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Figure 1. Location of Lower Rio Grande Region and its land cover (Bai et al., 2021).

• Since 2002, prolonged droughts have led to:
- Significant reduction in snowmelt
- Reduction in surface water supplies
- Increasing pressure on groundwater

• Therefore, increasing the Resilience of these systems in
coping with climate change is vital.

• These challenge threatens the Water, Agriculture, and
Community Systems (WACS) in this region.

• Questions:

1- How to assess the resilience of the WACS?
2- How to enhance the resilience of the WACS?
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Resilience Definition and Theory

THE 40TH INTERNATIONAL SYSTEM DYNAMICS CONFERENCE
Virtually everywhere!

#isdc2022
THE 43RD INTERNATIONAL SYSTEM DYNAMICS CONFERENCE

Boston, Massachusetts, USA and Virtually

@systemdynamics_

#isdc2025

• Resilience is an inherently
complex concept within the
literature on Social-Ecological
Systems (SES).

• The diversity in theories and
definitions of resilience reflects
a broad range of assessment
approaches.

Figure 2. Evolution Path of Theories used for Resilience definition and application in SESs 
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Table 1. Summarizing the approaches to assessing resilience in SES.

• Assessment of resilience without
considering dynamic structure and
feedback loops often misses the
critical component of resilience.

• Many studies overlook the
dynamics and feedback loops in
the resilience assessment of
social-ecological systems (SES)

• System Dynamics
• Attractive basin theory & the Adaptive cycle 

We Applied:
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Resilience Definition and Theory

Figure 3: Ecological Resilience:
Resilience is the ability or capacity

of a system to absorb disturbances
and maintain its structure and
function before undergoing a
regime shift.

Figure 4. The adaptive cycle theory :
The adaptive cycle includes four phases: exploitation (r),
marked by rapid growth and resource abundance;
conservation (K), where growth slows and efficiency increases;
release (Ω), triggered by disturbance and system breakdown;
and reorganization (α), where new structures and
opportunities for adaptation emerge

Presenter Notes
Presentation Notes
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Framework: Function-Based Resilience Assessment

Figure 5. The framework of function-based resilience assessment for coupled Water–Agriculture–
Community Systems (WACSs).

• The water–agriculture–community
system (WACS) in the LRG is not
resilient in response to climate
change.

• Improving water conveyance
efficiency enhances the resilience of
WACSs in coping with climate change
in the LRG.

Hypothesis:

Presenter Notes
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System Dynamics Model

Fig 5:NMWRRI Offshoot SD model (Langarudi et al, 2019).
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• Resilience Assessment of WACSs – Attraction Basin Theory

a. Agricultural Income in UKMO climate scenario b. Agricultural Income changes in UKMO climate scenario

Figure 6. Agriculture Income  and its changes simulation under UKMO climate scenarios – after climate shock

Results

• The impact of precipitation changes on the resilience of the system was assessed in different climate scenarios, including UKMO, GFDL, and NCAR.  
• The imposed shock reflects a reduction ranging from 10% to 50% over a period of 10 years from 2025 to 2035
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The impact of precipitation changes on the resilience of the WACSs in the Lower Rio Grande was assessed in different climate scenarios, including UKMO, GFDL, and NCAR.  The imposed shock reflects a reduction ranging from 10% to 50% over a period of 10 years from 2025 to 2035. Figure 6 shows the simulated behavior of groundwater storage and agricultural income changes as selected functions of WACSs in response to the decline in precipitation.
After the shock, it initially bounces back to its previous trend in the baseline scenario, where there was no precipitation shock. Although this variable bounces back to its origin trend (Where changes is going to be zero), that trend is diminishing and does not behave in normal and desirable function. However, despite this partial recovery, the overall trend remains downward, which is inconsistent with expected or normal behavior (Figure A4d)
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• Resilience Assessment of WACSs – Attraction Basin Theory

a. Groundwater storage in UKMO climate scenario b. Groundwater storage changes in UKMO climate scenario

Figure 7. Groundwater Storage and its changes simulation under UKMO climate scenarios – after climate shock 

Results

Presenter Notes
Presentation Notes
The impact of precipitation changes on the resilience of the WACSs in the Lower Rio Grande was assessed in different climate scenarios, including UKMO, GFDL, and NCAR. . The imposed shock reflects a reduction ranging from 10% to 50% over a period of 10 years from 2025 to 2035. Figure 6 shows the simulated behavior of groundwater storage and agricultural income changes as selected functions of WACSs in response to the decline in precipitation.
After the shock, it initially bounces back to its previous trend in the baseline scenario, where there was no precipitation shock. Although this variable bounces back to its origin trend (Where changes is going to be zero), that trend is diminishing and does not behave in normal and desirable function. However, despite this partial recovery, the overall trend remains downward, which is inconsistent with expected or normal behavior (Figure A4d)



THE 40TH INTERNATIONAL SYSTEM DYNAMICS CONFERENCE
Virtually everywhere!#isdc2022

THE 43RD INTERNATIONAL SYSTEM DYNAMICS CONFERENCE
Boston, Massachusetts, USA and Virtually

@systemdynamics_
#isdc2025

Figure 8.  Dynamics of Groundwater Storage on the basis of adaptive cycle theory, model simulation on baseline 
scenario, UKMO

Results

• Resilience Assessment of WACSs – Adaptive Cycle Theory

Presenter Notes
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Strategy for improving WACS Resilience – Surface water Conveyance Efficiency Improvement

a. Agricultural Income in UKMO climate scenario b. Groundwater storage in UKMO climate scenario

Figure 8. Groundwater Storage and Agriculture Income simulation after improving conveyance efficiency in different climate scenarios including UKMO

Results
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Conclusions

• The varying outcomes across the MED, LOW, and HIGH climate scenarios illustrate
the sensitivity of WACSs resilience to climatic conditions and interventions.

• Groundwater storage generally benefited from increased surface water conveyance
efficiency, highlighting the potential of infrastructure improvements to mitigate
some hydrological risks. However, these benefits did not extend to the agriculture–
community function, which remained vulnerable across all scenarios.

• Our findings emphasize that resilience-building in WACSs requires a system
approach that addresses both environmental and socioeconomic dimensions.

• While the hydrological part of the system, represented by groundwater storage,
exhibited signs of resilience, under enhanced water conveyance efficiency, the
agricultural-community part consistently struggled to adapt or reorganize effectively
in response to climate shocks or efficiency improvements.
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