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Abstract 26 

The beef industry faces growing demands for transparency and traceability due to 27 
consumer awareness of supply chain impacts. Lack of transparency and misinformation 28 
challenge brand trust and supply chain efficiency. Technologies like blockchain are being 29 
explored to address this issue. This study examines the potential of information technologies to 30 
enhance traceability and shift the beef supply chain structure toward coordination. We employed 31 
System Dynamics (SD) to model the U.S. beef supply chain from 2013 to 2022, capturing 32 
complexities and feedback loops to assess structural changes. The model was evaluated and 33 
simulated to evaluate the transparent beef introduction dynamics relative to the conventional 34 
beef.  35 

Introducing transparent beef shifted consumer demand from conventional due to prices 36 
and ordering decisions. Major packers consolidated in the conventional market, while smaller 37 
packers found niches in the transparent market. Increased coordination and consumer premiums 38 
were necessary to sustain transparent production. The simulation highlighted the supply chain's 39 
adaptability but underscored the need for effective strategies for sustainable development.  40 
This research bridges a gap in beef supply chain coordination studies and provides insights for 41 
stakeholders on integrating technology for transparency. The findings suggest policies supporting 42 
technological integration could bolster consumer confidence and supply resilience. 43 
 44 
Keywords: Beef Supply Chain, Information Asymmetry, Market Power, Blockchain, System 45 
Dynamics  46 
  47 



 

1. Introduction 48 

Global beef supply chains are complex networks of stakeholders experiencing increasing 49 
pressure for transparency as consumers demand greater clarity on food choices and their impact 50 
on the environment and society (Insight, 2016; Singh & Sharma, 2022). The call for transparency 51 
within the agricultural production and distribution system is not only a matter of consumer 52 
preference but also a foundational element for building trust amongst all stakeholders. Advances 53 
in information technology, such as RFID and blockchain, have emerged as key transparency 54 
enablers. Blockchain, for instance, facilitates tracking food product flow from farm to consumer. 55 
Major food producers and large scale retailers such as Nestlé, Tyson Foods, Kroger, Unilever, 56 
and Walmart emphasize their commitment to consumer trust and food safety, for example, 57 
Walmart’s implementation of full supply chain traceability of leafy greens (Collart & Canales, 58 
2022.)  59 

However, blockchain adoption within the beef supply chain introduces distinct challenges, 60 
largely due to its complex structure and the need for greater coordination among firms. 61 
Characterized by long production cycles and horizontally oriented segments involving diverse 62 
stakeholders in different geographical locations, the beef supply chain faces potential traceability 63 
challenges (Silvestre et al., 2018). These complexities are further amplified by specialization in 64 
production stages, industry consolidation, varying international standards, and the environmental 65 
implications associated with beef production. Blockchain implementation in the beef supply 66 
chain thus requires adaptations to its unique geographic dispersion and disaggregated production 67 
and distribution processes. It also raises questions about potential changes to the existing supply 68 
chain's structure and the need for greater collaboration among firms. Despite these challenges, 69 
blockchain technology has the potential to reduce costs and increase efficiency by reducing 70 
participants transaction costs, including information searching, bargaining and monitoring costs 71 
(Bischoff & Seuring, 2021; Chen et al., 2022; Sun et al., 2020). Several studies on food supply 72 
chains have shown the importance of trust among and between firms in enhancing supply chain 73 
performance via more effective coordination and data sharing (Cao et al., 2022; Capaldo & 74 
Giannoccaro, 2015; Ferdousi et al., 2020; Ghosh & Fedorowicz, 2008). Blockchain technology, 75 
by ensuring traceability and transparency, has received attention for its potential to fortify trust 76 
and efficiency within complex supply chains, including the halal food market (Ali et al., 2021; 77 
Surjandari et al., 2021; Tan et al., 2022).  78 

Given these challenges, a methodology that captures the dynamic interdependencies within 79 
the beef supply chain is required. The system dynamics method is particularly useful for 80 
analyzing dynamic problems that involve significant response delays and multidimensional 81 
variables connected by feedback processes (Ford, 1999; Sterman, 2000). Because of the power of 82 
SD to identify the causal relationships, and connect the physical and information components, it 83 
provides a means of modeling and simulating those dynamics.  Previous research has 84 
investigated beef supply chain traceability using various methods and numerous studies have 85 
modeled commodity supply chains using the system dynamics (SD) approach (Feng, 2012; 86 
Georgiadis et al., 2005; Herrera & Orjuela-Castro, 2021; Stave & Kopainsky, 2015; Tama et al., 87 
2018). Existing research within food supply chains has primarily examined how information 88 
technology can be used to meet transparency demands without fully exploring their dynamic 89 
impact on supply chain structures (Bischoff & Seuring, 2021; Chen et al., 2022; Sun et al., 90 
2020). A literature review revealed that the theoretical benefits of blockchain in reducing 91 
information asymmetry and transaction costs are widely discussed (Clarkson et al., 2007; 92 
Schmidt & Wagner, 2019). Specifically, in the beef industry, a variety of studies have examined 93 



 

environmental or management issues across the supply chain (reviewed below). To our 94 
knowledge, no study has specifically focused on transparency adoption implications such as 95 
Blockchain in an industrialized beef supply chain, illustrating a gap in empirical and simulation-96 
based research work to understand their implications within the context of beef production. 97 

To address this gap in existing research, we employed SD modeling to investigate the 98 
dynamic effects of blockchain implementation on the market dynamics of the beef supply chain, 99 
which has thus far been missing from previous beef supply chain modeling efforts (Table 1). For 100 
example, Menendez et al. (2023) employed SD to refine the assessment of the beef water 101 
footprint, resulting in an integrated model from calf production to meat harvest that included 102 
market-driven feedbacks which alter supply flow (timing and volume) through the supply chain. 103 
Blignaut et al. (2022) estimated the carbon footprint of a cow and eight generations of her 104 
offspring, emphasizing the importance of full lifecycle analysis and improved land use practices 105 
for mitigating greenhouse gas emissions but again excluding market-driven feedbacks on 106 
production decisions. Mahbubi & Uchiyama (2020) used SD to model the Indonesian halal meat 107 
market but focused on government policies (rather than market supply and demand feedbacks) to 108 
counteract meat deficits. In Nigeria, Odoemena et al. (2020) explored policies to reverse the 109 
trend of declining beef consumption, recommending a multifaceted approach involving carcass 110 
yield, slaughter rates, and feed quality. Adl & Parvizian (2009) analyzed the drought impact on 111 
Iran's livestock sector using SD, showing increased sheep slaughter due to drought led to 112 
temporary short-term increases in meat supply and decreased prices, necessitating feed imports 113 
to sustain production long-term.  114 

 115 
Table 1. Overview of System Dynamics Applications in Beef Supply Chain: Studies and 116 
Findings. 117 

Authors Findings 

Menendez et al. (2023) Provides a significant advancement in the methodology for 

assessing and managing the water footprint in beef production that 

could lead to more sustainable practices and policies in the 

livestock sector 

Blignaut et al. (2022) Evaluates the carbon footprint across their life cycles using SD, 

considering scenarios for methane’s impact and manure-based 

carbon sequestration. showed that net emissions can significantly 

vary, influenced by methane accounting and soil health 

Mahbubi & Uchiyama 

(2020) 

Identify the best policy scenario to respond to halal meat deficits 

Simões et al. (2020) Find the impact of production technology adoption on profitability 

and prices 

Odoemena et al. (2020) Suggest having combinations of carcass yield, slaughter rate and 

feed improvement policies as the most efficient solution to the 

problem of declining per capita consumption of beef 

Tinsley et al. (2019) Suggest focusing on heifer retention rate as the more impactful 

variable than other options 

Susanty et al. (2019) Examine different policies to find the best to increase the 

performance of the supply chain 



 

Authors Findings 

Lie et al. (2018) Reveal that improving the feeding system through improved 

pastures, increased use of concentrates, or investment and training 

in pasture management can increase milk productivity, but also 

have different effects on producer profits and require different time 

horizons 

Turner et al. (2013) Explore financial strategies within the beef supply chain, revealing 

that targeted adjustments in cow sales can significantly affect ranch 

profitability. Their model underscores the potential of strategic cow 

culling to improve Net Income and Return on Investment, while 

also indicating the flexibility of heifer retention strategies 

Adl & Parvizian (2009) Drought led to increased sheep slaughter, resulting in higher meat 

supply and reduced prices. Suggested implementing appropriate 

policies, such as importing animal feed, could help preserve the 

country's production capacity 

 118 
Many other works have focused on specific segments of beef supply chains. For example, 119 

Simões et al. (2020) examined how technological advances in production affect market prices 120 
and profitability in Brazil's dairy sector by focusing on strategic decisions at the farm level. 121 
Turner et al. (2013), Tinsley et al. (2019) and Susanty et al. (2019) identified how herd 122 
management variables such as heifer retention rates, cow culling rates, or policy reforms on the 123 
farm sector can significantly enhance the operational and financial performance of ranches and 124 
dairy supply chains, respectively. Lie et al. (2018) noted that enhancements in feed systems 125 
could boost milk productivity but might have varied effects on profitability and operational 126 
timelines. These reviews highlight the unique capability of SD to understanding and modeling 127 
the complex dynamics of the beef supply chain and production situations. 128 

This research aims to fill the identified knowledge gap by exploring the dynamic impacts of 129 
increased transparency demand on the beef supply chain's structure by using SD. To address this 130 
main objective, we develop a dynamic model of the beef supply chain as a foundational tool for 131 
our analysis to assess how changes in transparency demand impact the beef supply chain 132 
structure. Then, we simulate various scenarios of blockchain adoption across the supply chain to 133 
examine its potential in meeting transparency demands, and evaluate different beef production 134 
and supply decision components in response to the transparency demand on the beef supply 135 
chain structure. The resulting SD model helps to identify how different market segments (feeder, 136 
packer, and retailer) respond to varying consumer demands, shedding light on potential 137 
opportunities and vulnerabilities in beef supply chains from changing consumer preferences, and 138 
finally allow supply chain professionals to design and evaluate management policies for each 139 
stage of the beef supply chain.  140 

This paper is organized into sections as follows: Section 2 outlines the SD approach, 141 
including the steps taken to formulate the dynamic hypothesis, and development and evaluation 142 
of the SD model. Section 3, the results, and discussion section, delivers the model’s evaluation 143 
results, including the simulation results, and an analysis of the implemented policies and 144 
scenarios on the beef supply chain, focusing on their implications. Finally, the conclusion section 145 
summarizes the key findings of the study in section 4. 146 



 

2. Materials and Methods 147 

The beef supply chain is characterized by uncertainties at various stages, often with long 148 
lead times. These uncertainties force the stakeholders to continually reassess and revise their 149 
strategies as new information becomes available. The dynamic interactions among the 150 
stakeholders, coupled with the essential role of feedback, underscore the inherent dynamism of 151 
the supply chain (Hwarng & Xie, 2008). Given these complexities, the SD methodology, which 152 
is designed to handle complex systems and capture the interplay among system variables, is 153 
ideally suited to model the intricate structures of supply chains. By utilizing stocks, flows, 154 
internal feedback loops, table functions, and time delays, it captures the system's complexity and 155 
uncertainty, revealing emergent properties and behavior patterns (Forrester, 1997).   156 

2.1. Conceptualization and Model Overview 157 

The conceptualization process began with a comprehensive literature review to identify key 158 
variables influencing blockchain adoption and coordination decisions in the beef supply chain. 159 
We articulated a problem statement reflecting the beef industry's transparency challenges, the 160 
dynamic nature of these challenges as they evolve over time —including specific delays, rate 161 
changes, and accumulation effects— and interact with factors like market power and transaction 162 
costs, and the potential for blockchain in response to transparency demand. 163 

Our analysis emphasizes the consumer-driven shift towards food transparency and examines 164 
enhanced supply chain integration and coordination via technology like blockchain. We reviewed 165 
literature from agricultural economics and supply chain management focusing on information 166 
transparency demand, transaction costs, market power, and the agribusiness firms’ responses to 167 
these factors (Table 2) to develop the dynamic hypothesis.  168 

 169 
Table 2. Key Conceptual Insights from Literature on Technology Adoption and Information 170 
Transparency in Beef Supply Chain Management. 171 

Conceptual Insights Source 

Consumers are showing a willingness to pay for beef 

products that offer transparency 

Abidoye et al., 2011; Checketts, 2006; 

Dickinson & Bailey, 2002; Lim et al., 

2018; Loureiro & Umberger, 2003a, 

2003b; Umberger et al., 2009 

Blockchain adoption can reduce transaction costs and 

increase supply chain efficiency 

Chen et al., 2022; Sun et al., 2020; 

Bischoff and Seuring 2021 

To meet demand, firms are adopting information sharing 

technology such as blockchain  

Dutta et al., 2020; Dalton et al., 2018; 

Sarker et al., 2019 

The potential adoption of blockchain could enhance 

supply chain profitability through an increased share of 

transparent beef production and a reduction in transaction 

costs 

Chen et al., 2022; Sun et al., 2020; 

Bischoff and Seuring 2021 

Decrease chain information asymmetry due to 

information availability and sharing information 

Francisco and Swanson, 2018 

An increase in transparency and traceability and more 

motivation for blockchain adoption 

Schmidt & Wagner, 2019 

 172 



 

Then, we visualized the system's structure as a causal loop diagram (CLD; Figure 1), to 173 
represent the interactions within the beef supply chain from a feedback perspective. The CLD 174 
shows the cause-and-effect relationships —including time delays and rate effects— between 175 
various elements, facilitating the formulation of dynamic hypotheses. A positive sign (+) on the 176 
arrows indicates that an increase or decrease in the “cause” variable will correspondingly 177 
increase or decrease the affected variable. Conversely, a negative sign (-) implies that an increase 178 
or decrease in the “cause” variable will inversely affect the variable in question. The combination 179 
of positive and negative causes (arrows) generates loops in the system. If the loop creates 180 
positive feedback, it is termed a reinforcing loop, while negative feedback generates a balancing 181 
loop.  Our dynamic hypothesis was stated as follows: 182 

As consumers show a willingness to pay for transparency, the supply chain is 183 
motivated to adopt blockchain technology. This adoption, however, does not occur 184 
instantaneously but follows a temporal buildup as firms address implementation 185 
delays. Once adopted, blockchain could be a critical driver for reducing transaction 186 
costs and improving efficiency, profitability, and coordination captured as the 187 
'Transparency-Driven Profit and Coordination Cycle' (Reinforcing Loop 1). Over 188 
time, the adoption of blockchain is anticipated to create a virtuous cycle of reduced 189 
costs and increased efficiency, further encouraging its use, termed 'Blockchain 190 
Facilitates Coordination' (Reinforcing Loop R2). As blockchain reinforces 191 
transparency, it consequently heightens market power and consolidates profits, 192 
detailed in 'Blockchain Reinforces Transparency' (Reinforcing Loop R3). On the 193 
other hand, increasing information asymmetry can have immediate disruptive 194 
effects that gradually dampen supply chain profits and market power, leading to 195 
less coordination efforts among firms in effort to maintain market power position 196 
and profitability captured in 'Coordination-Driven Efficiency' and 'Entrenchment 197 
Slows Coordination effort' (Balancing Loop B1 and B2). 'Asymmetry Mitigation 198 
via Integration Loop' (Balancing Loop 3) reflect the time-dependent dynamic 199 
interplay between information asymmetry and the efficiency of the supply chain, 200 
particularly when considering transaction costs and the efforts toward supply chain 201 
coordination. 'Coordination Regulates Efficiency' (Balancing Loop B4) highlights 202 
the mutual effect of vertical integration and supply chain efficiency. As information 203 
asymmetry increases, transaction cost will rise and chain efficiency will decline, 204 
leading to a reduction in coordination efforts, as shown in 'Asymmetry and Power 205 
Calibration' (Balancing Loop 5). Each balancing loop serves as a critical check 206 
within the system and embodies the complexities and perspectives of various 207 
segments stakeholders given existing asymmetric information flows and market 208 
power positions.  209 



 

 210 
Figure 1 The dynamic hypothesis of transparency demand in the beef supply chain, 211 
along with associated costs and integration efforts (i.e., Causal Loop Diagram). 212 
Where, the variables in italics are loop names. Loops are either balancing (B) or 213 
reinforcing (R) based on their polarity. Polarity is denoted by a plus (+) for same 214 
direction or a minus (-) opposite direction relative to the preceding variable. 215 

 216 

2.2. Quantitative Model Description  217 

We develop our model based on the generic commodity market model proposed by Sterman 218 
(2000) that is a generalization of the seminal model of hog cycles published by Meadows (1971). 219 
The initial phase of our methodology involves precisely defining the problem space, the system's 220 
boundaries, key stocks (e.g., feedlot inventory), flows (e.g., feeder input and finished to harvest 221 
flow), and auxiliary variables (e.g., packer order), outlining interactions between key variables, 222 
and establishing a reference mode to depict behavioral dynamics over time. For model 223 
construction, we employ the DSS version of Vensim software (Ventana System, Inc.). At each 224 
simulation time step the model retrieves the current values for each variable from the previous 225 
time step’s simulation results and uses them as the starting point for the current iteration. This 226 
process follows equations to update the stock, flow and auxiliary variables over time. This 227 
protocol, executed iteratively within the simulation, ensures that the dynamic feedback and 228 
timing of adjustments are consistently applied.  229 

The simulation is conducted with a time step of 0.0125 months, and the model's 230 
development, calibration, and evaluation extend over a 120-month period from January 2013 to 231 
December 2022. Initial values, serving as reference inputs for the model, are derived from USDA 232 
historical data (Livestock & Meat Domestic Data: All Meat Statistics. 2023).  233 



 

The model is segmented into three distinct, yet highly integrated and feedback-rich 234 
subsystems. These three interrelated subsystems are Inventory and Production, Demand, and 235 
Price. Building on this foundation, the model replicates historical behaviors over a decade, 236 
focusing on the path from feedlot to consumer, with a detailed emphasis on inventory 237 
management across different stages of the supply chain. This aspect of the model is important in 238 
understanding how production and inventory decisions impact supply chain dynamics, pricing 239 
strategies, and the overall system.  240 

2.2.1. Inventory and Production Sub Model 241 

The sub model presented in this section captures the production and inventory aspects of the 242 
beef supply chain (Figure 2, Inventory and Production panel). This subsystem traces the path of 243 
cattle from entering the feedlot through to consumer beef sales.  244 

 245 
Figure 2 Beef supply chain stock and flow diagram illustrating the linkage between price, 246 

inventory and production, forecast and ordering and demand subsystems in the beef supply 247 
chain, along with the associated feedback loops. Rectangles represent stock variables, while 248 

inflows and outflows are shown as pipes pointing into or out of the stock. Clouds represent the 249 
sources and sinks of flows within the system. 250 

 251 
Feedlot inventory is replenished through feeder input, calculated based on feedlot forecasts 252 

and the arrival of cattle from ranches and stockyards, adjusted for monthly mortality rates.  253 
Parameterization also requires industry knowledge from outside the feeder-packer- 254 

consumer model boundary, such as the observed increase in dressed weight by 127 grams per 255 
head per month from 2013 to 2022; likely due to advancements in genetics and breeding 256 
practices in the cow-calf sector (Coyne et al., 2019; Haley & Jones, 2017).  257 

From feedlot inventory, cattle are moved monthly via a flow known as finished to harvest, 258 
𝐹𝑓(Equation 1), where 𝐶𝑓 denotes cattle marketing, 𝐻𝑝is packer head order, and  𝑟𝑓 is feedlot 259 
fulfillment ratio: 260 



 

𝐹𝑓 = min(𝐶𝑓, min (𝐻𝑝, 𝑟𝑓 ∗ 𝐻𝑝)) (1) 261 
 262 

This outflow is determined by the lowest value among the packer's orders, the feedlot's 263 
fulfillment capacity, and cattle marketing readiness. The fraction of packer orders filled, called 264 
feedlot fulfillment ratio (𝑟𝑓) is derived by the ratio of the normal shipment rate to the desired 265 
rate. The normal rate is the current inventory's permissible rate under normal circumstances. Low 266 
inventory availability reduces shipments (Sterman, 2000). The cattle marketing variable, 𝐶𝑓 is a 267 
supply function showing the total feedlot’s supply of cattle that is available for marketing based 268 
on the current market conditions. We estimate the cattle supply curve based on historical data and 269 
used the fed cattle supply elasticity, which also was calibrated, consistent with the real-world 270 
data from USDA and literature (Jeong, 2019). This supply variable can be adjusted according to 271 
the actual demand and capacity of the packers via finished to harvest outflow. The packer head 272 
order, 𝐻𝑝, is based on the packer's order (kg) converted to the number of head, establishing a 273 
mechanism for balancing demand with current inventory.  274 

The dressed weight a beef packer requires to fulfill consumer demand was based on its 275 
existing inventory and a consumer demand forecast (Equation 2):  276 

 

𝑊𝑝 = max (0, {
𝑀𝑝 + 𝛼 ∗ (

𝑀𝑝∗𝛾⋅𝑇𝑝

𝛾⋅𝑇𝑝
)  if 𝑀𝑝 ⋅ 𝛾 ⋅ 𝑇𝑝 > 𝐼𝑝

𝑀𝑝 + 𝛽 ∗ (𝑃𝑏 −
𝐼𝑝

𝛾⋅𝑇𝑝
)  otherwise 

)   

 

(2) 

Where, 𝑊𝑝 is packer dressed weight order, 𝑀𝑝 is packer beef forecast, 𝑇𝑝is packer inventory 277 
cycle time, 𝐼𝑝 is packer inventory, α and β coefficients for adjustment based on inventory levels 278 
relative to forecast and cycle time, and γ is an adjustment factor for packer inventory cycle time. 279 
This function represents packers ordering decisions designed to balance packers own supply 280 
constraints with existing beef demand. Depending on the forecasted demand relative to their 281 
current inventory, packers adjust 𝑊𝑝, which helps to smooth out any imbalances in inflows from 282 
feeders and order outflows to retailers (as shown in Figure 2, Forecast and Ordering panel).  283 

2.2.2. Demand Sub Model 284 

The demand sub-model determines the quantity of a product that consumers are willing to 285 
buy at various price points (Figure 2, Demand panel). This demand function follows Sterman’s 286 
(2000) demand function for commodities, modified using beef industry parameters, adjusted in 287 
each time step in response to retail prices (the price that consumer pays at retail store) for 288 
conventional beef. 289 

The consumer demand for conventional beef, 𝐷𝑏 , (Equation 3) estimates the demand for 290 
conventional beef by using a combination of factors: the retailer's conventional price set by the 291 
retailer, 𝑃𝑟 , the initial demand in the market, 𝐷0, the demand curve slope, m, and the seasonality 292 
coefficient, 𝜔. The demand variable interacts with the price sub-model using retail price to 293 
determine quantity demanded of 𝐷𝑏 , using a classic demand curve. At each simulation time step 294 
the model update the relevant variables (e.g., 𝑅(𝑡), 𝐷0, 𝑃𝑟 , 𝑃𝑟𝑟𝑓), and calculates 𝐷𝑏 by computing 295 



 

the inner adjustment factor (ensuring it is non-negative) and then applying the outer max 296 
function to maintain a minimum demand threshold. 297 

 298 
 

𝐷𝑏 = max (45000, 𝜔 ∗ ((𝑅(𝑡) + 𝐷0) ∗ max (0,1 + 𝑚 ∗
𝑃𝑟−𝑃𝑟𝑟𝑓

𝐷0
)))  (3) 

 

 

Where 𝐷𝑏  signifies demand for conventional beef, 𝐷0 is initial demand, m is the Demand curve 299 
slope, 𝑃𝑟 is the retailer price, 𝑃𝑟𝑟𝑓 is the reference retailer price, 𝜔 is the seasonality coefficient, 300 
and R(t) is the RAMP function of growth in beef demand from an initial to final time. 301 

To find the demand curve slope (𝑚), we use historical data from United States Department 302 
of Agricultural (USDA) and Livestock Marketing Information Center (LMIC) and calculate it 303 
using Equation 4, where 𝑃𝑟𝑟𝑓 is reference retailer price and ε is the own price elasticity, with ε 304 
values derived from literature (Brester et al., 2004; Lusk & Anderson, 2004; Okrent & Alston, 305 
2012), and calibrated to match the historical data trends observed within the model’s time frame.  306 

𝑚 = −ε ∗
𝐷0

𝑃𝑟𝑟𝑓 
 (4) 307 

Equation 4 uses inputs to create a robust model for estimating the demand for conventional 308 
beef, adjusting for both static (initial demand) and dynamic (retailer price) factors, thereby 309 
providing a comprehensive representation of how different elements interact to shape the market 310 
demand for conventional beef. 311 

2.2.3. Price Sub Model 312 

The price subsystem captures the complex interplay of prices at different levels of the supply 313 
chain, from feedlot to the retailer. Price directly influences demand, supply decisions, and 314 
ultimately system behavior. This subsystem includes beef price at different levels of the supply 315 
chain, structured such that the current price is built by adjusting the previous price based on how 316 
price changes across the supply chain (Figure 2, price panel). The initial value assigned to these 317 
prices in the reference mode is obtained from USDA historical beef price data. 318 

The most significant stock in this structure is the packer price, which influences both the 319 
retailer price and the fed cattle price. The packer price, 𝑃𝑝 in the model refers to the price that a 320 
retailer pays to purchase boxed beef from a packer, adjusted by inventory effects (𝑃𝑝(𝑖𝑛𝑣)) as 321 
presented in Equation 5. Here, 𝜂 represents the inventory effect on price, modifying the packer 322 
price 𝑃𝑝,  based on current inventory conditions relative to desired levels.  323 

𝑃𝑝(𝑖𝑛𝑣) = 𝑃𝑝 ∗ 𝜂 (5) 324 

In the beef and similar perishable commodity markets, inventory management is a critical 325 
concern. The packer price adjusts according to its inventory levels. As such, a lower than its 326 
reference (normal) inventory coverage, triggers a price increase to help balance the inventory. 327 
Thus, the variable packer price adjusted by inventory effect, 𝑃𝑝(𝑖𝑛𝑣), represents the adjusted 328 
packer price, reflecting inventory-related price modifications, effectively capturing market 329 
dynamics adjusting for the effects of inventory (Equation 5).  330 

Moreover, the model considers the sensitivity of packer price to its inventory, Equation 6, 331 
using a power function: 332 



 

𝜂 = (
𝐼𝑝𝑐

𝐼𝑝𝑟𝑐
)𝜁 (6) 333 

Here, 𝜁 represents the sensitivity of packer price to packer inventory, 𝐼𝑝𝑐  is packer inventory 334 
coverage and 𝐼𝑝𝑟𝑐is packer reference inventory coverage. 335 

Thus far, these interconnected sub-sections accurately reflect the economic structures of 336 
real-world beef supply chains. For example, the retailer price, 𝑃𝑟, from the price sub-section is 337 
used to calculate the demand, 𝐷𝑏 , which in turn forecasts retailer order and determines the 338 
quantity of sales to consumer flow. The depletion of packer inventory in fulfilment of retailer 339 
orders then pulls inventory from the feedlot segment, the flow rate being influenced by the 340 
relative inventories and prices in each segment.  341 

 342 

2.3. Model Calibration and Evaluation 343 

Leading system dynamics modelers have developed various tests to identify model flaws and 344 
guide improvement in model structure, behavior, and policy testing effectiveness (Barlas, 1996; 345 
Senge & Forrester, 1980; Sterman, 2000). We follow SD best management practices by 346 
conducting a range of tests, including structure and parameter tests to assess the appropriateness 347 
of our model’s configuration and values. Integration error tests are carried out to check for 348 
inconsistencies under various numerical integration methods, and dimensional consistency tests 349 
ensure unit consistency. Additionally, we perform sensitivity analyses to measure the impact of 350 
parameter value changes on model output, extreme conditions tests to examine the model 351 
behavior under extreme input values, and boundary adequacy tests to evaluate the 352 
appropriateness of the model scope and boundaries. 353 

Beyond these tests model confidence is also supported by calibration to real world data. We 354 
source data from literature and official databases, such as USDA and LMIC from 2000 to 2022, 355 
with 2013-2022 data used for calibration and verification. For price calibration, we compare the 356 
model generated to real-world data of feeder and fed cattle, packer prices, by-products, and retail 357 
prices, tracing the product's journey from feedlot to consumer. Inventory calibration include data 358 
on feedlot inventories, cattle placement and marketing, and slaughter statistics. 359 

This comparison with historical data ensures that the model captures price-quantity 360 
relationships, seasonal supply and demand effects, and consumption patterns relative to 361 
population growth. 362 

Both manual and automated calibration via Vensim software align the model with historical 363 
data from USDA and LMIC. Calibration statistics include Mean Bias and Root Mean Square 364 
Error Percentage (RMSEP) to measure both accuracy and precision in model generated behavior 365 
compared to observed values (Tedeschi, 2006). To find the source of error in addition to its 366 
magnitude (Oliva, 1995, 2003), we employ the Theil inequality statistic (Theil, 1971) that 367 
decomposes the error into biases of unequal mean, unequal variance, and unequal covariance.  368 

2.4. Exploratory Simulation Experiment 369 

Upon completion of the calibration and evaluation phase, we craft a model experiment to 370 
test the impact of transparency adoption in the supply chain to meet a new customer demand for 371 
transparent beef. To achieve this, we define two products with identical supply chain structural 372 
functions (e.g. feeder and packer inventory, price structures and consumer demand) but vary in 373 
the type of beef: conventional beef (the market status quo) and transparent beef; the new product. 374 
To realistically assess the capacity and willingness of supply chain segments to respond to 375 



 

consumer demand, we used the subscript function of Vensim DSS software, and define two 376 
multi-agent segments: 10 heterogeneous packers and 100 heterogonous feedlots, each varying in 377 
their maximum capacity in existing industry and firm structure (Lowe & Gereffi, 2009). 378 

A key distinguishing feature of this model, compared to other SD commodity models, lies in 379 
our inclusion of packer market power, reflecting the impact of transactional dynamics among 380 
actors. We also introduce an initial market share variable, calibrated to represent real-world 381 
market shares of packers (or feedlots) in the market. A study by Lowe & Gereffi (2009) found 382 
percentages for beef market share for four major packers, which we use as the initial market 383 
share for the first four big packers, with the total market share of the remaining six packers 384 
accounting for 25% of the market. To find the initial market share for the feedlots, we use Lowe 385 
& Gereffi (2009) along with USDA data to calculate the firms’ initial market shares based on 386 
various parameters such as the number of marketed head in each category and their one-time 387 
capacity (Table 3). 388 

 389 
Table 3. Feedlot and Packer Market Share.   390 

 391 
Feedlot Group Capacity Range 

(Head) 

Initial Market Share 

(%) 

Feedlot 1-6 ≥32,000 52% 

Feedlot 7-13 16,000–31,999 19% 

Feedlot 14-20 8,000–15,999 11% 

Feedlot 21-37 4,000–7,999 8% 

Feedlot 38-62 2,000–3,999 6% 

Feedlot 63-100 1,000–1,999 4% 

   

Packer Group 

 

Capacity Range 

(Head/Day) 

Initial Market Share 

(%) 

Packer 1-4 ≥ 2,500 75% 

Packer 5-7 1,000-2,499 17% 

Packer 8-10 <1,000 9% 

 392 
To accurately model the adoption of transparent beef and reflect real-world conditions, we 393 

adopt an S-shaped growth function. Various Country of Origin Labeling (COOL) studies have 394 
predicted that approximately 30% of the market will ultimately choose transparent products if 395 
they are available (Gao et al., 2010; Lubben, 2005). Therefore, the demand for transparent beef 396 
initiates with a minor share and gradually increases until it reaches a saturation point (≈30%). 397 
The parameters for conventional and transparent beef are designed to respond dynamically to 398 
market demand. As the demand for transparent beef increases, conventional demand decreases, 399 
and vice versa, reflecting the substitute nature of these two products. 400 

In relevant literature 'Willingness to pay' values vary widely, ranging from 21% to 50%  of 401 
the base price (Abidoye et al., 2011; Bailey et al., 2005; Dickinson et al., 2003; Loureiro & 402 
Umberger, 2003a, 2003b, 2007; Umberger et al., 2009). Following a review of the literature and 403 
relevant data, we adopt 48% of the base price for this parameter. Additionally, we assume that 404 
the production cost for transparent beef remains similar to conventional beef. However, the total 405 
cost of transparent beef differs due to added costs associated with blockchain adoption, changes 406 



 

in transaction costs, and variations in transparent cattle price (Chen et al., 2022; Ferdousi et al., 407 
2020; Sun et al., 2020). 408 

We also introduce the ‘transparent demand switch’ variable to the model. This switch 409 
functions as an on/off control, set to zero for conventional beef production only, despite the 410 
existence of blockchain adoption and other variables related to transparent beef, all 411 
producers/firms only produce conventional beef. Conversely, activating the switch (on mode) 412 
triggers a demand for transparent beef, thereby signaling a portion of the total beef demand to be 413 
allocated to consumers willing to pay a premium over the conventional price, incentivizing the 414 
supply chain to respond to this new demand. 415 

In our model, the adoption of blockchain technology significantly alters the cost structure of 416 
firms within the beef supply chain. Initially, the adoption of blockchain requires an upfront cost. 417 
However, it is expected to decrease direct transaction costs—information search, negotiation, 418 
and monitoring costs—due to the enhanced transparency and streamlined processes. Specifically, 419 
the reduction in information asymmetry and improved data accessibility through blockchain 420 
allows firms to efficiently manage these costs. Furthermore, as firms continue to utilize 421 
blockchain technology, we observe a compounded effect on transaction costs over time. This 422 
ongoing reduction is modeled to reflect both the immediate efficiencies from initial blockchain 423 
adoption, and the longer-term benefits derived from learning and adapting to the technology.  424 

Subsequently, each firm calculates its benefit in terms of revenue and cost, and both packers 425 
and feedlots jointly decide on the volume of transparent beef to produce. This decision considers 426 
each agent’s benefit in each segment and the current transparent beef demand. 427 

 428 

3. Results and Discussion  429 

3.1. Model Calibration and Evaluation Results 430 

We calibrated the model using statistical tools to align outputs with real-world data (2013-431 
2022). Key parameters were determined through data analysis and literature review. For 432 
example, demand own price elasticity was calibrated from an initial 0.71 to 0.74, consistent with 433 
USDA data and literature ranges. 434 

Statistical validation confirmed model accuracy: Mean Bias results showed reliable 435 
predictions with all variable biases under 1%, RMSEP values close to 0, and Cb values near 1, 436 
indicating unbiased predictions. Theil inequality statistics revealed that unequal covariance 437 
dominated Mean Square Error Percentage, confirming the model captured observed patterns 438 
effectively. 439 

We conducted a sensitivity analysis to understand how changes in parameters and 440 
assumptions influence the model's behavior or numerical values. In the model, we chose 441 
'sensitivity of prices to packer inventory' and 'cycle times' parameters for testing. Sensitivity 442 
analysis using Monte Carlo simulation (200 iterations, ±25% parameter range) demonstrated 443 
model stability with minimal deviation in key variables. Extreme condition tests using mortality 444 
rate increases validated the model's performance under unexpected events. 445 

3.2. Exploratory Simulation Experiment Results 446 

Following calibration, we examined transparent beef introduction effects on market 447 
dynamics. As shown in Figure 3, splitting total demand (~700M kg/month) into conventional 448 
and transparent segments reallocated purchases without growing the overall consumer base, 449 
consistent with consumer choice theory and empirical studies (Abidoye et al., 2011; Boncinelli 450 



 

et al., 2021; Checketts, 2006; Dickinson & Bailey, 2002; Lim et al., 2018; Umberger et al., 451 
2009). 452 

 453 

 454 
Figure 3 Changes in beef supply chain consumer demand due to introducing transparent beef 455 

(2013-2022) 456 
 457 
Retailer and packer prices for conventional beef initially declined slightly, then increased 458 

moderately due to supply-demand adjustments and resource reallocation. Transparent beef 459 
entered at premium pricing levels. Fed cattle prices remained stable due to longer production 460 
cycle. 461 

Larger packers (1-4) consolidated conventional market share (75% to 89% market share), 462 
while smaller packers (8-10) captured niches in transparent beef (50% market share) but lost 463 
conventional market position. This reflects resource-based competitive advantages and strategic 464 
market positioning. On the feedlot side, the largest yards increased conventional share (from 465 
52% to 68%); smaller feedlots (1,000–1,999 head) accounted for  about 23% of transparent beef 466 
by the end period. 467 

In summary, this simulation shows the immediate and complex effects of introducing new 468 
products in the beef market on consumer demand and pricing. It reveals the beef supply chain's 469 
resilience and adaptability to a new type of product contingent to technological availability, such 470 
as transparent beef. It also showed the market price sensitivity to introduction of new product 471 
and indicates the existence of robust feedback mechanism to maintain market efficiency.  472 

3.3. Comparison with Other Commodity Models  473 

In comparing this SD model with extant commodity models within the literature, we 474 
highlight its unique contributions to the domain of agricultural supply chains, particularly within 475 
the beef industry. Prominent research utilizing SD for analyzing various supply chains includes 476 
Meadow (1971) and Sterman (2000), who used SD to model livestock sector supply chain.  477 

Upon reviewing past studies and literature on the food and agriculture supply chain, we 478 
identified dynamic aspects specifically related to the U.S beef and cattle market. Our model aims 479 
to depict the interaction within the supply chain to find solutions for improving information 480 



 

symmetry. However, to the best of our knowledge, no existing SD model of the beef supply 481 
chain addresses the asymmetry of information or implements interventions to rectify this. 482 

We have expanded Sterman's model to include multiple actors such as feedlot, packer, 483 
retailer, and consumers in the supply chain. As such, it endogenously captures price and quantity 484 
dynamics at different stages of the beef supply chain and their feedback loops.  485 

In parallel, we drew inspiration from Meadows' hog production model, particularly in its 486 
depiction of cyclical behaviors due to delayed responses to price signals and subsequent 487 
correction mechanism. Unlike Meadows livestock production model, which emphasizes breeding 488 
decisions and their impact on supply cycles, our model focuses on the relation between consumer 489 
demand, supply response, and changes in quantity and price. 490 

Furthermore, our model also incorporate market power dynamics and market share 491 
distributions, important features of the U.S. beef market. It enables us to explore scenarios that 492 
include strategic interactions between firms with varying degrees of market power and to assess 493 
their impact on the supply chain. 494 

These enhancements have allowed us to model a more comprehensive simulation of the beef 495 
supply chain and market. It enables the simulation of different demand and supply scenarios 496 
under varying product characteristics within the same supply chain. By considering specific 497 
characteristics and the unique market power structure of the beef industry, we provide a robust 498 
platform for analyzing modern beef supply chains like those in the U.S. and the EU.  499 

Unlike most SD models focused on the livestock supply chain that primarily consider 500 
production side and supply-side interventions, we specifically address the information 501 
asymmetry inherent in the beef supply chain by integrating traceability demand and information, 502 
which has not yet been explored in existing models.  503 

3.4. Discussion, Limitation and Implications For Agricultural Systems Policymaking 504 

In this study, we explored the roles of information, transparency and market power in the 505 
beef supply chain using system dynamics. However, the absence of data on supply chain 506 
integration, acquisition, and merger costs across beef supply chain , and obtaining information 507 
for various variables, especially transaction costs throughout different beef supply chain 508 
segments hindered our ability to fully analyze integration and comparing with it current 509 
coordination decisions in the market.  510 

This model reproduces observed dynamics with low bias, passes calibration and validation 511 
tests, and shows that transparency reallocates demand and reshapes shares without destabilizing 512 
upstream cattle prices. 513 

The results of this model offers a pathway to deeper insight into the structure, management, 514 
and behavior of beef supply chains. It helps to understand the resilience of the supply chain 515 
while introducing new products in presence of new information technology platforms. The model 516 
provides insights for developing decision support tools and examining policy impacts on market 517 
structure and coordination under varying consumer demand conditions. 518 

4. Conclusions 519 

This study developed a comprehensive system dynamics model of the beef supply chain that 520 
incorporated various industry-specific parameters and agent behaviors, such as cattle production 521 
biological delays, packer concentration, supply chain coordination and market power, as well as 522 
trends in efficiency and production improvements. The model was rigorously calibrated, using 523 
data from 2013 to 2022, to offer a significantly more accurate representation of the real-world, 524 
especially within the U.S market, surpassing generic supply chain models and other SD beef 525 



 

models. The model's unique treatment of price mechanisms and endogenous coordination 526 
significantly enhances its capability, offering a superior representation of the beef supply chain.  527 

Through this analysis we demonstrated a resilient beef supply chain that can adapt to 528 
changing consumer preferences for transparency (via blockchain or similar technologies) by 529 
forecasting industry supply between larger packers that focus on economies of scale to produce 530 
conventional commodity beef where smaller packers focus on the smaller emerging markets for 531 
transparent beef where price premium products justify the additional investment needed for 532 
transparency. 533 

In line with the objectives presented in the introduction, our findings demonstrate that the 534 
introduction of transparent beef can alter market structures, pricing, and coordination among 535 
supply chain participants. Specifically, larger firms, both feedlots and packers, tend to 536 
consolidate their share in the conventional beef market, while smaller firms capture a niche in the 537 
transparent beef segment, showing a strategic response to emerging consumer preferences. This 538 
result underscores the importance of adopting relevant technologies to facilitate transparent beef 539 
production and manage the additional coordination requirements that transparency involves. 540 

Moreover, our results highlight how shifting consumer demand can force retailers, packers, 541 
and feedlots to adjust production strategies, reinforcing the model’s ability as a decision support 542 
tool for analyzing market decisions and optimizing operational strategies in an increasingly 543 
information-driven environment.  544 



 

References 545 
Abidoye, B. O., H. Bulut, J. D. Lawrence, B. Mennecke and A. M. Townsend. 2011a. U.S. 546 

consumers’ valuation of quality attributes in beef products. Journal of Agricultural and 547 
Applied Economics 43: 1–12. https://doi.org/10.22004/ag.econ.100645  548 

Adl, A. and J. Parvizian. 2009. Drought and production capacity of meat; a system dynamics 549 
approach. Proceedings of the 27th System Dynamics Conference 1: 1–13.  550 

Ali, M. H., L. Chung, A. Kumar, S. Zailani and K. H. Tan. 2021. A sustainable blockchain 551 
framework for the halal food supply chain: Lessons from Malaysia. Technological 552 
Forecasting and Social Change 170: 120870.  553 

Bailey, D. J., Robb and L. Checketts. 2005. Perspectives on traceability and BSE testing in 554 
the US beef industry. Choices, 20(4), 293–297. 555 

Barlas, Y. 1996. Formal aspects of model validity and validation in system dynamics. System 556 
Dynamics Review: The Journal of the System Dynamics Society 12: 183–210.  557 

Bischoff, O. and S. Seuring. 2021. Opportunities and limitations of public blockchain-based 558 
supply chain traceability. Modern Supply Chain Research and Applications 3: 226–243. 559 
https://doi.org/10.1108/MSCRA-07-2021-0014 560 

Blignaut, J., H. Meissner, H. Smith and L. du Toit. 2022. An integrative bio-physical 561 
approach to determine the greenhouse gas emissions and carbon sinks of a cow and her 562 
offspring in a beef cattle operation: A system dynamics approach. Agricultural Systems 563 
195: 103286. https://doi.org/10.1016/j.agsy.2021.103286 564 

Boncinelli, F., G. Piracci and L. Casini. 2021. Understanding the role of information and taste 565 
heterogeneity in consumer preferences for functional beef: the case of the omega-3 566 
enriched burger. Meat Science 181: 108614. 567 
https://doi.org/10.1016/j.meatsci.2021.108614 568 

Brester, G. W., J. M. Marsh and J. A. Atwood. 2004. Distributional impacts of country-of-569 
origin labeling in the U.S. meat industry. Journal of Agricultural and Resource 570 
Economics 29: 206–227. 571 

Capaldo, A. and I. Giannoccaro. 2015. How does trust affect performance in the supply 572 
chain? The moderating role of interdependence. International Journal of Production 573 
Economics 166: 36–49. 574 

Checketts, L. T. 2006. Two-step tracking, traceability, or BSE testing: Which do United 575 
States beef consumers prefer? [Master’s Thesis, Utah State University].  576 

Chen, W., D. Botchie, A. Braganza and H. Han. 2022. A transaction cost perspective on 577 
blockchain governance in global value chains. Strategic Change 31: 75–87. 578 
https://doi.org/10.1002/jsc.2487 579 

Clarkson, G., T. E. Jacobsen and A. L. Batcheller. 2007. Information asymmetry and 580 
information sharing. Government Information Quarterly 24: 827–839. 581 
https://doi.org/10.1016/j.giq.2007.08.001 582 

Collart, A. J. and E. Canales. 2022. How might broad adoption of blockchain-based 583 
traceability impact the U.S. fresh produce supply chain? Applied Economic Perspectives 584 
and Policy 44: 219–236. https://doi.org/10.1002/aepp.13134 585 

Conner, K. R. 1991. A historical comparison of resource-based theory and five schools of 586 
thought within industrial organization economics: Do we have a new theory of the firm? 587 
Journal of Management 17: 121–154. https://doi.org/10.1177/014920639101700109 588 

Coyne, J. M., R. D. Evans and D. P. Berry. 2019. Dressing percentage and the differential 589 
between live weight and carcass weight in cattle are influenced by both genetic and non-590 

https://doi.org/10.22004/ag.econ.100645
https://doi.org/10.1108/MSCRA-07-2021-0014
https://doi.org/10.1016/j.agsy.2021.103286
https://doi.org/10.1016/j.meatsci.2021.108614
https://doi.org/10.1002/jsc.2487
https://doi.org/10.1016/j.giq.2007.08.001
https://doi.org/10.1002/aepp.13134
https://doi.org/10.1177/014920639101700109


 

genetic factors. Journal of Animal Science 97: 1501–1512. 591 
https://doi.org/10.1093/jas/skz056 592 

Dickinson, D. L. and D. Bailey. 2002. Meat traceability: Are U.S. consumers willing to pay 593 
for it? Journal of Agricultural and Resource Economics 27: 348–364. 594 

Dickinson, D. L., J. E. Hobbs and D. Bailey. 2003. A comparison of U.S. and Canadian 595 
consumers’ willingness to pay for red-meat traceability. Journal of Agricultural and 596 
Resource Economics 27: 348–364. 597 

Feng, Y. 2012. System dynamics modeling for supply chain information sharing. Physics 598 
Procedia 25: 1463–1469. 599 

Ferdousi, T., D. Gruenbacher and C. M. Scoglio. 2020. A permissioned distributed ledger for 600 
the U.S. beef cattle supply chain. IEEE Access 8: 154833–154847. 601 
https://doi.org/10.1109/ACCESS.2020.3019000 602 

Francisco, K. and D. Swanson. 2018. The supply chain has no clothes: Technology adoption 603 
of blockchain for supply chain transparency. Logistics 2: 2. 604 

Gao, Z., T. C. Schroeder and X. Yu. 2010. Consumer willingness to pay for cue attribute: the 605 
value beyond its own. Journal of International Food and Agribusiness Marketing 22: 606 
108–124. https://doi.org/10.1080/08974430903372898 607 

Georgiadis, P., D. Vlachos and E. Iakovou. 2005. A system dynamics modeling framework 608 
for the strategic supply chain management of food chains. Journal of Food Engineering 609 
70: 351–364. 610 

Ghosh, A. and J. Fedorowicz. 2008. The role of trust in supply chain governance. Business 611 
Process Management Journal 14: 111–130. 612 

Haley, M. and K. Jones. 2017. Livestock, dairy, and poultry outlook. Economic Research 613 
Service: United States Department of Agriculture. 614 
http://www.ers.usda.gov/publications/pub-details?pubid=85472 615 

Herrera, M. M. and J. Orjuela-Castro. 2021. An appraisal of traceability systems for food 616 
supply chains in Colombia. International Journal on Food System Dynamics 12: Article 617 
1. https://doi.org/10.18461/ijfsd.v12i1.74 618 

Insight, L. 2016. How consumer demand for transparency is shaping the food industry. 619 
Retrieved April 31, 2020. Industry Insights Journal 1: 123–140. 620 

Jeong, S. 2019. The change in price elasticities in the U.S. beef cattle industry and the impact 621 
of futures prices in estimating the price elasticities. Journal of Agricultural Economics 622 
92: 350–372. https://ageconsearch.umn.edu/record/309632/ 623 

Lie, H., K. M. Rich, R. van der Hoek and K. Dizyee. 2018. An empirical evaluation of policy 624 
options for inclusive dairy value chain development in Nicaragua: A system dynamics 625 
approach. Agricultural Systems 164: 193–222. https://doi.org/10.1016/j.agsy.2018.03.008 626 

Lim, C., K.-H. Kim, M.-J. Kim, J.-Y. Heo, K.-J. Kim and P. P. Maglio. 2018. From data to 627 
value: A nine-factor framework for data-based value creation in information-intensive 628 
services. International Journal of Information Management 39: 121–135. 629 
https://doi.org/10.1016/j.ijinfomgt.2017.12.007 630 

Livestock Marketing Information Center. 2023. Livestock and meat domestic data: all meat 631 
statistics. Livestock Marketing Information Center. https://www.lmic.info/ 632 

Loureiro, M. L. and W. J. Umberger. 2003a. Consumer response to country-of-origin labeling 633 
program in the context of heterogeneous preferences. Journal of Agricultural Economics 634 
34: 121–134. https://doi.org/10.22004/ag.econ.22129 635 

https://doi.org/10.1093/jas/skz056
https://doi.org/10.1109/ACCESS.2020.3019000
https://doi.org/10.1080/08974430903372898
http://www.ers.usda.gov/publications/pub-details?pubid=85472
https://doi.org/10.18461/ijfsd.v12i1.74
https://ageconsearch.umn.edu/record/309632/
https://doi.org/10.1016/j.agsy.2018.03.008
https://doi.org/10.1016/j.ijinfomgt.2017.12.007
https://www.lmic.info/
https://doi.org/10.22004/ag.econ.22129


 

Loureiro, M. L. and W. J. Umberger. 2003b. Estimating consumer willingness to pay for 636 
country-of-origin labeling. Journal of Agricultural and Resource Economics 28: 287–637 
301. 638 

Loureiro, M. L. and W. J. Umberger. 2007. A choice experiment model for beef: What U.S. 639 
consumer responses tell us about relative preferences for food safety, country-of-origin 640 
labeling and traceability. Food Policy 32: 496–514. 641 

Lowe, M. and G. Gereffi. 2009. A value chain analysis of the U.S. beef and dairy industries. 642 
Center on Globalization, Governance and Competitiveness, Duke University 1: 55–72. 643 

Lubben, B. D. 2005. A welfare analysis of country-of-origin labeling and alternative policy 644 
choices for beef. Kansas State University. 645 

Lusk, J. L. and J. D. Anderson. 2004. Effects of country-of-origin labeling on meat producers 646 
and consumers. Journal of Agricultural and Resource Economics 29: 185–205. 647 

Lusk, J. L., T. L. Marsh, T. C. Schroeder and J. A. Fox. 2001. Wholesale demand for USDA 648 
quality graded boxed beef and effects of seasonality. Journal of Agricultural and 649 
Resource Economics 29: 91–106. 650 

Mahbubi, A. and T. Uchiyama. 2020. Assessing the sustainability of the Indonesian halal beef 651 
supply chain. International Journal on Food System Dynamics 11: Article 5. 652 
https://doi.org/10.18461/ijfsd.v11i5.68 653 

Meadows, D. L. 1971. Dynamics of commodity production cycles. Dynamics of Commodity 654 
Production Cycles 1: 20–34. 655 

Menendez III, H. M., A. Atzori, J. Brennan and L. O. Tedeschi. 2023. Using dynamic 656 
modelling to enhance the assessment of the beef water footprint. Animal 17: 100808. 657 

Newsome, L. 2020. Beyond get big or get out: Female farmers’ responses to the cost-price 658 
squeeze of Australian agriculture. Journal of Rural Studies 79: 57–64. 659 
https://doi.org/10.1016/j.jrurstud.2020.08.040 660 

Odoemena, K. G., J. P. Walters and H. M. Kleemann. 2020. A system dynamics model of 661 
supply-side issues influencing beef consumption in Nigeria. Sustainability 12: Article 8. 662 
https://doi.org/10.3390/su12083241 663 

Okrent, A. and J. Alston. 2012. The demand for disaggregated food-away-from-home and 664 
food-at-home products in the United States. USDA-ERS Economic Research Report 139: 665 
1–76. 666 

Oliva, R. 1995. A Vensim® module to calculate summary statistics for historical fit. System 667 
Dynamics Group, Massachusetts Institute of Technology. 668 
http://www.metasd.com/models/Library/Misc/TheilStatistics/D4584theil.pdf 669 

Oliva, R. 2003. Model calibration as a testing strategy for system dynamics models. European 670 
Journal of Operational Research 151: 552–568. 671 

Schmidt, C. G. and S. M. Wagner. 2019. Blockchain and supply chain relations: A transaction 672 
cost theory perspective. Journal of Purchasing and Supply Management 25: 100552. 673 
https://doi.org/10.1016/j.pursup.2019.100552 674 

Senge, P. M. and J. W. Forrester. 1980. Tests for building confidence in system dynamics 675 
models. System Dynamics, TIMS Studies in Management Sciences 14: 209–228. 676 

Silvestre, B. S., M. S. Monteiro, F. L. E. Viana and J. M. de Sousa-Filho. 2018. Challenges 677 
for sustainable supply chain management: When stakeholder collaboration becomes 678 
conducive to corruption. Journal of Cleaner Production 194: 766–776. 679 
https://doi.org/10.1016/j.jclepro.2018.05.127 680 

https://doi.org/10.18461/ijfsd.v11i5.68
https://doi.org/10.1016/j.jrurstud.2020.08.040
https://doi.org/10.3390/su12083241
http://www.metasd.com/models/Library/Misc/TheilStatistics/D4584theil.pdf
https://doi.org/10.1016/j.pursup.2019.100552
https://doi.org/10.1016/j.jclepro.2018.05.127


 

Simões, A. R. P., C. F. Nicholson, A. M. Novakovic and R. M. Protil. 2020. Dynamic impacts 681 
of farm-level technology adoption on the Brazilian dairy supply chain. International 682 
Food and Agribusiness Management Review 23: 71–84. 683 

Singh, V. and S. K. Sharma. 2022. Application of blockchain technology in shaping the future 684 
of food industry based on transparency and consumer trust. Journal of Food Science and 685 
Technology. https://doi.org/10.1007/s13197-022-05360-0 686 

Stave, K. A. and B. Kopainsky. 2015. A system dynamics approach for examining 687 
mechanisms and pathways of food supply vulnerability. Journal of Environmental 688 
Studies and Sciences 5: 321–336. https://doi.org/10.1007/s13412-015-0289-x 689 

Sterman, J. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World. 690 
Irwin/McGraw-Hill. 691 

Sun, R.-T., A. Garimella, W. Han, H.-L. Chang and M. J. Shaw. 2020. Transformation of the 692 
transaction cost and the agency cost in an organization and the applicability of 693 
blockchain—a case study of peer-to-peer insurance. Frontiers in Blockchain 3: 1–12. 694 
https://doi.org/10.3389/fbloc.2020.00024 695 

Surjandari, I., H. Yusuf, E. Laoh and R. Maulida. 2021. Designing a permissioned blockchain 696 
network for the halal industry using Hyperledger Fabric with multiple channels and the 697 
raft consensus mechanism. Journal of Big Data 8: 10. https://doi.org/10.1186/s40537-698 
020-00405-7 699 

Susanty, A., A. Bakhtiar, N. B. Puspitasari, N. Susanto and D. K. S. Handjoyo. 2019. The 700 
performance of dairy supply chain in Indonesia: A system dynamics approach. 701 
International Journal of Productivity and Performance Management 68: 1141–1163. 702 
https://doi.org/10.1108/IJPPM-09-2018-0325 703 

Tama, I. P., Z. Akbar and A. Eunike. 2018. Implementation of system dynamic simulation 704 
method to optimize profit in supply chain network of vegetable product. IOP Conference 705 
Series: Materials Science and Engineering 337: 012014. https://doi.org/10.1088/1757-706 
899X/337/1/012014 707 

Tan, A., D. Gligor and A. Ngah. 2022. Applying blockchain for halal food traceability. 708 
International Journal of Logistics Research and Applications 25: 947–964. 709 

Tedeschi, L. O. 2006. Assessment of the adequacy of mathematical models. Agricultural 710 
Systems 89: 225–247. 711 

Theil, H. 1971. Applied Economic Forecasting, 2nd Pro. North-Holland Publishing 712 
Company, Amsterdam. 713 

Thilmany, D. 2012. What are niche markets? What advantages do they offer? Assessment and 714 
Strategy Development for Agriculture 1: 1–12. 715 

Tinsley, T. L., S. Chumbley, C. Mathis, R. Machen and B. L. Turner. 2019. Managing cow 716 
herd dynamics in environments of limited forage productivity and livestock marketing 717 
channels: An application to semi-arid Pacific island beef production using system 718 
dynamics. Agricultural Systems 173: 78–93. https://doi.org/10.1016/j.agsy.2019.02.014 719 

Turner, B. L., R. D. Rhoades, L. O. Tedeschi, R. D. Hanagriff, K. C. McCuistion and B. H. 720 
Dunn. 2013. Analyzing ranch profitability from varying cow sales and heifer replacement 721 
rates for beef cow-calf production using system dynamics. Agricultural Systems 114: 6–722 
14. https://doi.org/10.1016/j.agsy.2012.07.009 723 

Umberger, W. J., P. C. Boxall and R. C. Lacy. 2009. Role of credence and health information 724 
in determining U.S. consumers’ willingness-to-pay for grass-finished beef. Australian 725 

https://doi.org/10.1007/s13197-022-05360-0
https://doi.org/10.1007/s13412-015-0289-x
https://doi.org/10.1186/s40537-020-00405-7
https://doi.org/10.1186/s40537-020-00405-7
https://doi.org/10.1108/IJPPM-09-2018-0325
https://doi.org/10.1088/1757-899X/337/1/012014
https://doi.org/10.1088/1757-899X/337/1/012014
https://doi.org/10.1016/j.agsy.2019.02.014
https://doi.org/10.1016/j.agsy.2012.07.009


 

Journal of Agricultural and Resource Economics 53: 603–623. 726 
https://doi.org/10.1111/j.1467-8489.2009.00466.x 727 

U.S. Department of Agriculture, Economic Research Service. 2023. Livestock and meat 728 
domestic data: all meat statistics. U.S. Department of Agriculture, Economic Research 729 
Service. https://www.ers.usda.gov/data-products/livestock-and-meat-domestic-data/ 730 

https://doi.org/10.1111/j.1467-8489.2009.00466.x
https://www.ers.usda.gov/data-products/livestock-and-meat-domestic-data/

	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Conceptualization and Model Overview
	2.2. Quantitative Model Description
	2.3. Model Calibration and Evaluation
	2.4. Exploratory Simulation Experiment

	3. Results and Discussion
	3.1. Model Calibration and Evaluation Results
	3.2. Exploratory Simulation Experiment Results
	3.3. Comparison with Other Commodity Models
	3.4. Discussion, Limitation and Implications For Agricultural Systems Policymaking

	4. Conclusions
	References

