bias: The red box serves as the engine for bias propagation.
User behaviors, influenced by initial biases, can create self-reinforcing loops that drive
the system to increasingly favor certain patterns over others. This cycle gradually
amplifies the skewness within the system and leads to persistent bias accumulation.
We treat user biases, such as those influenced by reading reviews, as external to our
model because accounting for them would require adding a separate component to
explain this behavior. For our model, we consider those as constant variables with the
potential to measure outcomes by changing them.

3.2.3 Human-Computer Interaction Dynamics (Pink Box):

This Pink box represents the dynamics of how users interact with the system and
how those interactions impact recommendation quality. It covers the lifecycle of
interactions, the conversion rates, and the effect of interaction frequency on future
recommendations. The loops in this section highlight how user engagement can rein-
force bias, especially when system recommendations are shaped by biased interaction
patterns. For example, users interacting more frequently with certain types of biased
recommendations will lead to more similar content being presented to them, deepening
the bias in subsequent iterations.

Contribution to Bias: The pink box plays a critical role in bias amplification
through interaction loops. As user interactions become increasingly shaped by biased
recommendations, the system continually adapts to serve content that reinforces those
biases. This cycle escalates the bias, entrenching it further with each interaction.

3.2.4 Performance and Recommendation Quality (Blue Box):

The blue box closes the feedback loop by focusing on how bias affects the overall
performance and quality of the recommendations. It explores the impact of skewed
patterns on the accuracy and relevance of recommendations, ultimately influencing
user satisfaction. The feedback within this box illustrates how biased recommendations
lead to more biased interactions, perpetuating the cycle. As biases degrade the quality
of recommendations, user satisfaction might decline, further complicating the efforts
to mitigate bias without negatively affecting system performance.

Contribution to Bias: The blue box is where the cumulative effects of biases
become evident in terms of degraded recommendation quality and performance. The
biases that flow into this section can cause the system to increasingly favor content that
aligns with existing skewed patterns, making it harder to break out of biased loops.
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Ultimately, this box encapsulates how bias becomes a systemic issue that impacts both
user experience and model accuracy.

As summary, our model shown in Figure 2 provides a comprehensive view of how
biases are initiated, amplified, and mitigated within Fashion Recommender Systems.
By segmenting the model into distinct yet interconnected boxes, we capture the core
dynamics that drive bias propagation—from data management and user behavior to
system performance and interaction loops. The relationships depicted in the model
highlight the non-linear and compounding effects of bias, offering a roadmap for iden-
tifying strategic intervention points. Through this approach, our work not only reveals
the complexities of bias within FRS but also provides a foundation for enhancing
fairness, accuracy, and overall system robustness in future research and practical appli-
cations. For clarity and further exploration, larger versions of these boxes are included
in the appendix as individual figures.

4 Experimental Results

In this section, we present the experimental results of our dynamic model, which
demonstrates robust behavior and dimensional consistency under various initial condi-
tions. Utilizing VensimPLE [32] for dynamic modeling and simulations, we conducted
sensitivity analyses to validate our findings under dynamic conditions. The results
highlight the influence of bias on system performance and explore the effectiveness of
different debiasing interventions.

Experiment 1: Base Run In the base run, we kept all bias variables constant
at a value of 1, assuming no new biases were introduced into the system. This setup
allowed us to observe the model’s pure dynamics and analyze changes in quality based
on initial conditions and different seed values.

As shown in Figure 3, the results indicated that bias distribution exhibited rapid
exponential growth initially, which then gradually slowed down over time. Meanwhile,
the Fashion Recommender Engine (FRE) showed a steady, continuous increase in the
number of recommendations, reflecting consistent growth throughout the simulation
period. Human-Computer Interaction (HCI) metrics, representing user interactions,
also demonstrated a stable upward trend, although at a different rate compared to
FRE and bias distribution.

These patterns suggest that the system’s internal dynamics, particularly the inter-
actions between bias, recommendations, and user engagements, can lead to significant
variations in overall performance. Despite changes in seed values, the behavior of
other variables remained stable, indicating the robustness of the model under different
conditions. The observed exponential growth and eventual stabilization of bias high-
light the critical need for addressing bias early in the system’s operation to maintain
high-quality performance over time.

Experiment 2: Bias Activation Our hypothesis suggests that introducing initial
bias into the model will lead to a decrease in performance quality. Quality is the unit
of performance that all system variables, whether directly or indirectly, operationalize
in the context of this study. The equations leading to performance and quality count
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Fig. 3 Base-run simulation: bias distribution, FRE recommendations, and HCI metrics over time.

for the randomness in the system based on skewness, accuracy, and the normal distri-
butions and variance in ratings. To test this, we conducted sensitivity analyses with
different seed values, doubling the initial values of inductive and user biases in sepa-
rate runs. As shown in Figure 4, the results indicated that the impact of increased
inductive bias (initial value multiplied by 2 shown with the green line) on performance
was more pronounced than that of user bias (initial value multiplied by 2 shown with
the red line), primarily due to bias amplification from interactions being treated as
new data.

To further investigate the model’s performance under high levels of bias, we acti-
vated all biases in one run with initial values set to five times those of the base
simulation. Please note that the gray line indicates the base run, which has no biases
activated. This configuration resulted in the highest bias distribution and the low-
est system quality observed (shown with the blue line). However, the smaller decline
in quality with high bias activation was attributed to the slower growth rate of bias
distribution.

Experiment 3: Statistical Distributions It stands to reason that with the
increase in the skewness of data, the bias distribution in the system also increases. With
this assumption in mind, we modeled performance under different data distribution
scenarios, according to [33]. The log-normal distribution recorded the highest average
quality. The gamma distribution exhibited an interesting behavior in that its quality
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Fig. 4 Impact of Bias Activation on Performance

relied on the shape parameter α. Lower values of α corresponded to lower average
quality (Table 1 & Figure 5).

Table 1 Skewness Per Bias Distribution

Distribution Type Skewness Relative Bias

Exponential 4.57 0.07
Log Normal 2.81 0.14

Gamma with α = 2 2.81 0.19
Gamma with α = 4 2.04 0.21

Experiment 4: Debiasing Interventions The significant impact of interven-
tions on performance is illustrated in Figure 6. We simulated the model with the
highest level of bias, as mentioned in the previous section, and applied interventions
at the same magnitude as the bias activation (represented by the blue line). These
interventions included methods such as ATOP (Automatic Targeted Online Propen-
sity) scores for user biases, re-balancing techniques, regularization, and new modeling
choices in algorithmic design.

As shown in the Figure 6, the blue line indicates the scenario where interven-
tions are applied, leading to a significant improvement in performance quality over
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Fig. 5 Impact of different coefficients for the relationship between skewness and bias distribution
on quality

time compared to the high bias scenario (red line). The green line represents interven-
tions specifically in data collection and model training by engineers, which also show
improvement but to a lesser extent than the comprehensive interventions scenario.

These results suggest that implementing targeted interventions can effectively mit-
igate the negative impacts of bias on system performance. However, the figure also
highlights the need for further research into addressing inductive biases originating
from researchers, as these biases still present challenges that are not fully resolved by
the current interventions.

5 Discussion and Final Remarks

Despite extensive research into biases within recommender systems, the dynamic
nature of these biases and their long-term impacts on system functionality remain
underexplored. In this study, we use Fashion Recommender Systems (FRS) as a spe-
cific use case to explore the underlying structures of bias reinforcement and evaluate
their influence on system performance.

The dynamic model of bias activation in recommender systems reveals the under-
lying structures of bias reinforcement and its impact on system performance. This
model highlights the path dependencies in bias behavior within AI systems, showing
how biases can be self-reinforcing over time. Our findings suggest that inductive biases
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Fig. 6 Impact of Interventions on Performance

have a more pronounced and critical effect on performance compared to user biases.
Additionally, existing interventions aimed at mitigating these biases show significant
potential for balancing the model over time.

However, it is important to acknowledge that the proposed model is a simplifica-
tion of reality. To better control biases, we propose a forward feedback strategy that
implements interventions by extending model boundaries to include additional factors
such as accuracy, sales, users, and items. In the context of FRS, other potential inter-
ventions worth exploring include utilizing influencers during the adoption process and
diversifying item or feature selections.

Our study emphasizes the need for further research into the relationship between
bias distribution and skewness in recommender systems. By employing system
dynamic modeling and experimental simulations, we observed the nonlinear behavior
of bias distribution over time and its consequential impact on performance quality. The
model clearly demonstrates the prominent influence of inductive biases over user biases
and underscores the effectiveness of mitigation strategies in controlling the effects on
system quality, even if they do not directly address bias distribution.
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6 Limitations

This research is a work in progress that bridges several disciplines and calls for collabo-
ration among professionals from different areas of expertise. While tested for structural
and behavioral validity, the presented model requires further expansion and demands
testing under extreme conditions and consideration of policy implications. It needs
to extend from a conceptual system dynamics framework to support applications and
policy development in complex systems, such as AI.
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Appendix A Closer Look at the Stock and Flow
Diagram

Fig. A1 Bias Stock & Flow
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Fig. A2 Factors Affecting Quality of Recommendations
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Fig. A3 Recommender Engine, Interactions, and Performance Stock & Flow

Appendix B Complete list of equations

The system dynamics methodology is reproducible through modeling with Vensim
software using the equations provided:

(01) Accuracy= 1
Units: Dmnl

(02) ATOP= 1
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Units: bias
(03) Avg Interaction Life= 6760

Units: Day
(04) Avg Interactions with Recommendations= FRE/HCI

Units: recommendations/interactions
(05) Avg Quality=Performance/FRE

Units: quality/recommendations
(06) ”Avg. new recommendations”=26000

Units: recommendations
(07) ”Avg. New Users per. Items”=1.74

Units: 1/Day
(08) ”Coefficient of Bias Distribution & Skewness”=Skewness/Relative Bias

Units: quality/bias]
(09) ”Debiasing in Research & Model Training”=”Rebalancing & Regulariza-
tion”/(New Modeling*Time to Debias)

Units: bias/(interactions*Day)
(10) Desired Interactions=26000

Units: interactions
(11) ”Distribution of Bias in Data & Design”= INTEG (New Processing Rate-
”Debiasing in Research & Model Training”,1)

Units: bias/interactions
(12) Effect of Interaction on New Recommendations=HCI*Median Conversion Rate

Units: 1/Day
(13) Effect of Rating on Interactions with Recommendations=Effects of User Bias on
Rating/Avg Interactions with Recommendations

Units: interactions/(recommendations*bias)
(14) Effects of Debiasing on Skeweness=ATOP+Propensity Score

Units: bias
(15) Effects of User Bias on Rating=1/User Bias

Units: 1/bias
(16) FINAL TIME = 100

Units: Day
The final time for the simulation.

(17) FRE= INTEG ( Increased Recommendations-Removed Recommendations,5)
Units: recommendations

(18) HCI= INTEG (Interaction Increased Rate-Interaction Decrease Rate,10)
Units: interactions

(19) Increased Quality=Quality of each new Recommendations*Increased Recommen-
dations

Units: quality/Day
(20) Increased Recommendations= Effect of Interaction on New Recommenda-
tions*”Avg. new recommendations”

Units: recommendations/Day
(21) Inductive Bias= 1

Units: bias
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(22) INITIAL TIME = 0
Units: Day
The initial time for the simulation.

(23) Interaction Decrease Rate=HCI/Avg Interaction Life
Units: interactions/Day

(24) Interaction Increased Rate= MAX(0,(Desired Interactions-HCI)/Time to Adjust
Interactions+Interaction Decrease Rate)

Units: interactions/Day
(25) Label observation Randomness=1

Units: Dmnl
(26) Lifecycle=180

Units: Day
(27) Median Conversion Rate= 2.4

Units: 1/(Day*interactions)
(28) New Modeling=1

Units: interactions
(29) New Processing Rate= (Inductive Bias+Popularity Bias)*”Avg. New Users per.
Items”/HCI*Label observation Randomness

Units: bias/(interactions*Day)
(30) Performance= INTEG ( Increased Quality-Removed Quality,1)

Units: quality
(31) Popularity Bias=1

Units: bias
(32) Propensity Score=1

Units: bias
(33) Quality of each new Recommendations= RANDOM NORMAL( 1 , 5 , Accu-
racy*Avg Quality , Skewed Patterns in Model , Seed )

Units: quality/recommendations
(34) ”Rebalancing & Regularization”= 0

Units: bias
(35) Relative Bias=1

Units: bias
(36) Removed Quality= Avg Quality*Removed Recommendations

Units: quality/Day
(37) Removed Recommendations= FRE/Lifecycle+(Avg Interactions with Recom-
mendations*Interaction Decrease Rate)

Units: recommendations/Day
(38) SAVEPER = TIME STEP

Units: Day [0,?]
The frequency with which output is stored.

(39) Seed=1
Units: Dmnl

(40) Skewed Patterns in Model= (Effects of Debiasing on Skeweness*Effect of Rat-
ing on Interactions with Recommendations)* (”Distribution of Bias in Data &
Design”*”Coefficient of Bias Distribution & Skewness”)
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Units: quality/recommendations
(41) Skewness=1

Units: quality
(42) TIME STEP = 0.0078125

Units: Day [0,?]
The time step for the simulation.

(43) Time to Adjust Interactions=6760
Units: Day

(44) Time to Debias=1
Units: Day

(45) User Bias=1
Units: bias
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