LunaSim Copilot: An Integrated Al Assistant for
System Dynamics Modeling

William J. Park*, Karthik S. Vedula*', Ishan Khetarpal, Mark R. Estep

Poolesville High School, Poolesville, MD, USA

*Equal Contribution. TCorresponding Author: karthik@vedula.me

Abstract
Introduction: System dynamics (SD) modeling is the process of understanding
and representing various elements of a complex system. While many SD model-
ing software facilitate this kind of process, the integration of an Al assistant into
these software for expediting the creation and editing of these models is relatively
underexplored.
Approach: We developed LunaSim Copilot, a chat-based Al assistant that is in-
tegrated into our SD modeling software LunaSim. We evaluated four large language
models (LLMs) as the models behind this Al assistant. These LLMs were tested
on five tasks on generating SD models (increasing in difficulty) and were graded on
rubrics we created.
Results: OpenAl’s 03-mini performed the best, with an average score of 94.6%
(std. dev 8.4%). Claude 3.7 and Deepseek-R1 also had average scores over 90%
(90.6% and 91.3%, respectively).
Discussion: In addition to accuracy, our evaluation rubrics included assessment of
LLMs’ ability to output with correct formatting and clear stock/flow /variable place-
ment. High scores from LLMs suggest the practical usability of them as assistants

in SD modeling.
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1. Introduction

System dynamics (SD) modeling involves visually representing the components of a com-
plex system—often mirroring real-world processes—and simulating their interactions to
predict how the system evolves over time. A key approach is stock-and-flow diagrams,
where stocks represent accumulative elements, while flows control their changes. Vari-
ables/converters help group calculations performed at each timestep for clarity, and in-
fluences/connectors use arrows to indicate relationships between elements. SD modeling

software facilitates this entire design process.



Recently, artificial intelligence, specifically large language models (LLMs) have been in-
corporated as assistive technologies within the software development programs. Examples
include GitHub Copilot on Visual Studio Code and Amazon Codewhisperer (‘Code-
Whisperer’, n.d.; ‘GitHub Copilot’, 2025). LLMs specialized in generating computer
programs have also been developed, such as Code Llama and Codestral (‘Codestral’,
2024; Roziere et al., 2024). These tools have significantly increased the productivity of
the user of these software development programs. The integration of such kinds of LLMs
into the SD modeling development environment, however, is underexplored.

Natural language processing has been applied for information extraction in order to
generate SD diagrams (causal loop diagrams, stock and flow models, etc). This includes
COATIS, which used causal verb patterns to identify causal relationships (Garcia, 1997);
Chan & Lam (2005) also explored causation relation extraction from natural language
text. Hosseinichimeh et al. (2024) used LLMs to construct causal loop diagrams from
given textual data. Some studies evaluated the ability of LLMs to act as assistants aiding
a user creating a SD model. Akhavan & Jalali (2024) evaluated the use of ChatGPT in
the creation of SD models starting from the problem definition to the final model and
analysis. Liu & Keith (2024) also evaluated LLMs on the ability of generating SD models.
However, these studies do not feature these LLM-assistants integrated into SD modeling
software; rather, they interface with LLMs externally.

Additionally, with the recent developments of reasoning models such as OpenAl’s 03-
mini and DeepSeek’s R1, LLMs have the potential to perform even better on SD modeling
tasks (DeepSeek-Al et al., 2025; ‘OpenAl 03-mini’, n.d.). Reasoning ability enables LLMs
to tackle problems in multiple steps, which can possibly be beneficial for the complex
nature of the task of creating SD models. Therefore, this paper includes these models as
well to assess their performance.

We make the following key contributions:

1. We introduce an Al-powered assistant, LunaSim Copilot, directly integrated into
our system dynamics modeling software LunaSim (Vedula et al., 2024), enabling

seamless Al-assisted model generation and editing (see Figure 1).

2. We test this Al assistant on five system dynamics examples, assessing its ability to

interpret and generate stock-and-flow models.

3. We evaluate four state-of-the-art LLMs as models behind the Al assistant, including
two reasoning models, comparing their accuracy and reasoning ability in assisting

system dynamics modeling.
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Figure 1: Screenshot of LunaSim Copilot. Left window: User-editable model editor.
Right window: chat interface for accessing LunaSim Copilot.

2. Methods

2.1 Software Architecture

LunaSim Copilot is integrated into our SD modeling software called LunaSim. LunaSim is
a web-based SD modeling software for creating, simulating, and visualizing stock and flow
diagrams. Since LunaSim is web-based, LunaSim Copilot interacts with LLMs through
web APIs. Given a user instruction (e.g. “create a stock and flow model for modeling
amoeba growth”), the instruction and the LLM system prompt (which informs the LLM
of its objective and gives context on how to generate stock and flow models in regards to
rules and formatting) are sent to the LLM. The LLM then outputs the new SD model
in the LunaSim file format (including specifying equations of different stocks, flows, etc)
and the new model is loaded into the LunaSim application. Figure 2 displays an overview
of this architecture.

The LLM has access to the entire chat history, allowing the user to reference previous
instructions and model outputs in new instructions. Therefore, LunaSim Copilot can
aid in the generation of SD models from scratch or edit existing SD models as per user
instruction. Note that since LunaSim Copilot is built on top of LunaSim, the user has

full access to LunaSim’s features (SD model editing, equations, visualization).
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Figure 2: Architecture of LunaSim Copilot. The user provides an instruction to the
LLM on what changes or model generation must be made. The instruction along with
the current model details is sent to the LLM. The LLM returns a new model conforming
to this new instruction, and the new model is loaded back into the application.

2.2 Experimental Setup

2.2.1 LLMs Tested

We evaluated a total of four LLMs: OpenAl 03-mini, OpenAl GPT-40, Deepseek-R1,
and Anthropic Claude 3.7 Sonnet (with no reasoning enabled), of which OpenaAl 03-
mini and Deepseek-R1 are reasoning models (‘Claude 3.7 Sonnet and Claude Code’, n.d.;
DeepSeek-Al et al., 2025; ‘Hello GPT-40’, n.d.; ‘OpenAl 03-mini’, n.d.). All models were
used with the default hyperparameters.

2.2.2 SD Model Generation

Each of the four LLMs were evaluated on five tasks. These tasks required the LLM to
generate the SD model schema (according to the LunaSim model format) given a request

from the user. These SD models were the following:

o Algae growth: simple logistic regression model

 Hooke’s law: oscillating spring with weight on the end pulled by gravity



» Projectile motion: 2D model of a projectile factoring in air resistance

o Trebuchet: simulates a see-saw-like catapult using rotational motion, as outlined
in Vedula et al. (2024)

o Binary stars: simulates the trajectories of two planetary objects that exert a

gravitational force on each other, as outlined in Vedula et al. (2024)

The LLM was required to generate the SD model from scratch, based only on the given
system prompt and the user instruction, i.e., it did not have an existing SD model to build
from. LLM outputs were evaluated using rubrics created for each kind of SD model task
(see Table C1 for a sample rubric). Each rubric consisted of a general section and the
SD model-specific section. The general section assessed the validity of the LLM output:
whether it correctly outputs into LunaSim’s (JSON-based) expected format. This not
only includes whether the SD model loads into LunaSim, but also whether the SD model
follows the rules of system dynamics (e.g. influences cannot point into stocks). Table C2
illustrates the process of creating general sections.

The SD model-specific section evaluated the accuracy of LLM output with respect to
an exemplar SD model for that particular scenario. The presence of specific elements (e.g.
a stock representing z-position for the projectile motion scenario) are evaluated. Accuracy
of corresponding equations for each of these elements is also assessed. The totals for both
parts of these rubrics were calculated and compared among different LLMs. Rubrics are

included in Appendix C.

3. Results

Table 1 displays the performance of the LLMs on the five tasks. 03-mini had the highest
average score of 94.6% along with the lowest standard deviation of 8.4%. While GPT-
40 performed decent on the simple Algae growth and Hooke’s law examples, it severely
underperformed on the other three (more complex) scenarios. Claude 3.7 and 03-mini
performed significantly better on all of the five scenarios, while Deepseek-R1 struggled
with the Trebuchet SD model task. Three of the four models (all except GPT-40) per-
formed the lowest on the trebuchet task. Claude 3.7 and 03-mini were the two models
that achieved perfect scores, with Claude 3.7 acing the Algae growth and Binary stars
tasks and o3-mini acing Algae growth and Hooke’s law tasks. Specific model scores,

visualizations of SD models, and summaries on missed points are in Appendix A.



Table 1: LLM performance on each task based on the rubrics. Values are percentage
correct, with rubrics assessing whether the LLM output adheres to SD modeling rules
and whether the LLM output is in the valid format.

Accuracy (% of total points from rubric)

SD Model GPT-40 | Claude 3.7 | 03-mini | Deepseek-R1
Algae growth 84.1 100.0 100.0 97.7
Hooke’s law 88.2 90.2 100.0 94.1
Projectile motion 46.4 76.8 97.1 100
Trebuchet 58.0 86.0 80.0 67.0
Binary stars 57.3 100.0 95.8 97.9
Average: 66.8 90.6 94.6 91.3
Std. Deuv: 18.3 9.9 84 13.8

4. Discussion

Our study highlights the promising capability of LLMs in assisting in SD modeling.
Claude 3.7, 03-mini, and Deepseek-R1 particularly displayed significant capability of gen-
erating SD models given high-level user instructions. These LLMs illustrated the ability
to discern the kind of element (stock, flow, variable) a given component of a simulation
should be, since the prompts given to them did not mention the specifics of the types of
elements each component should be. LLMs also displayed the ability to predict interme-
diate components of the SD model scenarios: components that were neither the input nor
output elements outlined by the prompts.

Despite reasoning models being intended for excelling at multi-step problems such as
generating SD models, Claude 3.7 (which was run without reasoning mode) had compar-
able performance to the two reasoning models: 03-mini and Deepseek-R1. Additionally,
the trebuchet SD model proved more difficult for the three models than the binary star
system. This might be due to the fact that the trebuchet model contained less stocks-
and-flow relationships, rather having more complex equations underlying those limited
stock-and-flow relationships. This is in contrast with the binary star model, which had
many more stock-and-flow relations but with simpler equations. The improved perform-
ance on the binary star system from these LLMs suggests that SD models that are more
broken down to simpler components (as is the objective of SD) are easier for LLMs to
create.

This study, by evaluating these LLMs through the LunaSim Copilot framework, as-
sessed not only the ability of LLMs to “think” in terms of SD, but also the practical
ability of them to output in a usable (i.e. directly loadable, visually clear) SD format.
Since our rubrics contained evaluations of whether the model loads correctly and qual-
ity of element positioning, this study illustrates the ability for LLMs to assist SD model

generation seamlessly through direct integration into a SD modeling software.



4.1 Limitations
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Figure 3: Example of incoherent element placement.

Our study faces certain limitations. LLMs inherently do not have the ability to visualize
the placement of stocks and flows (which was evaluated through assessing position quality
of LLM-generated models in this study), hindering the visual organization of SD models.
This can lead to some cases where LLM-generated SD models are jumbled (as seen in
Figure 3). However, many of these cases are easily resolved through user intervention by
dragging the elements around in LunaSim.

The evaluation rubric used in this study may not always capture the full spectrum of
model quality, potentially affecting assessment reliability. Specifically, the point weights
in the rubric are not definitive, as SD model quality (apart from whether the model yields
the same values) is subjective. In addition, the study focuses on four LLMs, which can
be expanded to include other models as well. The majority of test models are of physics-
based situations, leading to whether these kinds of LLMs can reason on other domains
(social sciences, finance, etc.) being an open question. Finally, this study does not utilize

multiple human evaluators of SD models.

5. Conclusion

Ultimately, this study underscores the potential of the use of LLMs as integrated assistants
in SD modeling software. LLMs illustrated the ability to create SD models that can be



directly loaded into our SD modeling software LunaSim. This suggests the practical
nature of using these LLMs as aides in SD model generation, paving the way for broader

integration of Al models in the SD modeling process.

Code & Data Availability

Repository: The code & supporting data for LunaSim Copilot can be found at https:
//github.com/oboy-1/LunaSimCopilot. The code includes LunaSim with the LunaSim
Copilot features.

Models: SD models used as keys and models generated by the LLMs can be found under
the results directory in the repository.

Rubrics: All rubrics and detailed scores are in fullResults.pdf under the results

directory in the repository. Sample rubrics and scores are in the Appendix sections A and

C.
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Appendix
A. SD Model & Score Detalils

A.1 Algae Growth

Prompt: Create a model to simulate the growth of an algae colony using a logistic growth

curve. Add a carrying capacity, initial population, and a coefficient of growth.

capacity coeff
O O

initial

NS e > |

popFlow population
Figure Al: Algae SD Model (key used for comparison with LLM outputs)

Table Al: Subscores for Algae Growth Model

Criteria \ GPT-40 \ Claude 3.7 \ 03-mini \ Deepseek-R1 \ Max Points
General Rubric
Output Integrity 5 5 5 5 5
Names 5 5 5 ) )
Flows 1 1 1 1 1
Variables 3 3 3 2 3
Positioning 2 4 4 4 4
SD model-specific rubric
Initial Conditions 6 6 6 6 6
Relationships 15 20 20 20 20
Summary
Total \ 37 \ 44 \ 44 \ 43 \ 44
Comments:

e GPT-40: A bit messier than 03-mini but got the main components correct

e Deepseek-R1: Initial population hardcoded

A.2 Hooke’s Law

Prompt: Create a model for the oscillating motion of a block on a spring according to
Hooke’s law. Initial variables should be starting position, mass, and the spring constant.

The block originally starts at rest.

10
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Figure A2: Hooke’s Law SD Model (key used for comparison with LLM outputs)

Table A2: Subscores for Hooke’s Law Model

Criteria \ GPT-40 \ Claude 3.7 \ 03-mini \ Deepseek-R1 \ Max Points
General Rubric
Output Integrity 0 5 5 5 5
Names 5 5 5 ) )
Flows 2 2 2 2 2
Variables 2 3 3 2 3
Positioning 4 4 4 2 4
SD model-specific rubric
Initial Conditions 6 6 6 6 6
Relationships 26 21 26 26 26
Summary
Total | 45 | 46 | 51 | 48 \ 51
Comments:

e GPT-40: Included comments in JSON which made the file invalid. Hardcoded

initial position.
e Claude 3.7: Almost perfect besides minor issue in position equation.

o Deepseek-R1: Bad positioning & hardcoded start position. Correct numerical

output however.

A.3 Projectile Motion

Prompt: Create a model for 2D projectile motion. Initial variables should be start-

ing position, mass, and angle. Incorporate a drag coefficient that affects acceleration

11



proportional to velocity.
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Figure A3: Projectile SD Model (key used for comparison with LLM outputs)

Table A3: Subscores for Projectile Motion Model

Criteria \ GPT-40 \ Claude 3.7 \ 03-mini \ Deepseek-R1 \ Max Points
General Rubric
Output Integrity 5 5 5 5 5
Names 5 5 5 ) )
Flows 1 4 4 4 4
Variables 5 7 7 7 7
Positioning 2 4 2 4 4
SD model-specific rubric
Initial Conditions 8 14 14 14 14
Relationships 6 14 30 30 30
Summary
Total | 32 [ 83 | 67 | 69 69
Comments:

o« GPT-40: Failed to split initial conditions into x-y components. Flows were drawn
from stocks (incorrect) instead of creating a cloud source element. Correct equation

but incorrect flow origin.

« Claude 3.7: Notably, used angles in degrees and converted to RAD for flow /stock
equations. Drag coefficient equation was incorrect which led to incorrect numerical

results. However, excellent model structure.

12



e 03-mini: All equations and relationships perfect, spacing of elements could be

better however

A.4 Trebuchet

Prompt: Create a model that simulates the movement of a trebuchet. The arm of
the trebuchet can be simulated by a line segment that rotates around a fixed point.
Initial variables include the length and mass of the portion of the trebuchet arm with
the projectile and the length and mass of the portion of the trebuchet arm with the
counterweight. The mass of the projectile and the counterweight are also initial variables.
Finally, include the starting angle of the trebuchet as a variable. Other constants such as
gravity should also be stored as variables. The output stocks/variables for the simulation
should be: beam angular speed & angular acceleration, the launch velocity (speed &
angle components) of the projectile at any given moment. Make an appropriate element

for each of these. Any other helper nodes or elements can be created if necessary.

O [ ]« ¢ >

Beam Omega

Initial Angle Beam Angle Q
Linear Velocity LAUNCH
[ e———{]
O Beam Omega Stk Beam Alpha
Phi Angle LAUNCH O
Q Beam Inertia

Torque

O O

CW Arm i.ength O O Projectile Arm Length

CW Arm Mass O O Projectile Arm Mass
Counterweight Mass
: 9 O Projectile Mass
Acceleration Gravity

O O

$Beam Inertia $Torque

Figure A4: Trebuchet SD Model (key used for comparison with LLM outputs)
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Table A4: Subscores for Trebuchet Model

Criteria \ GPT-40 \ Claude 3.7 \ 03-mini \ Deepseek-R1 \ Max Points
General Rubric
Output Integrity 5 5 5 5 5
Names 5 5 5 ) )
Flows 0 2 2 2 2
Variables 8 10 10 7 10
Positioning 2 4 4 2 4
SD model-specific rubric
Initial Conditions 16 16 16 12 16
Relationships 16 44 38 34 58
Summary
Total | 58 | 8 | 80 | 67 | 100
Comments:

o GPT-40: Failed to recognize the difference between when to use a stock or variable
for output. No angle stock. Incorrect flow origins, no clouds. Treated trebuchet arm
as a point mass rather than a rotating bar for inertia. Did not incorporate angle
or trebuchet arm into torque. Failed to establish a relationship between angular
acceleration, angular speed, and angular position. Failed to differentiate between

projectile launch angle/speed and beam angular speed.

e Claude 3.7: Treated trebuchet arm as a point mass at the same location as the
projectile/counterweight rather than a rotating bar for inertia. Did not incorporate

trebuchet arm into torque. Very close to the answer key.

e 03-mini: Very impressive performance with logical element placement. The model
failed to incorporate the weight of the trebuchet arm into either torque or inertia,
causing inaccuracies in the final output model. The model also used Math.sin in-
stead of the correct Math.cos in torque calculations. However, there is a significant

similarity between the model produced by the AI and the answer key model.

o Deepseek-R1: Failed to incorporate the mass of the trebuchet arm into any com-
ponent of the model. Treated the trebuchet as a simple “two-point” system and
ignored the trebuchet arm itself. Failed to create the requested launch angle output

variable.

A.5 Binary Stars

Prompt: Create a model that simulates a binary star system in space. Initial variables
should specify the masses of each star. The starting x and y-positions and starting x and
y-velocities of each star can be hard-coded into the initial values of the relevant stocks.
The two stars should move and orbit around each other, and the only force acting on

either star should be the force of each star’s gravity on the other. Any other constants
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should be stored in variables. Create intermediate variables storing the force of gravity
on each star (x-y components), the acceleration of each star (x-y components), and the

distance between the two stars (overall & x-y components) at any given time.
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Figure A5: Binary Stars SD Model (key used for comparison with LLM outputs)

Table A5: Subscores for Binary Stars Model

Criteria ‘ GPT-40 ‘ Claude 3.7 ‘ 03-mini ‘ Deepseek-R1 ‘ Max Points
General Rubric
Output Integrity 5 5 5 5 5
Names 5 5 5 5 5t
Flows 2 8 8 8 8
Variables 12 12 10 10 12
Positioning 2 4 2 4 4
SD model-specific rubric
Initial Conditions 12 12 12 12 12
Relationships 17 50 50 50 50
Summary
Total | 55 [ 9% | 92 | 94 \ 96
Comments:

e GPT-40: Equations seem correct but the model fails to understand how flow re-
lationships connect related elements or how the variables should interact with each
other. Understands the principles behind a binary star system but fails to correctly

integrate them into a new scenario.

e 03-mini: Output exactly matches the answer key, very impressive. Struggles with
positioning of elements graphically. Failed to create the requested output variables

for Fgg.
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o Deepseek-R1: Matches output model exactly, good spatial reasoning when placing

elements. Failed to create the requested output variables for Fi.

16



B. System Prompt

Below is the system prompt given for all LLMs.

You are a helpful assistant acting as a copilot on a system dynamics
application called LunaSim. The internal file format of LunaSim is a

JSON, which you will be editing upon user request.

Rules for Stock-and-Flow Models in System Dynamics
Stock-and-flow models are a fundamental framework in system dynamics used
to represent accumulations (stocks) and their rates of change (flows)

. Below are key rules to follow when constructing such models:

1. Labels and Keys
* Almost all elements (with the exception of influences & clouds) have a

"label" field. This field serves as a unique identifier for the

element in the equation editor, and such proper conventions should be

followed.

* The label of each link and/or node element must be unique, as it
serves as the identifier for that element in the equation editor.
Particularly, a node cannot have the same label as another node OR

link, and similarly for a link.

* Use camelCase naming conventions for elements, to avoid confusion in

the equation editor. Do not use blank element labels. Spaces are
permitted in node labels but are generally frowned upon; avoid
when possible.

* Try to avoid starting the label of an element with a number, or
using non alphanumeric characters in an element label.

* For more information, refer to the "Equations and Fields" section of

this instructional document.
* All elements have a unique "key" field. This is used internally to
relate elements together (i.e. for the purposes of influences).

* The "key" field is not shown to the user and as such a descriptive
name is not needed (i.e. "stockl" is perfectly fine).

* However, they serve a similar purpose to labels and should be unique

* Key fields are not used in the equation editor, however. Labels are
used instead.
* Key fields are used in the graphical representation; i.e. for the "
from" and "to" fields in a flow’s valve.
* A quick comparison of usages:

* Both the "key" and "label" fields should be unique. They don’t have
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*

*

*

to be the same for each element, however.

* The "key" field is internally used by the graphical program to
distinguish elements in the GUI, and is never shown to the user.

* Use the "key" field to refer to element IDs when drawing flows and
linkages.

* "Key" names do not have to be descriptive and CANNOT be changed.
Most key names are something like "stockl", "flowl", "flow2", etc.

* The "label" field is shown to the user and uniquely identifies that
element in the equation editor.

* Use the "label" field to refer to the value stored in an element for
use in equations.

* "Label" fields should be descriptive and CAN be changed; however, if
a label name is changed, all references to it in an equation

should also be changed.

*

Use camelCase naming and avoid spaces/non-alphanumeric characters
when choosing a name for both fields.
Stocks and Components

Time is a global variable and cannot be directly accessed. Unless in
extraordinary circumstances (i.e. direct user request), do not create
a "time" element outside of modifying simulation parameters.

Stocks Represent Accumulations: Stocks (also called levels or state
variables) represent the quantity of something at a given time, such
as population, money, or resources.

Flows Represent Rates of Change: Flows (inflows and outflows) determine

how stocks increase or decrease over time.
* Flows can be uniflow or biflow. This can be toggled by including

isNN : true

*

The equation attached to a flow represents the flow’s "draw rate",
or "rate of change". This is in units/second; i.e. a flow of 100

will draw 100 units per second.

*

Each flow "draws" (reduces) a quantity from the source stock and
adds that same quantity to the target stock. If biflow is enabled,
this relationship can go both ways depending on the sign of the "

draw rate".

*

An example of a flow relationship is one water tank draining into
another water tank’s volume. A flow between two stocks would be

appropriate here.

*

If a "target stock" does not make sense in the context of a problem
(i.e. representing change in position over time), use a "cloud"

node to draw from an infinite source. In the example, a flow from
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a cloud to a "xPos" stock would be most appropriate.

* Each flow has a corresponding valve; in other words, to establish a
flow relationship, two components must be added. The flow
component is stored as a "link" element and relates two nodes. The

valve component is stored as a '"node" element and contains the
equation representing the rate of change. This is demonstrated in
the sample JSON.

* The equation for the flow and isNN (is non negative) are all fields
in the VALVE information.

* A label field is assigned to the valve component (in nodes) and a
labelKey field to the flow component (in links) to associate the
two elements together. These two fields must be the same across
the two components to be linked. This is demonstrated in the
sample JSON.

* Auxiliary Variables for Relationships: Use auxiliary variables to
define relationships between stocks and flows, avoiding excessive
complexity in flow equations.

* Influences Show Feedback Loops Connect Stocks and Flows: Feedback loops

(reinforcing or balancing) influence the dynamics of the system over
time. These are called influences

* An influence connects element A to element only if element A is used

within the equation of element B.

* An influence can never go INTO a stock.

* Remember to use clouds: they represent unlimited sources and sinks

3. Conservation and Boundaries

* When editing a user-provided model, try to avoid changing the positions

or labels of pre-existing elements unless necessary. If such a

modification is made, make sure to explain why.

* Note that when changing the label of an element, all references to that

element’s label in an equation must also be appropriately changed.

For example, if a stock’s label is changed from "x" to "xPos",

references to "[x]" in the equation editor must be changed to "[xPos

1.

* Do not change the label of an element to an already existing element
label.

* When possible, space out elements enough to where their positions can
be distinguished, but do not spread them out an unreasonable amount.
Related elements should be placed next to each other when possible.

* Avoid significant overlap between element positions, especially flows

and other link objects.

19




Non-Negative Stocks (Where Applicable): Stocks like population or
inventory should not become negative unless the context indicates that

such is reasonable. Use constraints to prevent unrealistic values.

* A flow or influence should never start and stop at the same element.

Equations & Fields

The label of each link and/or node element must be unique, as it serves
as the identifier for that element in the equation editor.
Particularly, a node cannot have the same label as another node OR
link, and similarly for a link.

Use camelCase naming conventions for elements, to avoid confusion in
the equation editor. Do not use blank element labels. Spaces are
permitted in node labels but are generally frowned upon.

Examples of allowable element labels are: [xPos], [xVel], [acceleration
1, [counter3]

Examples of frowned-upon element labels are: [starting velocity], [
Gravity Coefficient], [123], [ ]

“%isNN : true‘‘‘ signifies the element is nonnegative. This works for
both stocks and flows.

Equations must only include numbers or, if referencing another element
in the model, the element label surrounded by brackets (e.g. [position
1) . Please dont include constants directly in the equations and rather

use variables.

A1l equations are javascript code. For example, use Math.cos() or Math.
PI for cos() and PI respectively.

Ghosting

When too many elements reference (and therefore have influences
connected to them) another element (e.g. a variable called gravity),
you can create a ghost which is just a visual copy of the element that

bears some of those influences. This is denoted by an entry with
label $gravity and the same fields as the other.

Note that ghost elements do not introduce new elements in the equation
editor, nor do they affect the internal equations of the model; rather
, they serve as visual aids in the graphical representation of the
model .

Output Format

The output from this conversation will be automatically parsed, so
avoid using any emojis or unconventional characters outside of code
blocks that may break automatic parsers.

Comments are not permitted in JSON. Do not include comments such as

¢“¢// explanation‘‘‘ in the output JSON.
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* Start the response with any pertinent explanations. Then, include the
entire output model as a single JSON in a code block.

* Excluding the output JSON, do not include any other code block tags in
any part of the message. There should be only two instances of a
sequence of three '"grave accents"; one to open the output code block
and one to close it.

* Do not include any messages after the output code block.

Here is the format of the JSON:

<< EXAMPLE LUNASIM APPENDED BY AUTHORS HERE >>
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C. Rubrics

Table C1 is a sample SD model-specific rubric used in the study, specifically for grading
LLM outputs of the algae growth SD model. Table C2 is what was used to generate general
sections of these kinds of SD model-specific rubrics, with the table outlining the policies
of how many points to take off (and maximum points to be given) when encountering

errors in formatting and adherence to general SD rules/practices.
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Table C1: Sample SD Model Specific Rubric (for Projectile Motion)

Criteria Scoring Max Points
Output Integrity 5

Names 5 (min 0)
Flows Cloud — xVel

Cloud — xPos
Cloud — yVel
Cloud — yPos 4

Initial conditions and other constants are
properly expressed as variables:

initX

initY

initVel

initAngle

gravity

mass

dragCoeft 7

Variables

Positioning Elements are appropriately placed 4

Specific Model Rubric

Reasonable values are set for each of the
following, including any equations if further
calculations are needed to transform the
model parameters:

2pts - xPos

2pts - yPos

2pts - Initial Speed

2pts - Initial Angle

2pts - Drag Coeff

2pts - Mass

2pts - Gravity 14

Initial Conditions

Variables may be renamed if model does not run
(penalize in general rubric).

If model still does not run, -5pts per misc.
necessary element change for model to run.

2pts - Initial Pos

2pts - Initial Vel.

2pts - Correct Gravity

4pts - Acceleration to Velocity

4pts - Velocity to Position

4pts - Drag Coefficient affects Velocity

12pts - Numerical Correctness 30

Relationships
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