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Problem Statement

Since 2002, prolonged droughts have led to:
- Significant reduction in snowmelt
- Reduction in surface water supplies
- Increasing pressure on groundwater

These challenge threatens the Water, Agriculture, and
Community Systems (WACS) in this region.

Therefore, increasing the Resilience of these systems in
coping with climate change is vital.

Questions:

1- How to assess the resilience of the WACS?
2- How to enhance the resilience of the WACS?
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Figure 1. Location of Lower Rio Grande Region and its land cover (Bai et al., 2021).
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Resilience Definition and Theory )

Resilience is an inherently
complex concept within the
literature on Social-Ecological
Systems (SES).

The diversity in theories and
definitions of resilience reflects
a broad range of assessment
approaches.

y @systemdynamics_

#isdc2025

Evolution Pathof SES resilience paradigms and theories
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Figure 2. Evolution Path of Theories used for Resilience definition and application in SESs
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Resilience Definition and Theory )

Table 1. Summarizing the approaches to assessing resilience in SES.

¢ Assessment of resilience without

considering dynamic structure and Approach References

feedback IOOpS often misses the Indicator-Based Assessment (IBA) Lietal, 2020; Costa et al, 2023; Soriano et al., 2023; O'Connell et al., 2015

critical component of resilience. Early Warning Signs (EWS) Kaiser-Bunbury et al., 2017; Biggs et al,, 2018; Chuang et al,, 2018; Li etal,, 2020
Stakeholder Assessments Darnhofer etal, 2010; Carper etal, 2021

. Historical Profilin Bennett et al., 2005; Cumming et al., 2005
* Many studies overlook the 5 . L 3015 Lict il 200
. . TEess € a5 L1 el by
dynamics and feedback loops in v .Study S Fil f t al., 2016; Cly t al., 2018; Li etal, 2020
ops - atova et al., ; Chuang et al., » Lietal,
the resilience assessment of Multi-Agent Models 8
. . = : Talubo et al,, 2022; Noble etal., 2021; C tal, 2021

social-ecological systems (SES) Participatory Modelling o€ e S
D]_ffemntla]_ Equationg Todman et al., 2016, Ca.t‘per et aJ, 2021
Network.Based Appmach Zhang and Wang, 2023, Chenet al, 2019
Feedback-Based Approaches Herrera and Kopainsky; 2020; Oliveira et al, 2022; Zhang and Wang, 2023

We Applied:

e System Dynamics
* Attractive basin theory & the Adaptive cycle
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Resilience Definition and Theory

Figure 3: Ecological Resilience:
Resilience is the ability or capacity
of a system to absorb disturbances
and maintain its structure and
function before undergoing a
regime shift.
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Figure 4. The adaptive cycle theory :

The adaptive cycle includes four phases: exploitation (r),
marked by rapid growth and resource abundance;
conservation (K), where growth slows and efficiency increases;
release (Q), triggered by disturbance and system breakdown;
and reorganization (a), where new structures and
opportunities for adaptation emerge
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Framework: Function-Based Resilience Assessment

System Ffipaion Stakeholders
Definition

* The water—agriculture-community l
system (WACS) in the LRG is not
resilient in response to climate

Hypothesis:

Theorics Proxies for Resilience

assessment

change.
Exogenous and Endogenous
* Improving water conveyance WACS -— Ronods
—_ o System Dynamics (Cliet=Clones)
efficiency enhances the resilience of Mokl
WACSs in coping with climate change
in the LRG. l

WACS Resilience Assessment:
Attraction Basin Theory
Adaptive Cycle Theory

Figure 5. The framework of function-based resilience assessment for coupled Water—Agriculture—
Community Systems (WACSs).
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System Dynamics Model )
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D Results

* Resilience Assessment of WACSs — Attraction Basin Theory
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Figure 6. Agriculture Income and its changes simulation under UKMO climate scenarios — after climate shock

* The impact of precipitation changes on the resilience of the system was assessed in different climate scenarios, including UKMO, GFDL, and NCAR.
* The imposed shock reflects a reduction ranging from 10% to 50% over a period of 10 years from 2025 to 2035
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After the shock, it initially bounces back to its previous trend in the baseline scenario, where there was no precipitation shock. Although this variable bounces back to its origin trend (Where changes is going to be zero), that trend is diminishing and does not behave in normal and desirable function. However, despite this partial recovery, the overall trend remains downward, which is inconsistent with expected or normal behavior (Figure A4d)
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Results

* Resilience Assessment of WACSs — Attraction Basin Theory
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Figure 7. Groundwater Storage and its changes simulation under UKMO climate scenarios — after climate shock
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After the shock, it initially bounces back to its previous trend in the baseline scenario, where there was no precipitation shock. Although this variable bounces back to its origin trend (Where changes is going to be zero), that trend is diminishing and does not behave in normal and desirable function. However, despite this partial recovery, the overall trend remains downward, which is inconsistent with expected or normal behavior (Figure A4d)
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Results

Resilience Assessment of WACSs — Adaptive Cycle Theory
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Figure 8. Dynamics of Groundwater Storage on the basis of adaptive cycle theory, model simulation on baseline
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Results

Strategy for improving WACS Resilience — Surface water Conveyance Efficiency Improvement
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Figure 8. Groundwater Storage and Agriculture Income simulation after improving conveyance efficiency in different climate scenarios including UKMO
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Conclusions )

* The varying outcomes across the MED, LOW, and HIGH climate scenarios illustrate
the sensitivity of WACSs resilience to climatic conditions and interventions.

* While the hydrological part of the system, represented by groundwater storage,
exhibited signs of resilience, under enhanced water conveyance efficiency, the
agricultural-community part consistently struggled to adapt or reorganize effectively
in response to climate shocks or efficiency improvements.

* Groundwater storage generally benefited from increased surface water conveyance
efficiency, highlighting the potential of infrastructure improvements to mitigate
some hydrological risks. However, these benefits did not extend to the agriculture—
community function, which remained vulnerable across all scenarios.

* Our findings emphasize that resilience-building in WACSs requires a system
approach that addresses both environmental and socioeconomic dimensions.
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