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Abstract 

Rapid advances in Large Language Models (LLMs) have opened new possibilities for 

interpreting System Dynamics (SD) model outputs. This paper investigates whether LLMs can 

analyze SD output graphs—without access to underlying model structures—and generate 

coherent textual interpretations, exploring how LLMs may reveal causal relationships and 

feedback loops embedded in output graphs, and use it in combination with previous Artificial 

Intelligence (AI)-based tools that derived SD diagrams from textual data; streamlining an 

automated cicular modeling process. Two benchmark SD models were constructed in Vensim to 

produce output graphs. Three state-of-the-art LLMs were provided with a standardized prompt 

instructing them to interpret the graphs. Their responses were then evaluated by SD experts and 

analyzed via the TOPSIS method. LLMs demonstrated a promising ability to interpret SD output 

graphs. The generated interpretations successfully identified key system feedback loops and 

suggested causal relationships, enabling a reverse-engineered depiction of the original model’s 

structure. However, the approach remains exploratory, with current outputs reflecting both 

potential and limitations. Future research should refine prompting strategies and evaluation 

methods and explore integrating LLM-driven analysis directly into SD software to enhance 

practical analytical workflows. 

paper, considering the significant shifts in customer preferences, the need to investigate 
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1. Introduction 

The rapid advancements in artificial intelligence, particularly in the development of large language 

models (LLMs) and their reasoning capabilities, have opened new avenues for cross-disciplinary 

applications. This paper explores the promising prospect of leveraging reasoning variations of 

LLMs to analyze and interpret output graphs from System Dynamics (SD) models. Such an 

approach is driven by the potential to automate complex analytical tasks traditionally performed 

by expert system dynamicists, fostering educational use and offering a means to cross-validate 

human analysis. 

SD models, often implemented in simulation software like Vensim, are pivotal for understanding 

the intricate behavior of complex systems. These models typically generate output graphs—such 

as time-series representations of populations or resource flows—that encapsulate the dynamic 

interplay of system variables. While experts are skilled in deciphering these graphs, early career 

practitioners and students frequently encounter challenges grasping the underlying dynamics. The 

ability to automate the analysis of such graphs not only enhances learning but also provides an 

efficient tool for preliminary assessments in research and practice. 

In this study, we focus on a unique experimental setup where the underlying structure of the SD 

models, such as the Stock-Flow Diagrams (SFDs) used in Vensim, remains hidden from the LLMs. 

Instead, only the resulting output graphs (e.g., population trends over time) are provided as input. 

This design tests the models’ ability to independently interpret the graphs, draw conclusions about 

the system’s behavior, and potentially reverse-engineer the model structure—inferring causalities 

and feedback loops typical of Causal Loop Diagrams (CLDs) or SFDs. 

The primary research objective is to evaluate the capabilities of LLMs in interpreting these visual 

outputs. The investigation centers on answering whether and how effectively these models can 

analyze graph-based data and whether they can reconstruct or explain the dynamics that generated 

them. 

Comparing different responses is crucial for identifying the most effective version of an LLM’s 

output. This evaluation process encompasses various forms of content, including textual and visual 

elements, among other types (Pagano et al., 2025). An experimental methodology was 

implemented to assess performance, involving designing and distributing a detailed questionnaire 

to experts in SD. Their evaluations were then used to score the LLMs based on four key criteria: 

accuracy, clarity and readability, comprehensiveness, and creativity. The collected data were 

subsequently analyzed using a Multi-Criteria Decision Making (MCDM) approach, specifically 

the TOPSIS method, to provide a robust, comparative assessment of the models. 

This paper addresses these research questions and contributes to the emerging dialogue on the 

intersection of AI and SD. It highlights the potential for advanced LLMs to be utilized to develop 

AI assistants that can understand, analyze, interpret, and explain SD models of complex dynamic 



systems and their outputs and serve as educational aids and validation tools in professional 

practice. 

On the other hand, while Veldhuis et al. (2024) have shown how natural language processing 

(NLP) can help with SD modeling by identifying causal relationships in text, a more recent study 

by Hosseinichimeh et al. (2024) directly investigated the potentials of LLMs to automate the 

creation of causal loop diagrams by developing a framework which receives narrative textual data 

and after synthesizing it for causal relations, draws the CLD of the hypothetical SD model which 

that input text was supposedly its description. Following these efforts, alongside ever-increasing 

applications of AI and particularly LLMs, the reverse of the same path (vice versa), which can 

serve as the missing link in the cycle of the modeling process and its automation (and beyond), 

sounds very appealing, yet unexplored. 

The final part of this study will assess the practicality and viability of such attempts by developing 

a framework to streamline the modeling process. The findings of this study are expected to pave 

the way for future research on integrating AI-driven analytical methods in various domains where 

dynamic modeling plays a critical role. 

 

2. Background 

Wang et al. (2024) explored the use of LLMs in generating expressive robot behavior in 

conversations, showcasing the integration of LLMs into social robots to enhance dynamic and 

expressive interactions. This application of LLMs in generating robot responses with personality 

congruence highlights the potential for utilizing LLMs in interpreting outputs of system dynamic 

models for enhanced communication and interaction.  

Zheng et al. (2022) investigated quantized guaranteed cost output feedback control for nonlinear 

networked control systems, emphasizing the use of quantized control inputs for improved 

performance. Liu and Keith (2024) introduce and test a method for automating the translation of 

dynamic hypotheses into CLDs using LLMs combined with designing prompting strategies, while 

Hu (2025) presents a method to integrate system dynamics models into ChatGPT-4, enabling users 

to interact with and simulate complex models through natural language . 

 



3. Methods and Material 

3.1. Experiment’s Design 

In the initial phase of this study, two SD models were developed based on their benchmark status 

and recognition within the field. The first is a predator-prey system1, while the second represents 

a SEIRD2 model. Both models were constructed using Vensim software (Figures 1-2). This step 

served as the foundation of the methodology, as the output diagrams (Figures 3-4) generated in 

this phase were essential for the subsequent steps. 

 

Figure 1. SFD of the Predator-prey model (model 1) 

 
1 Based on Lotka–Volterra equations 
2 Acronym for susceptible, exposed, infectious, recovered, and dead 



 

Figure 2. SFD of SEIRD model (model 2) 

 

Figure 3. Output graph of the predator-prey model (graph 1) 



 

In the next phase, three state-of-the-art artificial intelligence models were selected based on their 

advanced reasoning capabilities and ability to process and analyze images. An important selection 

criterion was the ability to interpret visual data. The AI models employed in this research were 

OpenAI’s  o1, Anthropic’s Claude 3.7 Sonnet, and Google’s Gemini 2 Flash Thinking (Exp), 

which, for convenience, from now on will be called o1, Claude, and Gemini, respectively. 

Following this selection, a Python-based implementation was developed to integrate these AI 

models and prepare them for processing images and generating textual analyses (for technical 

details, see Appendix 1). A standardized instruction was provided to all models as a prompt to 

ensure consistent and precise responses: 

You are a System Dynamics expert, and your task is to interpret System 

Dynamic models’ output graphs and draw conclusions from them. Describe the 

graph and explain its dynamics, causalities, and loops. 

 

This prompt was crafted to guide the AI models in analyzing the diagrams effectively, extracting 

key trends, and generating coherent and structured textual responses. The results can be seen in 

Appendix 2. 

 

3.2. Data Acquisition 

The questionnaire consisted of twelve declarative statements categorized under four evaluation 

criteria, each broken down into three sub-criteria. These statements were arranged in rows, while 

the columns represented the outputs of the three AI models under evaluation. This structure created 

a response framework where participants could provide their assessments using a discrete 

Figure 4. Output graph of the SEIRD model (graph 2) 



numerical scale with regard to four main evaluation criteria: ‘accuracy,’ ‘clarity and readability,’ 

‘comprehensiveness,’ and ‘creativity’ (for more details on the questionnaire, its questions, and its 

reliability and validity, see Appendix 3). 

The questionnaire was then distributed among a population of SD experts ranging from graduate 

students and practitioners to professors. Each participant received a brief explanation of the study 

and evaluation framework; however, the names of the AI models were deliberately omitted to 

prevent potential bias in responses. 

Once all responses were collected, the completed questionnaires were compiled into a final dataset, 

which served as the basis for evaluating both the AI models and the predefined criteria. Here, the 

study advanced to the evaluation of AI models using Multi-Criteria Decision-Making (MCDM) 

methods. This phase enabled a structured assessment of the AI-generated textual analyses, 

ensuring a rigorous comparative evaluation of their performance in interpreting SD models 

(Sajjadian et al., 2025). 

Following the initial analysis of the collected survey data, it was observed that approximately 64% 

of participants assigned the highest average score to Claude. Additionally, 22% of respondents 

believed that o1 outperformed the other two AI models, while 14% considered Gemini to be the 

best-performing model. 

 

3.3. Evaluating LLMs 

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is a widely 

used Multi-Attribute Decision-Making (MADM) technique that ranks alternatives based on their 

proximity to an ideal solution and distance from an anti-ideal solution (Hwang and Yoon, 1981). 

This method is particularly suitable for ranking Large Language Models (LLMs) according to 

specified criteria, as it provides a systematic and expert-driven approach to decision-making. 

Below, we outline the steps involved in applying the TOPSIS method for ranking LLMs.  

The first step involves aggregating all the survey matrices obtained from experts into a single 

decision matrix. Suppose we have a decision matrix of size 𝑚 × 𝑛  , where 𝑚 represents the 

number of LLMs (alternatives), and 𝑛 represents the number of evaluation criteria. For example, 

a 3 × 4 matrix could represent 3 LLMs evaluated against four criteria. 

The decision matrix is normalized using the Euclidean norm to eliminate the influence of different 

scales among criteria. The normalized value 𝑟𝑖𝑗 for each element in the matrix is calculated as: 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 

The normalized matrix is then weighted by multiplying each normalized value by the 

corresponding weight of the criterion. The weights are determined using the entropy method 



(Shannon, 1948), which is used to calculate the weights of the criteria based on the degree of 

uncertainty or information content in the data. It is carried out in four steps. 

I) Normalization of the decision matrix: 

The decision matrix is normalized using the simple normalization method: 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 

II) Calculation of the constant: 

The constant 𝑘, which depends on the number of alternatives 𝑚, which in this case is equal to 3, 

is calculated as: 

𝑘 =
1

ln(𝑚)
 

III) Calculation of entropy 𝐸𝑗 each criterion: 

𝐸𝑗 = −𝑘 ∑ 𝑝𝑖𝑗

𝑚

𝑖=1

ln(𝑝𝑖𝑗) 

IV) Calculation of weights 𝑤𝑗 for each criterion (demonstrated in Table 1): 

𝑤𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

 

where 𝑑𝑗 = 1 − 𝐸𝑗 and represents the degree of certainty associated with the 𝑗 criterion. 

 

 

The weighted normalized matrix is constructed by multiplying the normalized values 𝑟𝑖𝑗 by their 

corresponding weights 𝑤𝑗: 

𝑣𝑖𝑗 = 𝑤𝑗 ∙ 𝑟𝑖𝑗 

The ideal solution  𝐴𝑗
+ (maximum value for benefit criteria and the minimum value for cost criteria) 

and the anti-ideal solution  𝐴𝑗
− (minimum value for benefit criteria and the maximum value for 

 Accuracy Clarity and 

Readability 

Completeness Creativity and 

Insightfulness 

𝒘𝒋 0.3041 0.3429 0.0724 0.2804 

Rank 2 1 4 3 

Table 1. Weights of criteria 



cost criteria) are used in calculating the separation measures  𝑠𝑖
+  and  𝑠𝑖

−  for each alternative are 

calculated using the Euclidean distance: 

𝑠𝑖
+ = √∑(𝑣𝑖𝑗 − 𝐴𝑗

+)

𝑛

𝑗=1

2

 

𝑠𝑖
− = √∑(𝑣𝑖𝑗 − 𝐴𝑗

−)

𝑛

𝑗=1

2

 

The relative closeness  𝐶𝑖 of each alternative to the ideal solution is calculated as: 

𝐶𝑖 =
𝑆𝑖

+

𝑆𝑖
+ + 𝑆𝑖

− 

The alternatives (LLMs) are ranked based on the values of 𝐶𝑖 (Table 2). The LLM with the highest 

𝐶𝑖 value is considered the best. 

 

The primary objective of this ranking process was to determine which AI model most closely 

resembles human-like analytical capabilities when interpreting SD models. For details and 

technical implementation, see Appendix 4. 

 

LLMs Rank 

Claude 1 

o1 2 

Gemini 3 

Table 2. LLMs' ranks and weights 



3.4. Closing the Loop 

Now that the capability of LLMs in explaining and describing SD models’ outputs have been 

assured, attempts to close the loop and streamline the automated modeling process can be made. 

Utilizing the bot designed by Hosseinichimeh et al. (2024) and considering its scope, which is only 

to produce CLD, it is first necessary to derive the CLD of one of the models that were implemented 

in the initial phase. To this end, and to keep the evaluation simple, the first model’s (predator-pray) 

CLD was derived from it, as can be seen in Figure 5.  

 

Next, another prompt should be engineered, aiming to get a fully covering explanation of the model 

from the LLM: 

The graph is the output of a System Dynamic model. Based on this output, 

explain the hypothetical structure of the initial model by describing its 

Causal Loop Diagram. 

Your explanation should include all variables, their causal relations, and 

their polarities so that anyone could recreate the Causal Loop Diagram that 

produced the output graph. 

Make sure that your response contains a list of all hypothetical variables, 

existing causal relation between each pair of variables, and the polarity 

of the links. 

 

Figure 5. Predator-prey model's CLD 



Continuing with Claude as the best LLM for the purpose of analyzing SD outputs and feeding it 

with the new prompt (but the same graph as the initial phase, i.e., Figure 3), a comprehensive 

report was generated (see Appendix 5) that was directly passed to Hosseinichimeh et al. (2024)’s 

bot (slightly modified to utilize the more recent version, GPT-4.5 Preview), the result can be seen 

in Figure 6 (after redrawing in Vensim due to low quality of PyGraphviz’s outputs). 

 

Figure 6. CLD generated by Hosseinichimeh et al. (2024)’s bot (red color indicates elements that did not exist in the reference 

graph) 

Apart from remarkable visual similarity and success in reverse engineering, the main model 

structure and polarities completely match; an objective evaluation of the seamless automated 

process can be seen in Table 3. 

 

 

 

 

4. Results and Conclusion 

The findings suggest that certain AI models can effectively analyze SD models at a level 

comparable to domain experts, providing detailed insights that could facilitate the reconstruction 

of SD models based on textual interpretations. 

Another key insight derived from the survey data was obtained using the Entropy method in 

MCDM, which assigned a weight to each evaluation criterion. The results indicated that clarity 

and readability were the most important factors, followed by accuracy, with respective weights of 

  Links Loops Variables 

Reference 10 5 6 

Bot’s output 12 5 7 

Table 3. Comparing the performance of the automated process against the reference model 



0.342 and 0.304. Notably, Claude demonstrated the highest performance across all evaluation 

criteria. Moreover, with an overall average rating of 3.73 out of 5, this study demonstrates that AI-

driven textual interpretations of SD models can serve as a valuable complement to SD research. 

Most importantly, it was shown that the application of AI and LLM is two-way and can operate in 

each direction, either from textual description to CLD and SD model structure or vice versa, from 

visual outputs of the SD model to textual interpretation and CLD description, thus, going beyond 

the defined limitations of human-involved SD modeling. 

For future research, additional evaluation criteria and a broader range of AI models could be 

considered. Furthermore, integrating AI-powered analysis directly into SD modeling software 

(e.g., Vensim) could enhance its functionality. This integration would allow users to receive real-

time AI-generated interpretations immediately after executing an SD model, thereby improving 

analytical workflows in the field. 
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