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Abstract 
The rapid expansion of AI and cloud computing is transforming data centres into one of the fastest-

growing energy consumers globally. While past digital infrastructure growth has been moderated by 

efficiency gains, the computational intensity of AI may disrupt this pattern. This study examines how 

the interplay between technological progress, cost dynamics, and infrastructure constraints shapes 

the long-term trajectory of data centre expansion and energy consumption. 

A system dynamics model is developed to capture the feedback loops governing data centre growth, 

semiconductor scaling, and grid constraints. The model tracks two types of data centres—AI and 

General Computing—and simulates how shifts in Process Node Size, Compute Power Efficiency, and 

Infrastructure Scaling influence energy demand, pricing, and market size over time. 

Findings reveal a structural shift in data centre composition, with AI workloads surpassing general 

computing in the 2030s. While efficiency gains partially offset rising energy demand, they are 

insufficient to prevent an overall increase in power consumption. Grid constraints could become a 

bottleneck, limiting data centre expansion. Market-driven technological improvements drive the 

transition to Leading Edge Process Nodes, but cost reductions slow as fabrication reaches physical 

limits. 

These results highlight the complex interaction between technology scaling, energy infrastructure, 

and AI adoption. The study suggests that AI-driven computing will not cause unchecked energy 

demand growth but will reshape how and where energy is consumed. Key uncertainties include 

semiconductor advancements, grid expansion rates, and AI efficiency improvements. The findings are 

relevant for policymakers, energy planners, and AI developers seeking to balance computational 

needs with sustainable energy growth. 
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1 Introduction 
When large language models and other generative artificial intelligence (AI) applications burst into 

the mainstream within mere months, discussions quickly turned to a growing concern: the 

potentially immense energy demand from the data centres that train and operate these models. 

Headlines warned of exponential electricity consumption and raised the spectre of AI-induced strain 

on national electricity grids (Goldman Sachs, 2024; SemiAnalysis, 2024; Deloitte, 2024). Yet, this is 

hardly the first time new digital technologies have provoked such alarming forecasts about their 

energy appetite, only for reality to fall short of dire predictions. 

During the dot-com boom of the late 1990s, as personal computing and internet connectivity 

expanded rapidly, predictions of runaway electricity use were commonplace. One notorious example 

was a Forbes article by Huber & Mills (1999), suggesting that the Internet and personal computers 

would consume nearly half of the US electricity supply within a decade. Their forecast caused 

widespread concern, depicting a scenario in which rapid digital growth would drive a relentless need 

for coal-fired electricity (Lovins, 1999). In hindsight, these claims turned out to be grossly 
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exaggerated. Later analyses demonstrated that the combined energy consumption of all computing 

and internet infrastructures stayed well below these catastrophic forecasts, only accounting for a few 

per cent of total electricity usage by the mid-2000s (Koomey, 2011). 

A similar story unfolded as cloud services and global data centre infrastructure expanded through the 

early 2000s. Media reports and academic predictions issued warnings of unsustainable growth in 

electricity demand. In 2015, researchers predicted data centre electricity consumption would triple 

within a decade, potentially undermining global climate and energy goals (Bawden, 2016; Andrae & 

Edler, 2015). Yet again, actual data centre electricity use remained relatively modest—hovering 

around 1–2% of global electricity supply through the 2010s (Masanet et al., 2020). Historical trends 

show that although data centre electricity demand doubled globally between 2000 and 2005, its 

growth rate moderated significantly thereafter, increasing by about 56% between 2005 and 2010 and 

only marginally thereafter (Shehabi et al., 2016). 

The exaggerated predictions of the past were largely due to linear thinking or so-called “bottom-up” 

estimation approaches, which extrapolated historical growth rates without adequately accounting 

for systemic innovation and efficiency improvements (Koomey, 2011; Masanet et al., 2020). Indeed, 

history consistently demonstrates that when digital technologies scale, efficiency innovations soon 

follow. The mid-2000s saw widespread adoption of server virtualisation, dramatically improving 

resource utilisation and reducing total server counts (Masanet et al., 2020). Data centre cooling and 

infrastructure efficiency improved significantly, reflected in improving metrics such as Power Usage 

Effectiveness (PUE), reducing overhead power requirements. Additionally, the industry transitioned 

from inefficient small-scale enterprise facilities to centralised hyperscale cloud providers with a 

strong economic incentive to minimise operating costs through greater efficiency (Masanet et al., 

2020; Shehabi et al., 2016). 

Despite these historical lessons, concerns resurfaced with the explosive growth of cryptocurrencies 

like Bitcoin in the 2010s. Extrapolations projected Bitcoin mining could soon consume as much 

electricity as entire countries or even the global electricity supply if its growth trajectory continued 

unchecked (Jezard, 2017). Yet Bitcoin mining energy use has remained comparatively small—below 

0.5% of global electricity consumption in recent years (IEA, 2019)—due to market saturation, 

technological limits, and efficiency gains driven by high operating costs. 

Is AI Different This Time? 

With AI applications now quickly permeating everyday life, a familiar cycle of fear regarding digital 

energy demand repeats itself. Yet this raises a critical research question: is AI fundamentally 

different? Could AI workloads finally drive computing infrastructure to consume an increasingly large 

and potentially unsustainable share of global electricity? 

Various forecasts highlight the uncertainty inherent in these predictions, with differing assumptions 

about technological advancement, infrastructure growth, and adoption rates. The International 

Energy Agency (2024) estimates global data centres currently consume approximately 1% of 

electricity, predicting moderate growth in the near term. However, in the US, the Federal Energy 

Regulatory Commission forecasts data centre electricity use nearly doubling from 19 GW to 35 GW 

by 2030, accounting for up to 9% of national electricity (FERC, 2024). Consultants also provide diverse 

perspectives: Boston Consulting Group (2024) and Goldman Sachs (2024) predict annual growth in 

US data centre energy demand of around 15–20%, potentially reaching approximately 8% of US 

electricity consumption by 2030. McKinsey & Company (2024), considering aggressive AI workloads, 

expects even faster growth, with AI-ready data centres potentially consuming 70% of total data 

centre capacity by decade’s end. 



Globally, the expansion of AI infrastructure appears even more pronounced. SemiAnalysis (2024) 

anticipates global data centre power usage nearly doubling from 49 GW in 2023 to 96 GW by 2026, 

with almost half of this growth attributable to AI workloads. Deloitte (2024) similarly projects global 

data centre electricity demand rising significantly, from 536 TWh in 2025 to 1,065 TWh by 2030, 

primarily driven by AI computing. IDC (2024) forecasts global data centre energy use more than 

doubling between 2023 and 2028, with AI as a significant contributor. 

To clearly frame the discussion and establish a coherent "reference mode" for this system dynamics 

analysis—an essential baseline of past and predicted future behaviour over time—electricity use 

expressed as a percentage of total demand provides a consistent, scalable metric. Current estimates 

place global data centre energy use at around 2–3%, with forecasts ranging widely from 4.5% 

(SemiAnalysis, 2024) to over 12% (McKinsey & Company, 2024) by 2030. AI-specific forecasts exhibit 

even higher uncertainty, with Wells Fargo (2024) suggesting AI workloads alone could consume up to 

5% of global electricity by 2030. 

Insights from System Dynamics Literature 

The system dynamics literature on data centre and AI electricity demand remains relatively limited, 

though several valuable studies exist. Dianati (2012), one of the earliest applications, used system 

dynamics for a Norwegian cloud computing firm's capacity planning. While insightful regarding 

energy consumption of individual data centre components, the study primarily emphasised 

operational details rather than overall growth dynamics or systemic efficiency improvements, leaving 

longer-term forecasts unexplored. 

Spirova (2021) applied system dynamics to data centre electricity demand in the context of smart 

industry developments in the Netherlands. This study explicitly linked regional industrial growth and 

data centre energy requirements, predicting possible electricity shortages by the late 2020s—a 

strength in connecting systemic demand growth to broader infrastructure constraints, yet less 

applicable in global AI contexts. 

More directly relevant, Wijnhoven and Koot (2021) modelled global data centre energy demands, 

clearly demonstrating that efficiency gains could partially but not fully offset rising electricity needs 

under certain scenarios. However, their analysis predated the explosive growth of generative AI, a 

crucial limitation in informing present dynamics. 

Most recently, Paccou and Wijnhoven (2024) explicitly modelled AI's electricity impact through four 

distinct scenarios to 2035. Their model highlights critical factors influencing future energy use, such 

as public concerns, grid limitations, hardware efficiency improvements, and algorithmic 

advancements. The scenario-based approach provides a robust foundation for exploring diverse 

future outcomes, although specific assumptions on technological and social responses remain 

uncertain. 

Research Question: Will AI Defy Historical Trends? 

Historically, dire forecasts for digital energy demand repeatedly failed to materialise due to 

innovation-driven efficiency gains. Yet, the rapid and pervasive nature of AI might test these 

historical lessons. Is AI expected to push computing infrastructures into consuming unprecedented 

shares of global electricity? 

This paper contributes to this ongoing debate by developing a comprehensive system dynamics 

model, explicitly capturing key feedback mechanisms driving AI and data centre energy dynamics. It 

builds upon and extends previous literature, explicitly addressing limitations in past modelling 

studies and integrating recent empirical insights to explore AI's energy demand trajectory. 



 

2 Model 
System Boundary  

The model centres on three fundamental components driving the energy demand of data centres: (1) 

the demand for data centre services, (2) the efficiency of delivering these services, and (3) the 

constraints limiting the supply of data centres. Each of these components interacts dynamically to 

shape the overall energy consumption trajectory of data centres, but the model must also define 

clear boundaries to distinguish endogenous factors from external influences. 

At the core of data centre energy demand is the demand for data centre services, which serves as 

the primary driver of electricity consumption. This demand is influenced by both endogenous and 

exogenous factors. Endogenously, data centre service prices, computing capabilities, and efficiency 

improvements feed back into demand, as more efficient and cost-effective data processing 

capabilities tend to spur greater usage. However, exogenous factors such as global Internet 

penetration, network infrastructure, and broadband speed improvements also play a significant role 

in shaping demand. These external factors enable more widespread use of digital services, but since 

they operate at a broader technological and policy level, they are outside the boundary of this 

system dynamics model. For example, the proliferation of high-speed 5G networks and edge 

computing can increase the need for data centre capacity, but their adoption is driven by 

telecommunications advancements that are not modelled explicitly here. 

The second core component is the energy efficiency of data centres, which determines how much 

computational work can be performed per unit of electricity. Historically, efficiency improvements 

have been a counterbalancing force against rising demand. Advances in chip architecture, server 

utilisation, and cooling technologies have allowed data centres to process exponentially more data 

without proportional increases in power consumption (Masanet et al., 2020). A crucial historical 

driver of efficiency gains has been Moore’s Law, which has enabled the doubling of transistor density 

roughly every two years, resulting in greater computational performance per watt. However, as the 

semiconductor industry faces physical limitations on transistor miniaturisation, the rate of efficiency 

gains from chip improvements is expected to slow. Instead, efficiency gains are now increasingly 

dependent on software-based optimisations, such as model compression and algorithmic efficiency, 

as well as specialised AI hardware accelerators, such as NVIDIA’s AI-specific GPUs or Google’s Tensor 

Processing Units (TPUs) (McKinsey & Company, 2024; SemiAnalysis, 2024). These efficiency dynamics 

are explicitly modelled endogenously, allowing the system to capture how improvements in 

computation per watt influence long-term energy demand trends. 

The third major factor shaping data centre energy demand is the constraints on data centre 

expansion, which determine how quickly the industry can scale to meet growing demand. The model 

endogenously incorporates two key constraints: chip production capacity and power grid availability. 

• Chip production capacity has historically expanded in tandem with efficiency improvements, 

ensuring a steady supply of more powerful processors. However, recent industry trends suggest 

that semiconductor manufacturing faces supply chain limitations, geopolitical risks, and long 

lead times for building new fabrication plants. These constraints introduce potential bottlenecks 

to computational scaling, which we model explicitly. 

• Power grid constraints pose a more significant challenge. Unlike chip production, which is 

driven primarily by market forces, grid expansion is influenced by a mix of regulatory policies, 

renewable energy integration, and local infrastructure limitations (IEA, 2024). As data centres 

increasingly cluster in certain energy-constrained regions (such as Virginia in the U.S. or Dublin 



in Ireland), electricity supply bottlenecks become a binding constraint on growth. While our 

model includes grid availability as a limiting factor, broader external influences—such as 

renewable deployment, transmission infrastructure buildout, and government regulations—are 

outside the model boundary. 

Key demand-side variables have been regionalized such as market size and willingness to pay for 

services. Therefore, the model calculates the regional variability in demand for data centre services; 

however, the model currently does not regionalize the supply side dynamics, such as chip 

production. As a result, it does not capture localised efficiency disparities, such as the potential for 

regions with limited chip access to lag in energy efficiency improvements. Future iterations of the 

model could incorporate regional dynamics, particularly given the impact of semiconductor 

geopolitics (e.g., U.S.-China chip trade restrictions). 

Model diagram and description 

The model runs from 1980 to 2060, and most key variables are arrayed into two data centre types: AI 

and general purpose. General purpose focus on data services and cloud computing, such as data 

storage, retrieval, content delivery, enterprise applications, web hosting, and software as a service 

(SaaS). The AI array, on the other hand, involves training machine learning models through intensive 

iterative computations, requiring prolonged, high-performance compute power and large-scale data 

handling as well as their deployment, which is the inference stage. AI inference requires trained 

models to process new data in real-time or near real-time, requiring rapid response times and 

optimised hardware for efficiency. Unlike training, inference is often latency-sensitive and operates 

on distributed infrastructure to handle diverse end-user interactions. 

We model chip production capacity across four generations of semiconductor technology, 

categorized by process node type: legacy, mainstream, advanced, and leading edge. These categories 

reflect the level of transistor miniaturization and fabrication complexity, with each newer generation 

offering higher transistor density, improved energy efficiency, and greater computational 

performance. 

A newer process node generation represents a significant technological leap, enabling smaller, more 

power-efficient transistors that enhance chip performance while reducing power consumption per 

computation. The shift from one generation to the next is not just a matter of size reduction—it 



involves fundamental changes in materials, lithography techniques (e.g., EUV for sub-7nm nodes), 

and transistor architectures (e.g., FinFET, GAAFET). 

We define process node categories with the following reference sizes: 

• Legacy: ≥28nm (older nodes used in mature applications such as microcontrollers and analog 

chips). 

• Mainstream: 14-22nm (widely used in general-purpose computing and cloud CPUs). 

• Advanced: 5-10nm (high-performance AI accelerators, GPUs, and data centre processors). 

• Leading Edge: ≤3nm (cutting-edge chips for AI training, mobile processors, and HPC 

applications). 

Within each process node category, we allow the average Process Node Size to continuously 

decrease over time, reflecting two distinct phases of technological progression: 

1. R&D-Driven Reduction (Pre-Commercialization Stage): Before large-scale deployment, the 

process node shrinks as a function of time, driven by research advancements, breakthroughs 

in photolithography, and material innovations. 

2. Experience-Driven Reduction (Learning-by-Doing Stage): Once a node enters mass 

production, its size further reduces with accumulated manufacturing experience, as higher 

wafer volumes lead to process refinements, yield improvements, and cost reductions. 

This dynamic structure captures both planned technological roadmaps and emergent efficiency 

gains, ensuring a realistic representation of how semiconductor manufacturing evolves over time. 

Figure 1 shows a causal loop diagram of the model. For the sake of simplicity, arrays, unit 

conversions (such as GWh to TWh, seconds per year), and certain exogenous variables have been 

omitted. All costs are in USD, and we measure data centre computation capacity in either tera or giga 

FLOP/s: floating point operations per second, representing the number of calculations a computer 

can execute per second. In the following model description, all stocks, flows, and variables are in 

bold to enable the reader to follow the causal loop diagram. 

 



 

Figure 1. Causal loop diagram 

At the heart of the model is a system that tracks the expansion of digital infrastructure by keeping a 

simultaneous record of Number of Data Centres (centres), Data Centre Computation Capacity 

(TFLOP/s), and Data Centre Power Capacity (GW). These three stocks evolve together, ensuring that 

when data centres are built, expanded, or retired, their computational and energy footprint are 

reflected accordingly. 

Growth in data centres does not happen in isolation but is driven by the demand for computing 

services. The process begins with Desired Data Centre Additions in Centres, which represents the 

theoretical number of data centres that could be built based on user demand and industry trends. 

However, physical and economic constraints—most notably the availability of power infrastructure 

and semiconductor supply—limit how many of these desired additions can actually be realized. The 

Fraction of Desired Data Centre Additions Possible accounts for these constraints, restricting the 

flow into Data Centre Build Rate and thereby moderating expansion. 



The characteristics of newly built data centres are not static. Over time, both their computing power 

and efficiency evolve. The model accounts for this by tracking Avg Computation Capacity of a Data 

Centre and Compute Power Efficiency, ensuring that newer facilities contribute more computation 

per unit of energy consumed. Two key pressures shape this process: Pressure on Data Centre Size, 

which pushes for higher Avg Computation Capacity of a New Data Centre, and Pressure to Increase 

Energy Efficiency, which drives up Compute Power Efficiency of New Additions (GFLOP/s/W). These 

improvements stem from advances in hardware, software optimization, and operational design. 

The expansion of data centres brings with it a growing energy footprint. Data Centre Total Energy 

Demand is calculated by considering both direct power consumption and additional overhead 

requirements, captured through Power Usage Effectiveness. By multiplying Data Centre Total 

Energy Demand with electricity prices from the broader energy transition model, and applying the 

necessary unit conversions, we determine Energy Cost per Computation (USD/TFLOP). This is a 

crucial component of the cost structure, feeding into the Levelized Cost per Computation, which 

includes both capital expenditures (CAPEX) and operational expenditures (OPEX). CAPEX consists of 

Chip Price, Building Costs, Rack Costs, and Power Supply Costs, while OPEX is set as a ratio of 

CAPEX. 

From Levelized Cost per Computation, we determine the Price of Service per Computation, which, 

after incorporating profit margins, defines the revenue potential of the industry. This revenue is 

captured as Value Added by Data Centres (USD/yr), which, in turn, feeds back into Desired Data 

Centre Additions in Centres, sustaining the cycle of expansion. As the industry scales, it becomes 

more sensitive to cost pressures. Two ratios—Ratio of CAPEX to Price and Ratio of Energy Cost to 

Price—determine whether the cost burden is becoming too high relative to revenue. If these ratios 

rise excessively, they reinforce Pressure on Data Centre Size, encouraging facilities to scale up, and 

Pressure to Increase Energy Efficiency, accelerating innovation in hardware and infrastructure. 

Adoption of computing services is modelled through the interaction of User Base and Adoption Rate, 

which are driven by exogenous trends in Internet Users, Price Elasticity of Adoption, Quality of 

Service, and Price of Service. Together, these factors determine the Market Size, which then 

influences the Demand Supply Gap, signalling whether additional capacity is needed. 

The semiconductor industry plays a pivotal role in determining the pace at which data centres can 

scale. The model tracks Chip Production Capacity and Cumulative Chip Production, both of which 

influence how many new facilities can be brought online. Beyond availability, chip production 

dynamics also shape cost trends, as the cost per processor die follows a learning curve. Unit Price 

per Die declines with cumulative output due to Effect of Learning Rate, which captures the reduction 

in cost per doubling of cumulative production capacity. 

A key driver of the computational efficiency of data centres is Process Node Size, which determines 

how many transistors can be packed into a given area of silicon. As the semiconductor industry 

transitions from Legacy (≥28nm) to Mainstream (14-22nm) to Advanced (5-10nm) to Leading Edge 

(≤3nm) nodes, chips become more power-efficient and computationally powerful. Within each 

process node category, continuous refinement occurs, initially as a function of research and 

development and later through experience-driven manufacturing improvements. 

Smaller transistors result in lower power consumption per calculation, which we capture through 

Power per Die (W/die). This relationship follows a scaling law: 

𝑷𝒅𝒊𝒆 = 𝑷𝟎 × (
𝑺𝟎

𝑺
)

𝛂

 



where P₀ is a reference power level, S₀ is a reference process node size, S is the current process node 

size, and α is an empirically determined exponent. Because power consumption scales down with 

process node size, Compute Power Efficiency (GFLOP/s/W) follows an inverse relation: 

Compute Power Efficiency  =  
TFLOP/s per Die

Pdie
 

Process miniaturization also affects cost. The Unit Price per Die follows a learning curve, declining as 

cumulative production increases: 

𝐶𝑑𝑖𝑒 = 𝐶0 × (
𝑄

𝑄0
)

−λ

 

where Q is cumulative production, C₀ is the initial cost, and λ is the learning rate exponent. However, 

as process nodes shrink to the extreme sub-5nm range, fundamental physical constraints limit 

further reductions in cost and efficiency gains. 

The same shrinking transistor size that improves efficiency also enhances computational 

performance. The relationship between process node size and TFLOP/s per Die follows: 

TFLOP/s per Die = β × (
𝑆𝑟𝑒𝑓

𝑆
)

𝑛

 

where β is a scaling factor and n is typically between 1.7 and 2.0. However, at the smallest scales, 

material physics and manufacturing precision impose practical limitations. 

Two constraints govern the maximum feasible expansion of data centres. Grid Power Availability 

places a hard ceiling on growth, as data centres require guaranteed access to power before they can 

be built. In parallel, Chip Production Capacity determines how quickly computational capability can 

expand. The fraction of desired data centre additions that can actually be realized is given by: 

Fraction of Desired Data Centre Additions Possible

= min (
Available Grid Power

Power Required
,
Available Chips

Chip Demand
) 

Competition shapes both Profit Margins and the speed at which the Demand Supply Gap is closed. 

As competition intensifies, margins shrink, limiting reinvestment into new data centres. Lower 

margins also pressure pricing, influencing Price of Service per Computation and in turn affecting 

User Base Growth. Over time, as constraints on power and chip supply become more pronounced, 

data centre expansion is expected to transition from an early phase of rapid acceleration to a more 

moderated growth trajectory, much like the historical evolution of global electricity demand—where 

an initial period of exponential expansion slowed as structural constraints took hold. 

This formulation ensures that the model captures both the technological acceleration of the 

semiconductor industry and the longer-term constraints that shape the evolution of data centre 

capacity. 

Major Feedback Loops 

There are nine key feedback loops in the model: five reinforcing and four balancing, each playing a 

role in shaping data centre expansion, efficiency improvements, competition, and cost dynamics. 

Reinforcing Loops 

The first reinforcing loop, grid expansion, captures how rising energy demand from data centres 

drives investment in grid capacity, enabling further expansion. As Data Centre Total Energy Demand 

increases, it places Pressure on Power Grids, prompting investments that, after some delay, raise 



Max Possible Power of Capacity Additions. This allows a greater Fraction of Desired Data Centre 

Additions Possible, leading to new data centres coming online. These additions increase Data Centre 

Computation Energy Demand, further amplifying Data Centre Total Energy Demand, reinforcing the 

loop. 

The pressure buildup loop describes how constraints on expansion exacerbate unmet demand. 

When Desired Data Centre Additions in Centres rise, they bring additional Computation Capacity of 

Desired Data Centre Additions and Power Capacity of Desired Data Centre Additions, which, in turn, 

reduce the Fraction of Desired Data Centre Additions Possible due to supply limitations. A lower 

fraction restricts Data Centre Build Rate, slowing Computation Capacity Additions, Data Centre 

Computation Capacity, and Value Added by Data Centres. As Value Added by Data Centres drops, 

the Demand Supply Gap widens, which further increases Desired Data Centre Additions in Centres, 

creating a self-reinforcing buildup of unmet demand. 

The chip production expansion loop highlights how demand for computing power fuels 

semiconductor manufacturing. As Computation Capacity of Desired Data Centre Additions grows, it 

pushes up Chip Capacity Demand, leading to increased Chip Production Capacity and Cumulative 

Chip Production over time. Higher cumulative production reduces Unit Price per Die, lowering 

CAPEX, Levelized Cost per Computation, and ultimately Price of Service per Computation. A lower 

Price of Service per Computation makes computing more accessible, driving further Desired Data 

Centre Additions in Centres, which increases Computation Capacity of Desired Data Centre 

Additions, reinforcing chip demand. 

The Moore’s Law loop explains how improvements in semiconductor technology reduce energy 

demand while making computation more affordable, driving even more investment into chip 

production. As Avg Process Node Size per Process Node Type decreases, TFLOP/s per Die of New 

Additions increases, leading to higher Avg Compute Power Efficiency across data centres. This 

efficiency gain boosts Profit Margin, allowing better Quality of Service and increasing Desired Data 

Centre Additions in Centres. More data centre additions raise Computation Capacity of Data Centre 

Additions, leading to greater Chip Capacity Demand. As semiconductor manufacturers expand Chip 

Production Capacity, they drive further reductions in Avg Process Node Size per Process Node Type, 

sustaining the loop. 

The quality degradation loop captures how intense competition erodes profit margins, leading to a 

decline in service quality. When there is Competition Pressure due to oversupply of computing 

services, Profit Margin shrinks, forcing providers to cut costs. This results in lower Quality of Service, 

which reduces Willingness to Pay, shrinking Market Size and widening the Demand Supply Gap. A 

larger gap intensifies Competition Pressure, reinforcing the downward cycle. 

Balancing Loops 

The capacity adjustment loop stabilizes expansion by limiting new data centre additions as demand 

is met. As Desired Data Centre Additions in Centres rise, they increase Data Centre Build Rate, 

expanding Data Centre Computation Capacity through the co-flow structure. This enhances Value 

Added by Data Centres, shrinking the Demand Supply Gap. A narrower gap reduces Desired Data 

Centre Additions in Centres, moderating growth and balancing the loop. 

The efficiency gains loop drives improvements in energy efficiency as energy costs become a greater 

burden. When the Ratio of Energy Cost to Price rises, data centre operators face stronger Pressure 

to Increase Energy Efficiency, accelerating the adoption of smaller transistors in Share of Process 

Node Type in New Data Centres. This lowers Avg Process Node Size per Data Centre Type, 

improving Compute Power Efficiency of New Additions. More efficient additions lower Power 

Capacity of Additions, reducing Data Centre Power Capacity, Data Centre Total Energy Demand, 



and ultimately Energy Cost per Computation. This decreases the Ratio of Energy Cost to Price, 

closing the loop. 

The economies of scale stabilization loop limits excessive growth in data centre size. When the Ratio 

of CAPEX to Price climbs, data centre operators aim to cut costs by increasing Avg Computation 

Capacity of a New Data Centre, allowing them to achieve more computing power per facility. This 

lowers CAPEX per TFLOP, reducing the Ratio of CAPEX to Price and preventing unchecked size 

expansion. 

The price moderation loop regulates pricing dynamics in response to competition and demand shifts. 

As Price of Service per Computation falls, Willingness to Pay improves, leading to a larger Market 

Size and a shrinking Demand Supply Gap. As demand increases relative to supply, Competition 

Pressure eases, allowing for higher Profit Margins, which in turn supports a gradual rise in Price of 

Service per Computation, stabilizing the cycle. 

These nine feedback loops together define the evolving interplay between technological progress, 

market forces, resource constraints, and economic pressures, shaping the trajectory of data centre 

expansion and efficiency gains over time. 

3 Results 
Our base run results illustrate how rising demand for all types of data centres leads to continued 

expansion in Data Centre Power Capacity, improvements in Compute Power Efficiency, and 

increases in Data Centre Total Energy Demand, while at the same time, Unit Price per Die steadily 

declines. The NAM region (North America) will be presented in the base run results since it is the 

largest AI market today. The x axis of the figures will start from year 2000 to better focus on the 

period where computing demand and capacity substantially begin increasing.  

The evolution of Market Size for data centre services is influenced both exogenously—by population 

growth and the increasing share of the global population with internet access—and endogenously, 

through Willingness to Pay for Data Centre Services, which rises as these services become more 

essential to everyday life. The strongest growth occurs in the AI market, where computational 

demand increases more sharply than in general purpose markets, eventually surpassing general 

purpose in scale. However, this expansion is not just a function of exogenous demand drivers; 

endogenous system feedbacks, particularly those governing efficiency gains and hardware evolution, 

play an equally important role in shaping how computation capacity is distributed across data centre 

types and process nodes. 

 



The persistent gap between Market Size and Data Centre Computation Capacity creates a sustained 

push for expansion, reflected in Data Centre Power Capacity, which grows significantly in both data 

centre types. AI workloads experiences increases severalfold, while general purpose grows at a 

slower pace, and eventually stabilizing. Although general purpose initially dominates in total Data 

Centre Power Capacity, AI segment eventually surpasses it as demand for high-performance 

computation accelerates in the 2040s. 

  

Despite this strong expansion, the rise in Data Centre Power Capacity is moderated by 

improvements in Compute Power of New Additions. Shrinking Avg Process Node Size per Process 

Node Type increases both TFLOPs per Die and Power per Die, making each unit of Data Centre 

Power Capacity more efficient over time. These effects are particularly pronounced for general 

purpose segment, where a steep rise in efficiency is seen in the late 2030s, followed by AI, which 

benefits from similar trends but stabilizes at a lower value. 

  

As semiconductor production scales up, there is a shift in Share of Process Node Type in New Data 

Centres towards smaller node sizes, particularly for AI applications. This transition occurs across all 

data centre types, though at different speeds, as each category responds differently to efficiency 

pressures and cost reductions. 

The shift toward smaller process nodes is evident in Share of Process Node Type in New Data 

Centres. At present, Mainstream Process Nodes (≥28nm) dominate, accounting for nearly 80% of 

new deployments. However, as efficiency concerns intensify—driven by a rising Ratio of Energy Cost 

to Price—there is a transition to smaller nodes. Advanced Process Nodes (5-10nm), peaking in the 

late 2020s before giving way to Leading Edge Process Nodes (≤3nm). By 2030s, almost all new data 

centres operate on Leading Edge technology, reflecting the AI segment’s high computational 

intensity and strong incentives to maximize efficiency. 



  

A similar shift occurs in general purpose , though at a slower pace due to its lower computational 

intensity. While Mainstream Process Nodes remain dominant throughout the simulation, they 

gradually cede ground to Advanced and Leading Edge nodes, which account for a growing share of 

new data centres. By 2030s, Advanced Process Nodes make up a majority of new cloud computing 

data centres but gives way to Leading Edge Process Nodes. 

  

 

On the cost side, declining Avg Process Node Size per Data Centre Type and cumulative production 

effects drive reductions in Unit Price per Die. Learning effects amplify this trend, particularly for 

smaller node sizes, which see the sharpest cost declines. The cost advantage of transitioning to 

Leading Edge Process Nodes becomes increasingly apparent, though price reductions are tempered 

by the high complexity and capital intensity of manufacturing at these scales. 



  

These trends collectively drive an increase in Data Centre Total Energy Demand, which more than 

quadruples from current year 2025 to end of simulation at 2060. While the total power required to 

sustain computation grows, the efficiency gains from Process Node Size Reduction prevent an even 

steeper rise, particularly in AI-focused workloads. Relative to global electricity demand projections, 

the share of data centres in total power consumption increases over time, though efficiency 

improvements mitigate this effect compared to a scenario without technological progress. 

  

4 Scenario Analysis 
Of the various parameters and feedback loops that can be adjusted for scenario analysis, three were 

chosen due to policy implications that can be discussed. The adjusted parameters are 1) grid 

constraints, 2) efficiency gains, and 3) Moore’s Law loop, or the performance gains. The presented 

graphs will show varying years, depending on the sensitivities highlighted. 

One of the most significant uncertainties in our results is the impact of Grid Constraints—specifically, 

whether electricity infrastructure can scale fast enough to accommodate the desired expansion of 

Data Centre Capacity. In the base run, grid expansion occurs at up to 15 GW per year, but alternative 

scenarios with lower rates (e.g., 5 GW per year) demonstrate how severe constraints could restrict 

growth. The base run is not constrained by the grid, thus in this scenario analysis availability of grid 

was adjusted to 50%, and down to 25%. 



This limitation begins to emerge in the 2030s, disproportionately affecting AI workloads, which has 

the highest power demands. However, the constraints also general purpose, as competition for 

available grid capacity increases. 

Notable observation is that AI is affected capacity constraints. The data centre energy demand and 

power capacity are reduced proportionally. However, General purpose data centres are unaffected 

by this scenario. This indicates that expansion of the AI sector is more sensitive to the availability of 

power to support it. 

  

  

Efficiency gain sensitivity can be tested by scaling the Power per Die variable. Similar to grid 

constraints, a low efficiency and high efficiency are compared to the base case, at 0.5 and 2.0 

efficiency multipliers, respectively. 

 

Efficiency sensitivities have a strong influence on costs for both AI and general purpose data centre 

markets. This is due the crucial role that crucial role that processors and their energy performances 

have on the core operations of data centres. In the 2x efficiency case, this outdated hardware are 



swapped out quickly, and this decision is quickly rewarded by lower costs. The 0.5x case, on the 

other hand, leads to data centres retaining older hardware, which in turn becomes more costly and 

less efficient. 

 

The loss in efficiency is also reflected in the total energy demand for both AI and general computing. 

Direct adjustments in efficiencies affect energy demand of general purpose data centres more 

dynamically than with AI data centres, which respond proportionally to the efficiency changes. In 

general computing market, the overall energy demand is consistently lower for 2x efficiency, but 

base case and 0.5x efficiency eventually catch up and converge around 2050s. 

To test the effect of computing performance gain or hindrance, the variable TFLOPS per Die of New 

Additions was scaled by 2 and 0.5. Both AI and general computing performances benefit greatly from 

the 2x performance boost. For the 0.5x low performance scenario, the AI market recovers 

moderately but at a consistently lower performance. General computing suffers greatly from loss in 

performance for the remainder of the simulation. 

  

For the energy consumption of AI and general computing markets, similar observations are made. 

Even with a doubling of expected performance gains, there is not a substantial increase in energy 

demand over the simulation years. However, loss in Moore’s Law performance gains lead to a 

drastically lower overall energy demand for both markets. This scenario test can be interpreted that 

increasing performance from the base case do not incur significant energy penalties, but loss in 

performance can lead to an almost “bottoming out” of total energy demand. 



  

 

5 Conclusion 
The rapid expansion of artificial intelligence has placed data centres at the centre of global energy 

discussions. While historical trends suggest that efficiency improvements have consistently 

moderated digital infrastructure’s power demand, the scale and computational intensity of AI 

introduce new dynamics that may test these historical patterns. This study sought to answer whether 

AI-driven data centres will follow past trends of efficiency-led moderation in energy demand or 

whether their rapid expansion will lead to a fundamental shift in electricity consumption. 

Our results suggest that while efficiency gains will significantly offset growth in computation demand, 

they will not be sufficient to prevent an overall increase in Data Centre Total Energy Demand. The 

rapid rise of AI workloads leads to a shift in Data Centre Computation Capacity, eventually surpassing 

general computing in scale. However, this shift is not just a function of exogenous demand growth; 

endogenous system dynamics, particularly those governing Process Node Size, Compute Power 

Efficiency, and Infrastructure Scaling, will determine the trajectory of this expansion. The model 

highlights a complex interplay between efficiency improvements, cost reductions, and infrastructure 

constraints, which together shape the future of AI-driven computation. 

For the energy industry, these findings underscore the growing importance of Grid Constraints in 

determining the future capacity of data centres. Unlike previous waves of digital infrastructure 

growth, which largely scaled within existing power availability, AI workloads require high-density, 

continuous power consumption that may exceed local grid capacity in key regions. If grid expansion 

does not keep pace with demand, it could create bottlenecks that slow AI adoption and shift data 

centre expansion to regions with excess power supply. This raises critical questions for energy 

planners, particularly regarding the balance between expanding renewable energy generation and 

ensuring stable, high-capacity power delivery for data centres. 

For the AI industry, the results highlight both opportunities and challenges. The increasing 

computational intensity of AI workloads places strong economic pressure on efficiency 

improvements, leading to the accelerated adoption of Leading Edge Process Nodes and specialised 

hardware. This means AI providers will need to navigate a rapidly evolving semiconductor landscape, 

balancing performance gains with rising chip production costs and potential supply chain constraints. 

Additionally, while Compute Power Efficiency improvements will help contain costs, the growing 

Ratio of Energy Cost to Price may force AI companies to optimise model architectures, reduce 

redundancy, and prioritise energy-efficient inference over brute-force training. 

Despite the robustness of the model in capturing key feedback loops, there are several uncertainties 

and limitations. The pace of technological change, particularly in semiconductor fabrication and AI 

algorithmic efficiency, remains difficult to predict. While Process Node Size Reduction follows 



established scaling laws, its future trajectory could be affected by fundamental physical limits and 

shifts toward alternative computing paradigms, such as neuromorphic computing or quantum 

acceleration. Additionally, the model assumes a relatively smooth progression of grid expansion, but 

real-world deployment of energy infrastructure is often subject to regulatory delays, investment 

cycles, and geopolitical risks. 

Ultimately, the question of whether AI will fundamentally alter the trajectory of global energy 

demand remains open. While efficiency gains have historically tempered digital expansion, the 

unique scale and power demands of AI workloads may push infrastructure growth into uncharted 

territory. The results of this study suggest that AI-driven energy demand will not grow unchecked, 

but neither will it plateau quickly—it will be shaped by the continuous interplay of technological 

progress, market forces, and resource constraints. How these factors evolve over the coming 

decades will determine whether AI follows historical efficiency trends or drives a step-change in 

computing's energy footprint. 
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