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A System Dynamics Approach to Managing Material Cost 

Overruns in Industrial Building Projects 

 

ABSTRACT 

Material-related cost overruns are a significant challenge in industrial construction, 

arising from various dynamic and interdependent risks such as price instability, 

supply chain delays, and specification adjustments. Traditional risk assessment 

models often fall short in addressing the complex interactions between these risks, 

resulting in suboptimal risk management. This study utilizes a system dynamics 

approach to capture and analyze the feedback structures between critical risk factors 

that influence project costs. Nine essential risk drivers were identified through 

literature synthesis and expert insights. These drivers were incorporated into a 

dynamic, quantitative simulation model, structured into sub-models representing 

risks such as material price variability, distribution inefficiencies, and rework. The 

simulation demonstrates that applying targeted preventive and corrective actions 

effectively limits cost deviations and improves cost performance. Additionally, the 

model highlights how the interrelationship among various risks can intensify cost 

overruns if left unaddressed. The system dynamics model serves as a strategic 

decision-making tool, offering project stakeholders a comprehensive means to 

forecast and control cost deviations. Further research is recommended to integrate 

real-time project data and artificial intelligence to enhance the model’s adaptability 

and extend its relevance across broader construction domains. 

 

Keywords: System dynamics, cost overrun, construction risk management, 

material cost deviation, industrial building projects 

 

INTRODUCTION 

Organizations operating within the construction industry are invariably exposed to 

a wide spectrum of risks. Consequently, risk management plays a pivotal role in 

ensuring that both organizational and project-level objectives are achieved (Zhao, 

2023). This becomes even more pressing given the growing uncertainty and 

complexity associated with future project demands (Nyqvist et al., 2023). The 

successful delivery of construction projects is contingent upon the effective and 

comprehensive management of this complexity (Yadav & Paul, 2023). 

Risks are embedded in every phase of a construction project, from the initial 

conceptualization, through feasibility assessments and design development, to the 

actual execution. This omnipresent risk exposure often hinders projects from 

achieving their intended targets related to schedule, budget, and quality standards 

(Nazirzadeh et al., 2008). Put simply, unmanaged risks significantly impair the 

overall performance and success of construction projects (Wideman, 1992). 

Among the most common consequences of unmanaged risks are cost deviations, 

which often escalate project expenditures beyond initial budgets. For example, 

Flyvbjerg et al. (2003) revealed that 86 percent of large-scale infrastructure projects 
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globally experienced an average cost overrun of 28 percent. Supporting this trend, 

Love et al. (2011) identified that infrastructure projects in Australia typically 

encounter cost overruns averaging 13.55 percent. Similarly, Jackson (2002) found 

that more than half (55 percent) of construction projects in the United Kingdom 

exceeded their planned budgets, with overruns in some cases reaching 30 percent 

or more, and in extreme cases surpassing 100 percent. 

Given the significant financial resources committed to construction activities, cost 

management emerges as a vital concern to mitigate the risk of financial failure 

(Dipohusodo, 1996). Contractors often seek to counterbalance this uncertainty by 

incorporating anticipated risk costs into their tender pricing as contingency reserves 

(Al Bahar, 1988). However, Hartman (2000) contends that such practices, when 

lacking scientific rigor, can paradoxically contribute to cost overruns instead of 

preventing them. 

In reality, cost overruns in construction are frequently triggered by both 

unanticipated (unforeseen) and foreseeable (foreseen) events where uncertainty has 

not been sufficiently accounted for (Andi, 2004). This highlights the necessity for 

contractors to identify and manage the primary risk drivers that elevate project costs 

(Akinci & Fischer, 1998). According to Wideman (1992), effective risk 

management should integrate risk factors with potential impact scenarios, while 

addressing the cascading consequences of these impacts. Such an approach requires 

a systematic framework involving risk planning, identification, assessment, 

mitigation strategies, and continuous monitoring and control (Kerzner, 2002). 

Scholarly evidence shows that the drivers of cost overruns differ across projects, 

depending on factors such as project typology, geographic context, and regional 

characteristics (Sharma & Goyal, 2014). This variability accounts for the 

inconsistency often found in cost overrun estimates. A key underlying issue is the 

absence of universally accepted standards or formalized cost estimation procedures 

(Boukendour, 2005). 

In response to this challenge, the field has seen the development of various risk 

assessment methodologies aimed at supporting cost estimation processes. These 

include widely adopted techniques such as decision tree analysis, Monte Carlo 

Simulation (MCS), factor rating, regression models, fuzzy logic, the Delphi 

method, range estimating, and the Analytical Hierarchy Process (AHP) (Flanagan, 

1993; Wideman, 1992; Wan & Liu, 2014). 

Nevertheless, Wan (2014) notes that these traditional methods, being largely 

probabilistic and mathematical in nature, often fail to capture the dynamic and 

interactive nature of risks within construction environments. The intrinsic 

complexity of construction projects, characterized by interdependent processes and 

shifting variables, often exceeds the capabilities of static models to fully represent 

or quantify risk impacts. Moreover, such models tend to overlook indirect or 

second-order risk effects. 

To address these shortcomings, Nasirzadeh et al. (2008) advocate for the application 

of system dynamics modeling, which is better suited to the inherently dynamic 

character of project risks. System dynamics models provide a holistic view by 
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representing feedback loops, enabling project teams to simulate evolving project 

scenarios and their associated risks over the entire project life cycle. 

Indeed, system dynamics frameworks have been extensively employed to examine 

interactions among risk variables and to model the cascading effects of risk factors 

in real-time project conditions (Xu & Zou, 2006). Over time, specialized system 

dynamics models have been developed to address diverse topics such as delays, 

procurement bottlenecks, adverse weather conditions, rework incidents, safety 

concerns, quality control, workforce availability, and outsourcing, or even 

combinations of these factors (Nasirzadeh et al., 2008). 

While conventional risk assessment models tend to assume static and linear 

relationships, actual project environments are characterized by dynamic, 

interwoven risks that fluctuate over time. In this regard, system dynamics modeling 

more accurately mirrors real-world project dynamics and offers greater adaptability 

to changing conditions. This makes it a powerful tool for identifying the limitations 

of traditional mathematical approaches to risk assessment. 

Given the ability of system dynamics to incorporate and simulate the behavior of 

linear models under dynamic conditions, there is growing interest in investigating 

the extent to which this approach can help reduce cost overruns in industrial 

construction projects. 

 

LITERATURE REVIEW 

A project is defined as a unique, temporary, and structured initiative that mobilizes 

multidisciplinary resources to achieve predefined deliverables within specified 

constraints and requirements (IPMA, 2023). Fundamentally, a project comprises a 

sequence of coordinated activities designed to achieve a specific objective that adds 

business value. These activities are characterized by distinct start and end dates, 

resource limitations (both financial and non-financial), and typically require 

contributions across multiple functional areas (Kerzner, 2017). 

Within the construction industry, projects are generally categorized into three main 

sectors: building, infrastructure, and industrial construction. The building sector is 

further subdivided into residential (real estate) and non-residential (commercial) 

projects. Infrastructure projects encompass heavy civil or engineering works such 

as public utilities, highways, bridges, dams, railways, and water or waste-water 

systems. Meanwhile, the industrial sector focuses on specialized facilities including 

refineries, power plants, chemical processing plants, mills, and manufacturing 

facilities (Edison & Singla, 2020). 

The combination and effective utilization of construction resources—namely labor, 

materials, equipment, and energy—are critical determinants of project 

performance. These factors collectively influence key project metrics such as time, 

cost, and energy efficiency (He & Li, 2021; Ghafoori & Abdallah, 2024; 

Rouhparvar et al., 2024). Consequently, resource planning and integration play an 

essential role in achieving project success. 

Risk and opportunity management is a core component of project governance, 

encompassing risk identification, assessment, response formulation, 
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implementation, and ongoing control throughout the project’s life cycle (IPMA, 

2017). This process enables project managers and stakeholders to make informed 

decisions, prioritize actions, and select between alternative strategies while 

balancing threats and opportunities. 

Importantly, definitions of risk probability and impact are tailored to the specific 

context of each project, reflecting the organization’s risk appetite and the tolerances 

of key stakeholders. Projects may adopt custom definitions or leverage standard 

frameworks provided by their parent organizations. The granularity of risk 

classification—ranging typically from three to five levels—depends on the 

complexity of the project and the detail required in the risk management process 

(PMI, 2017). 

To systematically assess both positive (opportunities) and negative (threats) 

impacts, risks are often mapped onto a unified probability-impact matrix. This 

matrix may use qualitative descriptors (e.g., very high, high, medium, low, very 

low) or quantitative scales to rate risks. Numeric scales enable calculation of risk 

scores by multiplying probability and impact values, thereby facilitating 

prioritization of individual risks within their respective categories. An illustrative 

example of such a matrix is provided in Figure 1, which demonstrates a potential 

scoring methodology. 

 

Figure 1. Probability and Impact Matrix with Scoring Scheme 

 

In parallel, cost engineering provides essential support to project and portfolio 

management by applying scientific and analytical techniques across several 

domains, including business planning, profitability analysis, cost estimation, 

scheduling, risk management, and dispute resolution (AACE, 2024). 

Within this context, contractors rely on cost control systems for several critical 

functions. First, these systems compare actual expenditures against budgeted costs, 

providing early warning of financial deviations. Second, they serve as repositories 

for productivity and cost performance data, which inform the estimation processes 

for future projects. Lastly, they support the accurate valuation of contract variations 

and claims related to additional payments (Potts & Ankrah, 2013). 
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Contractor success is intrinsically linked to innovation and continuous 

improvement, leading to projects that are more likely to be delivered on time, within 

budget, and to a higher standard of quality and safety. Projects driven by innovation 

also tend to exhibit fewer defects and workplace incidents (Langston, 2023). 

Additionally, price forecasting mechanisms, when embedded into contracts or 

contract amendments, offer contractors and clients a valuable tool for adjusting 

prices in response to market fluctuations. Such mechanisms are particularly useful 

during phased construction projects where long durations may expose stakeholders 

to significant price variability (Lederer et al., 2024). 

Despite the availability of sophisticated forecasting and risk management tools, cost 

overrun remains a pervasive issue in construction management. This challenge is 

largely attributed to limited data availability during project initiation phases and the 

high financial costs associated with correcting errors during execution. Globally, 

cost overruns continue to exert a detrimental impact on project outcomes, 

frequently leading to budget and schedule failures (Ghazal & Hammad, 2020). 

The following, as in Table 1, is previous literature regarding the causes of cost 

overrun. 

 

 

Table1  Causes of Cost Overrun 

Author(s) Country Causes of Cost Overrun Type of Project 

Okpala and 

Aniekwu, 

(1988)  

Nigeria - Fluctuation in price material 

- Time delays 

- Fraudulent practices 

- Additional work 

- Shortening of contract period 

Construction 

project 

Elinwa and 

Buba (1994)  

Nigeria - Shortage of material 

- fluctuations in price material 

- Financing and payment of 

completed goods 

- Time delays 

- Additional work 

Construction 

project 

Kaming, et 

al. (1997)  

Indonesia - Inaccurate material takeoff 

- fluctuations in price material 

- Increase in Labour cost 

- Lack of experience of location 

- Lack of experience of project type 

 

 High-rise project 

Frimpong, et 

al. (2003)  

Ghana - Monthly payment difficulties 

contract 

- Management 

- Material procurement 

- Inflation 

- Contractor’s financial difficulties 

Groundwater 
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(Koushki, 

2005)  

Kuwait - Change orders 

- Financial Constraints 

- Owner’s lack of Experience 

- Materials 

- Weather 

Private residential 

projects 

(Long et al, 

2008) 

Vietnam - Poor site management and 

supervision 

- Poor project management assistance 

- Financial difficulties of owner 

- Financial difficulties of contractor 

- Design changes 

Large Construction 

Projects 

(Azhar et al, 

2008)  

Pakistan - Fluctuations in price material 

- Unstable cost of manufactured 

material 

- High cost of machineries 

- Lowest bidding procurement 

- Method Poor project(site) 

management/poor cost control 

Construction 

project 

(Olawale, 

2010)  

U.K - Design changes 

- Risk and uncertainty associated with 

projects 

- Inaccurate evaluation of project’s 

time/OR duration 

- Non-performance of subcontractors 

and nominated suppliers  

- Complexity of works 

Construction 

projects 

(Memon, 

A.H,2011) 

Malaysia - Poor design and delay in design 

- Unrealistic contract duration and 

requirements imposed 

- Lack of experience 

- Late delivery of material and 

equipment 

- Relationship between management 

 

(Rahman, 

2013)  

Malaysia - Fluctuations in price material  

- Cash flow and financial difficulties 

faced by contractors 

- Shortages of materials 

- Shortage of site workers 

- Financial difficulties of owner 

Construction 

projects 

(Aziz, 2013)  Egypt - Lowest bidding procurement 

method 

- Additional work. 

- Bureaucracy in bidding/tendering 

        Method 

- Wrong method of cost 

        estimation 

- Funding problem 

Waste water 

projects 

 

System Dynamics, originally introduced by J.W. Forrester in 1961, is a 

methodology designed to describe, analyze, and forecast the behavior of real-world 

systems that are large-scale and complex in nature. This method offers a powerful 
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framework for understanding the intricate dynamics within systems that exhibit 

interrelated components and feedback mechanisms. 

The system dynamics approach is founded on a holistic perspective of projects, 

emphasizing the feedback loops that operate within the project environment. By 

focusing on these interactions, system dynamics provides a robust and structured 

means to model, trace, and analyze the complexity inherent in project systems. 

These systems typically encompass elements such as organizational structures, 

scopes of work, and the influence of external environmental factors (Sterman, 

1992). 

One such application of system dynamics within construction management is 

presented by Jang (2011), as seen in Figure 2, who developed a model identifying 

key causal factors contributing to cost overruns in construction projects. The model 

highlights several direct contributors to cost deviations, including project delays, 

fluctuations in interest rates, price escalation, rising insurance costs, and the adverse 

financial consequences stemming from liquidity shortages. These 

interdependencies are graphically represented in the following system dynamics 

model. 

 

 

 

Figure 2 System Dynamics Model of Risk Impacts on Construction Cost Overruns, 

adapted from Jang (2011) 

 

 

The following is as shown in Table 2, previous literature on the Application of 

System Dynamics in Research on Construction Project Management. 
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Tabel 2  the Application of System Dynamics in Research on Construction Project 

Management 

Author (s) Year Research Theme 
Research 

Subjects 

Project 

Type 

Williams, TM, 

Eden C.L, 

Ackermann, F.R., 

and Tait, A 

1995 The effects of design 

changes and delays on 

project costs 

Design changes 

and delays 

Major 

engineering 

project 

Love, P.E.D.  

Holt, G.D.  Shen, 

L.Y.  Li, H. and 

Irani, Z. 

2000 Using systems dynamics to 

better understand change 

and rework in construction 

project management 

systems 

Change & 

rework 

Constructio

n project 

Park, M. 2002 Dinamic change 

management for fast-

tracking construction 

projects 

Change 

management 

Constructio

n project 

Howick, S. 2003 Disruption and delay in 

complex project for 

ligitation 

Ligitation Complex 

project 

Ogunlana, S., Li, 

H.,  Sukhera, F. 

2003 Performance enhancement 

in a construction 

organization 

Enhancement 

organization 

Constructio

n project 

Khamooshi, H. 2004 A dynamic and practical 

approach to project risk 

analysis and management 

Dynamic & 

practical 

approach 

Project 

Minami, N.A. 

Madnick, S. and 

Rhodes, D. 

2008 A system approach to risk 

management 

Taskflow, 

financial impact, 

vechile safety 

Engineerin

g project 

Nasirzadeh, F.  

Afshar, A. and 

Khanzadi, M. 

2008 An approach for 

construction risk analysis 

Time & cost 

quality based on 

fuzzy set 

Project 

constructio

n 

Marco, A. D. and 

Rafele, C  

2009 Using system dynamics to 

understand project 

performance 

Montly revision, 

schedule 

pressure, 

productivity 

Constructio

n project 

Hossen, F.A 2010 Project cost risk assessment 

: an application of project 

risk management process in 

Libyan construction 

projects 

Delay Constructio

n project 

Lisse, S.D.  2013 System dynamic applied to  

outsourcing engineering 

services in design build-

Project 

Outsourcing 

engineering 

services 

Design 

build-

Project 
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Abdi, S. M., 

Zahedi, M. and 

Makui, A. 

2011 A System dynamic model 

for measuring the 

construction quality of 

buildings’ structures 

Quality Building 

structure 

Aiyetan, A. 

Smallwood, J. 

and Shakantu, W. 

2011 A systems thinking 

approach to eliminate 

delays on building 

contruction projects in 

South Africa 

Delay  Building 

constructio

n project 

Jang, S.G 2011 A concessionaire selection 

decision model 

development and 

application for PPP project 

procurement 

Net present 

value (NPV) 

Project 

procuremen

t 

Boateng, P. Chen, 

Z. and Ogunlana, 

S. 

2012 A conceptual system 

dynamic model to describe 

the impacts of critical 

weather conditions in 

megaproject construction 

Weather Megaprojec

t 

constructio

n 

Boateng, P. Chen, 

Z. Ogunlana, S. 

and Ikediashi, D. 

2012 A system dynamic approach 

to risk description in 

megaprojects development 

Social and 

environmental 

risk 

Megaprojec

t 

 Li, C., Lu, G. and 

Li. P. 

2012 Risk element transmission 

model of construction 

project chain based on 

system dynamic  

Risk elemen 

transmission 

model 

Multi 

constructio

n project 

Nasirzadeh, F. 

Khanzadi, M. and 

Rezaie, M. 

2013 System dynamic approach 

for quantitative risk 

allocation 

Quatitiative risk 

allocation 

Pipeline 

project 

Aiyetan, O.A. and 

Das, D. 

2014 Using system dynamics 

principles for conceptual 

modeling to resolve causes 

of rework in construction 

project 

Rework Constructio

n project 

 Li, C., Liu, Y. 

and  Li, S. 

2015 A dynamic model of 

procurement risk element 

transmission in construction 

project 

Procurement Constructio

n project 

Li, C., Liu, Y. and  

Li, S. 

2015 Human resources risk 

element transmission model 

of construction project 

based on system dynamic 

Human 

resources 

Constructio

n project 

Ogano, N. and 

Pretorius, L. 

2015 Managing project risk in 

electricity industry in Africa 

Rework and 

work force 

Electricity 

industry 

 

 

METHODOLOGY 

As noted by Martinez-Moyano and Richardson (2013), the system dynamics (SD) 

modeling approach, as illustrated in Figure 3, is characterized by two fundamental 

attributes. First, the SD modeling process is inherently cyclical and iterative, 
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emphasizing the continuous refinement of the model. Second, SD modeling 

explicitly incorporates the creation of a key deliverable that is integral to the overall 

process—this element is typically highlighted in the diagram (in Figure 3, it is 

marked in italics and underlined). This indicates that SD modeling fosters not only 

the development of the model itself but also a deeper comprehension of both the 

underlying problem and the system it represents. 

In system dynamics research, the model serves as both a means and an end to 

achieving understanding. As Richardson and Pugh (1981, p. 16) aptly describe, 

"The model is an understanding until to the end, and ends on the understanding." 

Thus, every system dynamics modeling endeavor should be anchored in the pursuit 

of clarifying the dynamics of the problem and enhancing the understanding of the 

system’s behavior. 

 

Source: Martinez-Moyano and Richardson (2013) 

Figure 3 Process of System Dynamics Modeling 

 

This study investigates the underlying factors contributing to cost overruns in major 

construction projects, particularly within the industrial building sector, which 

includes facilities such as power plants, chemical refineries, and cement factories. 

It highlights global data showing significant cost deviations, including a 13.55% 

average overrun in Australia and frequent occurrences exceeding 30% in the UK. 

A central focus of the research is material-related risk, which is amplified by 

accessibility challenges—such as remote sourcing locations, poor transportation 

infrastructure, heavy traffic, and logistical issues. Given that materials represent 

50% to 70% of overall project costs, these challenges play a critical role in driving 

budget overruns. The research process, including problem identification, risk 

classification, and modeling, is illustrated in Figure 4. Research Process. 

To assess and manage these risks, the researchers used a structured questionnaire 

that evaluates each risk by its likelihood and impact, while also exploring 

appropriate response strategies. The findings informed the identification of 

dominant risk events, which were then classified into strategic approaches: risk 

retention, reduction, transfer, and avoidance. Based on these insights, a System 

Dynamics Model was developed to simulate the behavior of cost-related risks over 
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time. The model was built on a set of assumptions, such as stable project timelines, 

consistent material demand, and fixed transportation modes. A dynamic hypothesis 

was also formulated: if material risks, driven by accessibility constraints, are not 

mitigated early, they will amplify cost deviations non-linearly throughout the 

project lifecycle. The model was validated using case studies, confirming its 

practical relevance in improving cost management strategies for industrial 

construction projects (Figure 4. Research Process). 

 

 

Figure 4. Research Process 

 

RESULT AND DISCUSSION 

Causal Loop Diagram 

The structure of a system thinking model is typically presented in a graphical form, 

illustrating the feedback processes through a causal loop diagram. In this study, the 

system dynamics model has been developed based on a fundamental framework 

Cost overruns occur in large-scale projects across nearly 
all major countries. In Australia, infrastructure projects 
experience an average cost overrun of 13.55%. In the 
United Kingdom, 55% of construction projects face cost 
overruns, with some exceeding 30%, and a few even 
surpassing 100%. COST DEVIATION RISK

INDUSTRIAL BUILDINGS

DIFFICULT ACCESSIBILITY

MATERIAL RISK

INDUSTRIAL BUILDINGS/CONSTRUCTION
Projects include oil, palm oil, and chemical refineries; 
synthetic materials plants; power generation centers; 
cement factories; and other facilities required by basic 
industries.

CRITERIA:
Materials sourced far from production centers (quarries)
Unstable road structures or alignments
High traffic density
Changes in transportation modes
Other obstacles that result in high costs

MATERIALS

Material components account for 50% to 70% of the total 
project resources. As such, materials have a significant 
influence on cost overruns.

QUESTIONNAIRE:
Includes:
Risk = f(probability, 
consequence), along with 
corrective actions in response to 
the identified risks

DOMINANT RISK EVENTS

SYSTEM DYNAMICS 
MODEL

CASE STUDY VALIDATION

Risk Responses
Risk Retention
Risk Reduction
Risk Transfer
Risk Avoidance

The inherent risks in the 
construction services industry
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comprising four core variables, each of which contributes to the feedback 

mechanisms depicted in the causal loop diagram as shown in Figure 5. 

 

 

Figure 5 Causal Loop Diagram 

 

The primary variables identified in this model are: estimated cost, cost overrun, 

preventive/mitigation actions, and actual cost. These cost overrun variables are 

influenced by nine distinct risk event variables. Initially, the literature review 

identified 13 potential risk events relevant to construction cost deviations. Through 

expert consultations, this number was refined to 10 key risk events. These variables 

collectively form the dynamic feedback system used to analyze project cost 

performance.  

The estimated cost represents the projected budget prepared prior to the 

commencement of a construction project. This estimation serves as a benchmark 

for evaluating project financial performance. Once the project is underway, 

deviations from this estimate—caused by the occurrence of risk events—typically 

lead to cost overruns, thereby increasing the actual project cost. 

This relationship can be expressed as follows: 

Actual Cost = Estimated Cost + Cost Overrun …..       (Eq.  1) 

To mitigate or minimize cost overruns, preventive, corrective, and mitigation 

actions must be implemented to address risk events that lead to such deviations. 

The relationship between these actions and cost overruns is inverse: the higher the 

quality and effectiveness of preventive, corrective, and mitigation measures, the 

lower the cost overrun will be. Conversely, poor or ineffective implementation of 

these measures results in larger cost deviations. While the application of preventive, 

corrective, and mitigation strategies incurs additional expenses—thereby 
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influencing actual project costs—these interventions are critical in reducing the 

extent of cost overruns. 

This can also be expressed mathematically as: 

Actual Cost = Estimated Cost + Cost of Preventive/Corrective/Mitigation Actions 

(Eq. 2) 

 

Stock and Flow Diagram 

Following the risk analysis process, the subsequent step involves identifying which 

specific risks require treatment. Risk treatment is then executed in accordance with 

the pre-established risk action plan. In this context, beyond procedural and 

qualitative risk handling, the approach emphasizes risk management that is 

grounded in the efficient and practical allocation of both financial resources and 

project assets. 

Building upon the foundational structure of the project cost overrun risk model, as 

previously outlined, the study further advances this into a quantitative system 

dynamics model aimed at simulating cost overrun risks in construction projects. 

This model, developed based on the research stages carried out, incorporates nine 

distinct risk events, each represented as a sub-model. A stock and flow diagram was 

subsequently developed, as illustrated in Figure 6. 

In the core system dynamics model, the costs associated with risk mitigation actions 

are distributed between the estimated and actual project costs. The construction cost 

overrun risk model consists of several sub-models, each representing a specific risk 

factor contributing to cost deviations. The structure of these sub-models is 

described as follows.  

The outputs generated by each sub-model, which reflect the associated costs of risk 

mitigation actions, are then integrated into the core model. This combined structure 

provides a comprehensive depiction of the dynamic interaction between risk events 

and cost deviation management, as illustrated in Figure 7.
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Figure 6 Stock and Flow Diagram of Material Cost Deviation for Industrial Building Construction Projects
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Figure 7 Basic Model of Material Cost Deviation Risk for Industrial Building 

Construction Projects 

 

Sub-model 1 of Material Price Fluctuation 

The variable "Material Price Fluctuation" is influenced by factors such as inflation 

and exchange rate variability, both of which affect the total material costs. The 

proportion of inflation and exchange rate impacts is determined based on prevailing 

market conditions at the time of project execution. This sub-model is designed to 

anticipate risks related to material price volatility and is depicted in Figure 8. 
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Figure 8 Sub Model of Price Fluctuation Variables. 

 

Sub-model 2 of On-site Material Distribution Costs 

The variable "On-site Material Distribution Costs" represents the cumulative costs 

associated with constructing and maintaining access roads within the project site. 

These costs include materials, equipment, and labor. Inadequate reinforcement or 

maintenance of these roads could disrupt the distribution of materials, potentially 

delaying project execution. This relationship is illustrated in Figure 9. 
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Figure 9 Material Distribution Variables on Site in Industrial Building 

Construction Projects 

 

 

 

0 1 2 3 4 5 6 7 8 9101112131415161718
500,000,000

1,000,000,000

1,500,000,000

O
n

-s
it

e
 M

a
te

ri
a

l 
D

is
tr

ib
u

ti
o

n

month 0 to 36On-site Material Distribution

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

526,250,000.00

598,150,000.00

670,050,000.00

741,950,000.00

813,850,000.00

885,750,000.00

957,650,000.00

1,029,550,000.00

1,101,450,000.00

1,173,350,000.00

1,245,250,000.00

1,317,150,000.00

1,389,050,000.00

1,460,950,000.00

1,532,850,000.00

1,604,750,000.00

1,676,650,000.00

1,748,550,000.00

1,820,450,000.00

1,892,350,000.00

5

6



18 

 

Sub-model 3 of Cost of Material Delays 

The variable "Cost of Material Delays" can be mitigated by optimizing material 

procurement strategies, such as purchasing materials in bulk or in fewer batches. 

This approach helps reduce transportation frequency, particularly in projects with 

limited site accessibility, thereby ensuring material continuity. However, this also 

leads to increased stockpile requirements, higher interest rates, and additional 

logistical personnel. This sub-model also offers multiple procurement options (e.g., 

single, double, or triple batch purchases) depending on project-specific conditions, 

as shown in Figure 10. 

 

 

  

Figure 10 Sub Model of Late Material Variables in Industrial Building 

Construction Projects 
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have been explicitly outlined in contractual agreements. This relationship is 

depicted in Figure 11. 

 

 

  

Figure 11 Sub Model of Variable Changes in Specification and Material Type in 

Industrial Building Construction Projects 
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Figure 12 Sub Model of Material Shortage Variable in Industrial Building 

Construction Projects 
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Sub-model 6 of Material Damage Costs 

The variable "Material Damage Costs" is mitigated by transferring risk through 

insurance coverage and ensuring that materials are adequately packaged and 

secured. Additionally, proper supervision of material handling activities, including 

loading and unloading, is critical. This sub-model also allows for flexible cost 

allocation between actual and estimated budgets, as shown in Figure 13. 

 

 
 

Figure 13 Sub Model of Material Damage Variables in Industrial Building 

Construction Projects 
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evaluates the positive impact of qualified personnel on minimizing rework and is 

represented in Figure 14. 

 

  

Figure 14 Sub Model of Rework Variables in Industrial Building Construction 

Projects 
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Figure 15 Sub Model of Material Loss Variables in Industrial Building 

Construction Projects 
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Figure 16 Sub Model of Excessive Material Quality Variables in Industrial 

Building Construction Projects  

 

Consolidated Simulation Results 

The consolidated results of the system dynamics base model, which integrates 

outputs from all sub-model simulations, are presented in Figure 17 below. 
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projects. By integrating nine critical risk factors—such as material price volatility, 

distribution inefficiencies, and specification changes—into a dynamic feedback 

model, this study has illustrated the complex and interdependent nature of cost 

overrun mechanisms. The simulation results show that implementing preventive, 

corrective, and mitigation strategies significantly reduces actual project costs while 

balancing expenditure on risk management efforts. Furthermore, this approach 

offers a more nuanced understanding of cost overrun risks compared to 

conventional, static risk assessment methods. The developed model serves as a 

valuable decision-support tool for project managers and contractors, improving the 

accuracy of cost forecasting and enabling more effective risk control throughout the 

project lifecycle. Overall, this study underscores the relevance of system dynamics 

in modern construction risk management, particularly in industrial building projects 

where complexity and uncertainty are prevalent. 

While this study provides critical insights, further research is recommended to 

enhance and expand the model's applicability. First, future studies could incorporate 

real-time project data and external macroeconomic factors, such as global 

commodity price trends and supply chain disruptions, to improve model precision. 

Additionally, integrating advanced technologies like artificial intelligence and 

machine learning could enable automated risk identification and dynamic model 

recalibration, fostering adaptive decision-making in volatile project environments. 

Expanding this model to cover other sectors, such as infrastructure or residential 

construction, would also provide comparative insights into sector-specific cost 

overrun dynamics. Finally, conducting empirical validation of this model across 

diverse case studies and regions could further strengthen its generalizability and 

practical utility for industry practitioners. 
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