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Abstract

Understanding when groups make good or bad collective decisions is a central societal con-

cern, with social influence being a key factor. Experimental findings on its effects are mixed—

some suggest social influence helps, others that it hurts, and some suggest it depends on a myriad

of factors. We reconcile these disparate conclusions for binary choice tasks by proposing a sim-

ple mathematical model that captures individuals integrating independent judgment and social

information under various experimental structures. Our model predicts a bifurcation, the emer-

gence of two possible outcomes for group composition. By analyzing data from four published

experiments, we demonstrate that the predicted bifurcation has been present in some prior ex-

periments. The model also reproduces several disparate experimental findings: (1) The accuracy

of collective decisions is nonlinearly influenced by the accuracy of initial judgments; (2) Social

influence can enhance individual accuracy while reducing collective accuracy; (3) Groups can

exhibit self-correcting dynamics, avoiding lock-in of inferior options. Using the model, we pre-

dict that some of these effects hold only under specific conditions, and identify parameters where

we expect them to change. We then use our model to derive parameter regions under which we

expect social influence to improve or hinder collective accuracy. Notably, while the psychological

mechanisms remain consistent, the experimental structure—sequential or synchronous updating

and task difficulty—is critical in shaping outcomes. Our findings suggest that disjointed and

seemingly contradictory results can be explained through simple, first-principle models involv-

ing nonlinear interactions, offering a potential solution to reproducibility challenges in collective
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intelligence research.

1 Introduction

Human groups are often capable of outperforming their individual members (Surowiecki, 2005),

yet they have also collectively made decisions widely regarded as poor, such as companies making

erroneous strategic decisions and nations enacting disastrous political policies. With the identifi-

cation of a collective intelligence factor—where some groups consistently perform better across a

variety of tasks (Woolley et al., 2010), researchers have extensively investigated the conditions that

either enable or hinder group performance. A critical factor identified is social influence, whereby

individuals’ beliefs or behaviors are affected by those of others. Despite extensive studies, the liter-

ature presents disparate and sometimes conflicting findings on how social influence affects collective

intelligence.

Some experimental studies conclude that social influence negatively impacts collective intelligence

(Da & Huang, 2020; Frey & van de Rijt, 2021; Lorenz et al., 2011), and groups would achieve greater

accuracy if individuals arrive at their judgments independently, which are then aggregated by taking

the mean, median, or majority vote. The underlying mechanism posited is that independent errors

tend to be uncorrelated and thus cancel out during aggregation. Social influence can lead to herding

behavior, reducing the diversity of opinions and consequently increasing error correction (Becker

et al., 2017; Hong & Page, 2004). However, other experimental studies have found the opposite

effect—social influence aids individuals in refining their personal judgments, and when these are

aggregated, it enhances the accuracy of collective conclusions (Farrell, 2011; Gürçay et al., 2015;

Jayles et al., 2017).

Given these conflicting conclusions, numerous studies have argued that, as with many questions

in the social and behavioral sciences, it depends. A wide range of factors have been identified

as shaping these outcomes, including the structure of interaction networks and their adaptability

(Almaatouq et al., 2020; Becker et al., 2017), the distribution of initial judgments (Almaatouq

et al., 2022; Becker et al., 2022; Frey & van de Rijt, 2021), whether individuals report independent

judgments prior to interaction (Minson et al., 2018), aggregation method (Kao et al., 2018), and
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evaluation metrics (Frey & van de Rijt, 2021).

Even for the narrowly defined task of binary choice over factual questions, studies have found

disparate conclusions. For instance, one study found social influence increases individual accuracy—

defined as the likelihood of any individual choosing the correct answer—–but decreases collective

accuracy, or the likelihood of the group majority choosing the correct answer (Frey & van de Rijt,

2021). Another study revealed the effect of social influence depends on the group’s initial accuracy:

when initial accuracy exceeds 50%, social influence tends to enhance it, but when initial accuracy is

below 50%, social influence has a detrimental effect (Becker et al., 2022). Additionally, groups can

exhibit self-correcting behavior—when an inferior option gains popularity, the group will choose

it with a probability lower than its popularity, thereby reducing its appeal and avoiding lock-in

of the inferior option (van de Rijt, 2022). However, this self-correcting effect is not guaranteed in

human group dynamics and inferior options could persist in difficult tasks (Frey & van de Rijt,

2021). While these studies offer valuable insights, the lack of a cohesive theoretical framework has

become a bottleneck to generating broadly applicable, actionable insights.

While the experimental findings remain disparate, theoretical models investigating the role of social

influence in groups’ binary choice outcomes across various disciplines and methods have strikingly

converged on a common conclusion. These models consider groups making binary choices under

social influence across diverse contexts, encompassing both human and non-human animal groups,

including human economic decisions (Brock & Durlauf, 2001), human opinion formation (Mori

et al., 2012; Yang et al., 2021), bees selecting nesting sites (Gray et al., 2018), and fish choosing

paths to locate food (Couzin et al., 2011). The modeling methods span agent-based simulations,

utility maximization, and differential equations, each incorporating distinct contextual assump-

tions. For instance, some models assume interactions are mediated by spatial proximity, while

others do not. Despite variations, these theoretical approaches all predict that as social influence

surpasses a critical threshold, a bifurcation occurs, indicating that the number of possible group

compositions increases from one to two. With low social influence, the models predict a single

group composition—determining the proportion of the group choosing an option over the alterna-

tive. Conversely, with high social influence, the models predict two possible outcomes, and which

outcome occurs is subject to the interaction of the initial conditions with the basins of attraction
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of the two equilibria. Figure 1 compares three figures, each extracted from a theoretical modeling

study, to demonstrate this striking convergence across the literature. A summary of all five studies

reviewed is shown in Table 1.

Figure 1: Figures from three prior modeling studies illustrate a remarkable convergence in the
theoretical literature on the effect of social influence on collective outcomes for binary choices.
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Notes. (A) From Couzin et al. (2011), for fish selecting travel directions to locate food. (B) From Gray et al. (2018),
for honey bees choosing nesting sites. (C) From Yang et al. (2021) for human opinion formation. Despite differences
in variable names across studies, the horizontal axes represent the strength of social influence, while the vertical axes
indicate the popularity of one option within the group. In all three plots, the upper and lower branches correspond to
stable equilibria, while the middle branch represents an unstable equilibrium, which does not manifest in real-world
experiments.

This critical insight of bifurcations remains largely overlooked in the collective intelligence exper-

imental literature. We propose that much of the confusion in the experimental literature can be

clarified, and ultimately reconciled, by incorporating the bifurcation phenomenon and its underly-

ing mechanisms into a cohesive theoretical framework. While prior models often rely on specific

assumptions that limit their applicability to collective intelligence experiments, we aim to formu-

late a general, and flexible mathematical model that captures the key effects of social influence

on group opinion composition. We first demonstrate that this model reproduces the bifurcation

predictions of more complex prior models. We then analyze data from four previous experiments on

binary choices, demonstrating that evidence of two equilibria under high social influence is already

present in existing data. Using simulations, we replicate the conditions of prior experiments, and

show that disparate empirical findings can be predicted and reconciled by the same model under

different parameters. Specifically, the prior findings we will replicate are: (1) Initial accuracy non-

linearly affects collective accuracy under social influence (Becker et al., 2022); (2) Social influence
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Table 1: Summary of theoretical models examining the impact of social influence on collective
decision-making in binary choice tasks, reaching bifurcation predictions.

Study Agents Task Model method

Brock and
Durlauf (2001)

Human
Make binary
choice

Utility maximization

Couzin et al.
(2011)

Fish
Choose path to
locate food

Agent-based, supported by
differential equation exten-
sion

Mori et al. (2012) Human
Make binary
choice

Stochastic simulation

Gray et al. (2018) Bees Choose nest site Agent-based

Yang et al. (2021) Human
Make binary
choice

Differential equation, sup-
ported by agent-based ex-
tensions

can enhance individual accuracy while impairing collective accuracy (Frey & van de Rijt, 2021);

and (3) Groups can demonstrate self-correcting dynamics, reducing the prevalence of inferior op-

tions in subsequent response (van de Rijt, 2022). Our theory further predicts that some of these

conclusions hold only under specific conditions, and we outline the circumstances under which we

expect these conclusions to change. We use this model to further delineate conditions under which

social influence is expected to improve or hinder collective intelligence.

2 Mathematical model

We consider a group of individuals making a binary choice between options X and Y, which are two

potential answers to a factual question, and X is the correct answer. Each individual’s decision is

modeled as a combination of two components: independent judgment—the choice they would make

in isolation—and social influence—the effect of others’ choices on their decision. This consideration

aligns with several established models of group opinion formation, including the DeGroot (1974)

model and the studies reviewed in Table 1.

Independent judgments are shaped by alignment with prior internal beliefs (Dalege et al., 2024).

For example, one’s opinion on the effectiveness of the COVID-19 vaccine may be closely tied to

beliefs about the government and pharmaceutical companies. In this study, we assume that these

independent judgments remain stable throughout an experiment. Social influence, on the other
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hand, often operates on a frequency-dependent basis, particularly in situations where individuals

lack clear track records to enable payoff-based learning (Mesoudi, 2016), as is the case in the collec-

tive intelligence experiments we are aiming to reconcile. In frequency-dependent social learning, a

response that has been demonstrated to be both evolutionarily adaptive and empirically prevalent

is the tendency of individuals to disproportionately adopt the majority behavior (Efferson et al.,

2008; Henrich & Boyd, 1998). For instance, if 60% of individuals are observed choosing a par-

ticular option, the probability of another individual adopting that same option exceeds 60%. In

Supplementary Information, we discuss how our predictions would change if this over-response to

the majority is not present.

A simple and generalizable way to formulate the combination of individual judgment and social

influence mathematically is as follows. For an individual i, we denote the proportion of other

individuals choosing X observed by i, as x̃i. The probability of i choosing the correct option, X,

is

P (x)i = (1− wi)I + wiS(x̃i) . (1)

Parameter I, ranging between 0 and 1, denotes the independent accuracy for the task—the prob-

ability for individuals to choose the correct option independently. It reflects task difficulty, or the

degree of alignment between the correct answer and individuals’ existing beliefs. A high I value

indicates that individuals are likely to answer correctly when acting independently, suggesting the

question is relatively easy. When I = 0.5, the probability of individuals answering correctly is

equivalent to random guessing, indicating a challenging question. For I < 0.5, the correct answer

is counter-intuitive given existing beliefs, making incorrect responses more likely.

The term S(x̃i) denotes the likelihood of choosing an option when the decision is solely based on

the observed frequency in others. It follows an S-shaped curve, reflecting the disproportionate

adoption of majority behavior characteristic of social learning (Claidière & Whiten, 2012). This

function should also satisfy S(1) = 1 and S(0) = 0, indicating that when an individual makes

their decisions solely based on social information, if they observe everyone else choose a particular

option, they will also choose that option. Additionally, this function needs to satisfy S(0.5) = 0.5,

implying that when an individual encounters ambivalent social information, social influence should
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remain neutral, favoring neither option. One S-shaped functional form satisfying these properties is

S(x) = xα/(xα+(1−x)α), which we will use for the remainder of this paper. A visualization of this

function is shown in Figure 2(B). We choose this functional form because it is parameterized by a

single shape parameter, α > 1, allowing us to vary the degree of nonlinearity. In the Supplemental

Information, we present analytic results showing the main prediction of the model applies to general

S-shaped conformity function and is not sensitive to this choice of functional form.

The parameter wi represents the extent to which individual i weights social influence relative to

their independent judgment, with values ranging from 0 to 1.

2.1 Simulating sequential updating experiments

To assess whether prior experimental results can be reproduced using the mechanisms described

above, we integrate these mechanisms with experimental structures. In many experiments and

real-world settings, individuals interact sequentially: the first individual makes a choice, the second

observes this choice before making their own, the third observes the choices of the first two, and

so on. This process can be effectively modeled by simulating Equation 1 within an agent-based

simulation. In sequential updating, the strength of social influence starts at zero for the first

participant and increases with each subsequent participant in the sequence but with diminishing

returns, as social information coming from more individuals is expected to carry more weight.

Thus the first individual chooses the correct answer with probability I, and the weight of social

information, w, grows as a function of the participant’s order in the experiment, i, with diminishing

returns. This can be mathematically formulated as wi = a i/(1 + a i), where a is a positive

constant. The first participant has order i = 0. A visualization of this function is shown in Figure

2(C). The choice of this functional form is motivated by its use in the Polya Urn model (Mahmoud,

2008), a classic framework for path-dependent phenomena. Greater values of a imply stronger

social learning. Note that when i = 1/a, wi = 1/2. This implies that 1/a represents the number

of individuals whose influence is weighted equally to an individual’s own independent judgment.

In the sequential updating formulation, x̃i in Equation 1 denotes the proportion of participants

choosing option X prior to participant i.
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2.2 Simulating synchronous updating experiments

The second type of process studied in experiments and observed in real-world scenarios involves

individuals initially forming opinions independently, announcing them synchronously, followed by

several rounds of interaction where individuals update their positions, culminating in a majority

vote. In this type of process, heterogeneity in social influence strength can be ignored, setting

wi = w for all individuals. Assuming all-to-all interaction, as is the case in the experiments we aim

to reproduce, the observed proportion choosing option X is the overall proportion in the group, x.

Thus, Equation 1 simplifies to,

P (x)i = (1− w)I + wS(x) . (2)

We will use an agent-based simulation of Equation 2, where agents update simultaneously to sim-

ulate one round of synchronous update. Updates are performed multiple times, to generate the

predicted distribution of responses in the synchronous updating experiment.

Note that the individual-level dynamics described by Equation 2 lends itself to a simple mean-field

formulation at the group level in the limit of large group sizes. At any time t, the proportion of

individuals choosing X is given by xind = (1 − w)I + wS(x). Assuming individuals update their

choices on a timescale τ , the evolution of the group’s proportion selecting option X can be described

by the following differential equation,

dx

dt
=

xind − x

τ
(3)

We will also analyze the equilibrium solutions of this differential equation, which satisfy x =

(1− w)I + wS(x), to derive theoretical results.

3 Results

3.1 Model’s bifurcation predictions

This model, in both the sequential updating and synchronous updating forms, reproduces the

bifurcation observed in prior theoretical literature using more complex models. Figure 3(A) presents
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results using the sequential updating version of the model, derived via agent-based simulations of

Equation 1. Each marker represents a simulation of a group of 100 individuals, with 50 groups

simulated for each level of social influence. The results demonstrate that under high social influence,

some groups overwhelmingly select the correct answer, while others converge on the incorrect

one.

Similarly, Figure 3(B) shows predictions for synchronous updating experiments. The dots represent

results from agent-based simulation, where each marker represents a group of 100 individuals, and

each group had undergone 100 iterations of update, and x has reached convergence. Also 50 groups

are simulated for each level of social influence. We also show the equilibrium solution based on the

differential equation (Equation 3). The solid lines represent the solutions to stable equilibria, while

the dashed line indicates unstable equilibria. Unstable equilibria are not expected to be observed in

real-world experiments, as any fluctuation or noise would cause the group to deviate from them and

move to a stable equilibrium. Instead, these unstable equilibria serve as boundaries delineating the

basins of attraction for the two stable equilibria. In both the agent-based simulation and equilibrium

solutions, a similar bifurcation appears in the synchronous case. However, the prevalence of the

low-accuracy equilibrium is less prevalent than in the sequential updating scenario. In simulations

of both panels, and throughout the manuscript, we use shape parameter for the conformity function

α = 2.

The bifurcation results are those found in prior models such as in Figure 2. The intuition behind

these results is as follows: at one extreme, when individuals act independently, the group’s split

reflects the task’s independent accuracy. At the other extreme, when individuals rely solely on

social information, the group converges entirely on one option, which could be either correct or

incorrect. Thus, a bifurcation must occur in the transition between these extremes, shifting from

one outcome to two.

3.2 Bifurcation in existing experimental data and replicating experiments in

models

The model’s bifurcation prediction suggests that, under high social influence, the proportion of

the group choosing either option should exhibit a bimodal distribution, reflecting noisy realizations
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Figure 2: (A) Summary of the model input and output used to reconcile desperate experimental
findings. (B, C) Plots of functional forms used in the model.

(A)

Model

Output

Opinion distribution
In independent and influence conditions

Input

Parameters for psychological mechanism
• Shape of conformity function (𝛼)
• Weight of social influence (𝑤 or 𝑎)

Experiment structure
• Sequential vs. sync. update
• Task difficulty (independent accuracy) 

Performance metrics

• Individual accuracy
• Collective accuracy

(B)

(C)

Notes. (B) S(x), representing frequency-based conformity response, where likelihood of adoption increases with
observed frequency. (C) wi for sequential updating experiments, illustrating the weights of social information in
sequential updating experiments, which increases with the individual’s position in the sequence.

Figure 3: Model prediction for the proportion of individuals in each group that choose the correct
outcome, replicating bifurcation prediction in prior literature.

Notes. (A) For sequential updating experiments, based on agent-based simulation. Each marker represents a sim-
ulation of one group. (B) For synchronous updating experiments, dots are based on agent-based simulation. Solid
lines and dashed line represent stable and unstable equilibria of the mean-field differential equation for the system
(Equation 3).
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of the two equilibria. In contrast, under independent conditions, the model predicts an unimodal

distribution, as only one equilibrium is expected. To test these predictions, we reanalyze data

from four prior experiments, Frey and van de Rijt (2021)’s laboratory and online experiments,

Becker et al. (2022)’s binary exchange experiment, and the experiment in Mori et al. (2012) (see

Supplementary Information for details on the data). All of the experiments are for binary choice

tasks over factual questions. They all compare the outcomes of an independent condition, where

individuals report their choices independently, with outcomes of an influence condition, where

individuals interact with one another. Three experiments (Frey & van de Rijt, 2021; Mori et al.,

2012) use sequential updating, and one (Becker et al., 2022) uses synchronous updating. Since the

model predictions are for tasks with a single level of independent accuracy, and the experiments

include questions with varying independent accuracy, we ensure a valid comparison by slicing

the experimental data for questions with independent accuracy between 0.4 and 0.6. This range,

corresponding to participants having a 40% to 60% chance of independently selecting the correct

option, also contains the densest data in the datasets.

Figure 4’s left column shows the distributions of the proportion of individuals that chose the correct

option in each group in the four experiments analyzed, with each observation representing a group.

The influence conditions exhibit a wider spread than the independent conditions. This suggests

that social influence leads to greater uncertainty in the group’s outcome, which is qualitatively

consistent with our model’s predictions.

We replicate the distributions in the social influence conditions of these experiments using agent-

based simulations of our model, taking as input the same distribution of independent accuracy

and group size as in the original studies. Across all simulations, we set the parameter α = 2.

For in-person sequential updating experiments (Frey and van de Rijt (2021) lab and Mori et al.

(2012)), we use a = 0.33; for the online sequential updating experiment (Frey and van de Rijt

(2021) online), we use a = 0.08; and for the synchronous experiment (Becker et al. (2022)), we use

w = 0.75. The synchronous experiment involved only two rounds of updates. The middle column

of Figure 4 shows our simulation results, which qualitatively align with the empirical data.

We quantitatively evaluate whether the experimental data are unimodal or bimodal as follows.

We fit these distributions to a truncated Gaussian, truncated between 0 and 1 (since proportions
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cannot exceed these bounds), representing the unimodal fit, and to the normalized sum of two

truncated Gaussians, representing the bimodal fit. We use the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) to evaluate which model better fits the data. These

metrics assess how well a model fits the data while penalizing models with more parameters, with

BIC applying a heavier penalty. Lower AIC and BIC values indicate a better-fitting model. Thus

if an unimodal fit better describes the data, than a bimodal fit, we would expect AICu −AICb < 0

and BICu −BICb < 0, where AICu and BICu are the AIC and BIC for the unimodal fit, and AICb

and BICb are those for the bimodal fit. Conversely, if the bimodal fit is better than the unimodal

fit, we would expect AIC1 − AIC2 > 0 and BIC1 − BIC2 > 0. The right side of Figure 4 presents

the model evaluation metrics for the three sequential updating experiments. In all cases, these

metrics support a bimodal distribution for the influence condition and an unimodal distribution

for the independent condition. The one exception is the Becker et al. (2022) experiment, where the

metrics indicate an unimodal fit for both conditions (Independent condition: AICu−AICb = −3.98,

BICu − BICb = −6.97; Influence condition: AICu − AICb = −1.55, BICu − BICb = −4.54). We

attribute this to the experiment’s synchronous updating being limited to only two iterations. Our

model replicates this pattern when restricted to two iterations (Figure 4(D2)), as strong bimodality

does not emerge within such a short time frame. However, when we extend the simulation to 100

iterations—where x converges—the model predicts a bimodal distribution (Figure 4(D3)).

In sum, bimodal distributions—resulting from the existence of two equilibria—are observed in

the social influence conditions of some, but not all, studies. This suggests that group majority

may arrive at an outcome in a given experiment but could reach a different outcome if the same

experiment is repeated.

3.3 Initial accuracy positively associated with collective accuracy after social

influence

A finding reported in Becker et al. (2022) is that initial estimates significantly impact the effect of

social influence on collective accuracy. For groups that have a high accuracy before social influence,

social influence further improves group accuracy. For those groups that have a low accuracy before

social influence, social influence decreases group accuracy. The effect diminishes for initial accuracy
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Figure 4: Distribution of the proportion of individuals in each group choosing the correct option
across four existing experiments compared with model’s predictions.

Becker et al.

Frey & van 

     de Rijt 
(Lab)

Mori et al.

Frey & van 

     de Rijt 
(Online)

Experimental data Model replication Model evaluation metrics

Model equilibrium

(A1) (A2)

(B1) (B2)

(C1) (C2)

(D1) (D2) (D3)

Notes. Independent conditions are shown in blue, while social influence conditions are shown in orange. Dashed lines
represent kernel density estimates of these distributions. The left column presents experimental data, the middle
column displays the model’s replication of the experiment, and the right column (for the first three experiments)
reports model evaluation metrics, all of which support bimodal fits for influence condition and unimodal fit for
independent condition. In the last row, the data and replication support unimodal fits for both conditions. Panel
(D3) shows the model replication ran to equilibrium, illustrating that the absence of bimodal behavior may stem
from the synchronous updating experiment analyzed being limited to only two rounds of updating.
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of 0%, 50%, and 100%. These findings are shown in Figure 5(A), where positive values indicate

that the social influence condition has higher accuracy.

Since this experiment uses synchronous updating, we replicate these results by simulating the

synchronous updating version of our model across varying levels of independent accuracy. We then

compare the change in collective accuracy—defined as the proportion of groups whose majority

selects the correct option—between the influence and independent conditions. The results, shown

in Figure 5(B), illustrate the relationship between initial accuracy (which is the same as independent

accuracy for synchronous updating) and change in collective accuracy between the two conditions

for various social influence weights (w). The solid lines show stable equilibria of the model, and

dashed lines show unstable equilibria, which would not be observed in an experiment. The pattern

seen in the prior experiment agrees with the simulated outcome for smaller values of w.

Figure 5: Data from Becker et al. (2022) on the relationship between initial accuracy and whether
social influence improves collective accuracy (A) compared with our model’s prediction (B).

1

Initial accuracy
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(A) (B)

Experimental data Model prediction

Notes. (B) Shows our model’s prediction for different levels of social influence (w), recovering the same empirical
patterns as (A), that social influence improves accuracy for initially accurate groups, but hurts accuracy for initially
inaccurate groups. Solid lines represent stable equilibria, while dashed lines represent unstable equilibria, which
would not be observed in experiments.

3.4 Social influence improves individual accuracy and reduces collective accu-

racy

A finding reported in Frey and van de Rijt (2021) is that social influence improves individual

accuracy, the likelihood of any individual choosing the correct answer, while reducing collective
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accuracy, the likelihood for the majority of groups to choose correctly. Data from this experimental

study are visualized in Figure 6(A). Since this experiment is performed with sequential updating,

we reproduce this finding by simulating the sequential updating version of the mathematical model

(Equation 1) in agent-based simulations. The simulations take as input the same distribution of

independent accuracy (I) and group sizes as the original experiments. Each condition is simulated

30 times, and the results, shown in Figure 6(B), confirm the reported findings: individual accuracy

improves under social influence, while collective accuracy decreases (p < 0.001).

However, this effect is only expected to hold for tasks with independent accuracy greater than

chance (I > 0.5). The analysis in Frey and van de Rijt (2021) excludes tasks with I < 0.5. As

noted in their supplementary information, the effect is predicted to reverse for tasks with I < 0.5.

We repeat the simulations using independent accuracy values reversed from the original experiment

(1−I), resulting in a distribution of independent accuracy values all below 0.5. As shown in Figure

6(C), the reversal is reproduced by our model: social influence reduces individual accuracy while

improving collective accuracy (p < 0.001).

Figure 6: Comparing data of Frey and van de Rijt (2021) with model’s predictions.

(A) (B) (C)

Notes. (A) Mean values from experimental data of Frey and van de Rijt (2021), showing that social influence
improves individual accuracy but reduces collective accuracy. (B) Simulation results replicating the experiment using
the mathematical model and the same task difficulty, reproducing effects observed in the experiments. (C) Simulation
results for a counterfactual scenario with lower independent accuracy (I < 0.5), showing reversed effects where social
influence harms individual accuracy but benefits collective accuracy. In (B) and (C), the model was simulated 30
times for each condition, with error bars representing the standard deviation across simulations. For all simulation
results, p < 0.001.

Our theoretical model provides a framework for understanding these results intuitively. We illus-
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trate using a simplified example of three groups, each consisting of three individuals, as shown

in Figure 7. For tasks with high independent accuracy (i.e., easier tasks), social influence tends

to improve individual accuracy by amplifying the majority’s correct position. However, this im-

provement primarily occurs in groups where the majority would have been correct even without

influence. Combined with the occasional amplification of an incorrect minority view, in the less

likely event that the incorrect minority speaks first, this dynamic can reduce collective accuracy.

This is illustrated in the first two columns of Figure 7: most of the time, social influence boosts

the frequency of the correct option (green circle), but this tends to happen in groups that would

have been correct without influence (first two rows). Occasionally, if an incorrect minority speaks

first, subsequent individuals may adopt this position, flipping a correct majority into an incorrect

one and reducing collective accuracy (last row). In this example, individual accuracy is six out of

nine (0.67) in the independent condition and increases to seven out of nine (0.78) in the influence

condition, indicating an improvement in individual accuracy. However, collective accuracy is three

out of three (1.00) in the independent condition, as the majority in all groups select the correct an-

swer. In the influence condition, the correct individuals are concentrated in groups that would have

been correct independently. In the last group, the group’s majority choose incorrectly. As a result,

collective accuracy decreases to two out of three (0.67) in the influence condition. Social influence

leads to what resembles a “gerrymandering” of choices, where the correct answer is concentrated

within groups that would have been correct without social influence.

Similar dynamics occur for counter-intuitive tasks with independent accuracy of less than 0.5,

illustrated in the last two columns of Figure 7. Here, social influence tends to amplify the majority’s

incorrect opinion, reducing individual accuracy. However, because this decline usually occurs in

groups that are already incorrect independently, and due to the occasional ability of a correct

minority to speak first and sway the group, social influence can increase collective accuracy.

3.5 Group self-correcting dynamics

Prior research has shown that groups often exhibit self-correcting dynamics—when an inferior op-

tion gains popularity, the group adjusts by choosing the inferior option at a frequency lower than

its current relative popularity. This dynamic prevents lock-in, a scenario where choices dispropor-
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Figure 7: An illustration of how social influence can improve individual accuracy while reducing
collective accuracy for tasks with high independent accuracy and have the opposite effect for tasks
with low independent accuracy.

High independent accuracy 
(Easy task)

Independent Influence

Low independent accuracy 
(Counter-intuitive task)

Independent Influence

Individual 
accuracy

6/9 = 0.67 7/9 = 0.78 
(improve)

3/9 = 0.33 2/9 = 0.22
(reduce)

Collective 
accuracy

3/3 = 1.00 2/3 = 0.67
(reduce)

0/3 = 0.00 1/3 = 0.33
(improve)

Condition

Example

Notes. Demonstrated using the example of three groups, each consisting of three individuals. Green circles denote
correct answers and red crosses denote incorrect answers.

tionately align with popularity, allowing an inferior option to dominate, which corresponds to the

grey-shaded regions of Figure 8. Above the diagonal line, the frequency of selection exceeds the

current popularity, reinforcing dominance and locking the group into the inferior choice. Reanal-

ysis of several behavioral experiments and an original experiment van de Rijt (2022) demonstrate

groups’ self-correcting dynamics. These span contexts including the Asch conformity experiment,

crowdfunding for projects, product reviews, and wine-wasting show lock-ins are avoided, shown

in Figure 8(A). Figure 8(B) presents reanalysis of the music lab experiment Salganik and Watts

(2008), which demonstrates the unpredictability of which songs achieve success due to information

cascades of initial popularity. In this figure, each number corresponds to a pair of songs. Figure

8(C) displays results from the original experiment, where participants are tasked with making bi-

nary choices. Across all datasets, self-correcting behavior is evident, as every data point remains

below the lock-in threshold, represented by the diagonal line.

It is important to note that self-correction is not guaranteed. Many social processes exhibit lock-in

effects, such as the dominance of technologies with network effects (Arthur, 1989), the persistence of

bestsellers and celebrity status (van de Rijt, 2022), and the outcomes of some collective intelligence

experiments (Frey & van de Rijt, 2021).
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Figure 8: Results from van de Rijt (2022) compared with model predictions

Results from van der Rijt (2022) Replication using model

(D) Lower social influence (E) Higher social influence(A) Past studies (B) Salganik & Watts (2008) (C) New experiments 

Lock-in 
equilibrium

Notes. (A)–(C) Figures from van de Rijt (2022) showing the frequency of choosing the inferior alternative as a
function of its popularity across various experiments. In all cases, the data remain outside the lock-in region, where
the popularity of the inferior alternative would be further amplified by individual’s choices. (D) Model prediction
showing probability of choosing an option based on its frequency for different levels of social influence (w). The
model replicates the experimental findings that lock-in is avoided when social influence is below a threshold. (E) At
higher levels of social influence, lock-in becomes possible. The red dots mark the points at which lock-in is predicted
to occur, where the popularity equals the choice probability.

Self-correcting behavior and the possibility of not self-correcting can both be explained with our

model by variation of the weight of the social influence parameter, w. With the simplifying as-

sumption that all individuals have the same w value, the proportion of individuals choosing an

option after social influence, given its current popularity x, is P (X) = (1 − w)I + wS(x). While

the model was formulated assuming X is the correct option, and x is the proportion choosing the

correct option, a similar equation can be formulated for the inferior option, Y , whose popularity (in

proportions) is y, P (Y ) = (1−w)Iy+wS(y), where Iy is the likelihood of choosing Y independently.

We plot this relationship between choice probability (P (Y )) and popularity (y) for various values

of w, with results shown in Figure 8(D) and (E). In these simulations, we set Iy = 0.3, meaning

that when individuals make independent choices, 30% will select the inferior option. When the

level of social influence is below a certain threshold, the popularity-choice curve remains below the

lock-in region (panel D). As social influence increases further, the curve can enter the lock-in region,

as shown in panel E. The red dots indicate the points where popularity equals choice probability

(where the curve crosses the diagonal line), representing stable equilibrium positions of the group

composition. Once lock-in occurs, the inferior option dominates the majority, though a minority

group resists adopting the inferior option. Thus we show self-correcting dynamics occur for some

values in the parameter space, but it is not guaranteed. These experimental results are a dynamic
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interplay between individual judgments and social influence, with the extent of social influence

modulating whether self-correcting dynamics occur.

3.6 Delineating conditions under which social influence harms or improves col-

lective accuracy

In the sections above, we show several conclusions from prior experiments can be explained by

integrating the same mathematical model with their respective experimental procedures. Here, we

use the model to predict general conditions under which social influence is expected to improve

or hinder collective accuracy. Using our model, we compute the predicted difference in collective

accuracy—defined as the probability of the group majority choosing correctly (Prob(x > 0.5))—

between the social influence and independent conditions, where positive values indicate social influ-

ence condition being more accurate. These results, shown in Figure 9, are presented as a function

of independent accuracy, which reflects task difficulty, and the degree of social influence, which is

controlled by parameter a for the sequential updating version of our model and by parameter w

for the synchronous updating version. For each point in the parameter space (a 51 × 51 grid), we

simulate 400 groups of 21 individuals and compare the average collective accuracy between social

influence and independent conditions. The synchronous condition is simulated to equilibrium in

x with 75 revisions. Blue regions indicate where social influence enhances collective accuracy, red

regions indicate where it diminishes accuracy, and grey regions indicate no predicted effect. In

the Supplementary Information, we show that varying group size does not qualitatively alter these

results, though it may affect the size of the blue and red areas.

The results reveal a fundamental distinction between sequential (Figure 9(A)) and synchronous

(Figure 9(B)) updating processes. For easier tasks (independent accuracy I > 0.5), social influence

reduces collective accuracy in sequential updating. In synchronous updating, a similar effect occurs

at very high levels of social learning; however, at more moderate levels, the relationship reverses,

and social learning enhances collective accuracy. For counterintuitive tasks (I < 0.5), these pat-

terns are reversed: social influence improves collective accuracy in sequential updating, whereas

in synchronous updating, this improvement is observed only at very high levels of social learning,

while moderate levels lead to a decline in accuracy.
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Figure 9: Model’s predicted difference in collective accuracy between social influence and indepen-
dent conditions.

Notes. (A) For sequential updating experiments. (B) For synchronous updating experiments. Blue regions (positive
values) indicate where social influence is expected to improve collective accuracy compared to independent conditions,
while red regions (negative values) indicate where it is expected to reduce collective accuracy. For both panels, the
vertical axis is a model parameter where high values indicate greater weight of social learning. For the same level of
independent accuracy, social learning can have the opposite effect on collective accuracy depending on whether the
experiment is performed using sequential or synchronous updating.

While both updating processes produce similar bifurcation patterns (Figure 3), they lead to different

collective accuracy outcomes. This difference arises because the probability of reaching high- or

low-accuracy equilibria varies between the two processes. Compared to synchronous updating,

sequential updating is more likely to result in low-accuracy equilibria, as outcomes heavily depend

on the accuracy of the initial decision-maker. An incorrect first decision significantly increases the

likelihood of the group converging on the low-accuracy outcome. In contrast, synchronous updating

requires a larger proportion of individuals to be initially incorrect for the group to shift toward

the low-accuracy equilibrium, making such outcomes less probable. This distinction is evident in

Figure 3, where the prevalence of simulations clustering around low-accuracy equilibria is greater

in (A) than in (B).

The model’s prediction that sequential and synchronous updating leads to different conclusions

aligns with prior findings. For instance, easier tasks are associated with higher initial accuracy.

According to Becker et al. (2022), social influence tends to enhance collective accuracy in such

tasks. However, Frey and van de Rijt (2021) also examine easy tasks and find that social influence

reduces collective accuracy. This apparent contradiction can be reconciled by taking into account

the fact that the former study employs synchronous updating, while the latter uses sequential
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updating, and we should expect social influence to have the opposite effect on collective accuracy

in these two processes for a moderate level of social learning. The model’s prediction also suggests

that task difficulty plays a crucial role in determining whether social influence helps or harms

collective accuracy, as indicated by the reversal of results in Figure 9 across the I = 0.5 line. This

finding aligns with the results in Section 3.4, where social influence has opposite effects on collective

accuracy for easy versus counterintuitive tasks.

4 Discussion

We have demonstrated that seemingly disparate—and at times contradictory—experimental find-

ings can be effectively reconciled within a unified mathematical framework that models how in-

dividuals integrate independent judgments and social information, when combined with specific

experimental designs. The model predicts that in easy tasks, a very high level of social influ-

ence is always detrimental. However, for a moderate level of social influence, the impact depends

on the mode of updating: synchronous updating enhances collective accuracy, while sequential

updating undermines it. Task difficulty also plays a crucial role—these relationships reverse for

counter-intuitive tasks, where the correct answer contradicts prior beliefs.

These findings suggest that for everyday decisions where independent judgments are typically re-

liable, it is crucial to create mechanisms that allow individuals to form and express their opinions

independently rather than being influenced by others before forming their own views. Practical

strategies to mitigate the downsides of sequential updating include using real-time online polling

tools to gather and share responses simultaneously or encouraging group members to independently

think through and write down their answers before sharing them with the group, such as the Delphi

method. These approaches help preserve the benefits of social influence while avoiding the pitfalls

of premature influence.

Researchers study collective intelligence typically with the goal of determining how to structure

groups for optimal performance. Our findings suggest that when a group faces uncertainty—–such

as not knowing in advance whether a task is easy or counterintuitive—–designing the optimal com-

munication structure becomes challenging. The same structure can yield opposite effects depending
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on task difficulty. This underscores the need to move beyond a purely optimization-focused ap-

proach in collective intelligence research. Instead of seeking a single “best” structure, it is crucial

to consider how groups can adapt to a broader range of environments (Galesic et al., 2023). Effec-

tive collective intelligence may require groups to dynamically adjust their social structures as they

encounter new tasks.

Our model makes several simplifying assumptions to maintain parsimony. We assume that the

weight of social influence does not change with the level of consensus among others. While our

model accounts for individuals being more inclined to choose an option when it is overwhelmingly

favored (as captured in the formulation of the S function), we acknowledge that, in reality, the

weight of social influence (w) may also increase as consensus strengthens. Additionally, our model

neglects the effect of having a single ally in social influence—individuals are known to conform

significantly less when they have one ally compared to none (Morris & Miller, 1975). Since our

model formulates social influence in terms of proportions, it does not capture this effect. Future

work could enhance our model by incorporating these more complex hypotheses to better reflect

real-world dynamics.

In this paper, we focus on binary choice tasks with a known correct answer. However, many real-

world decisions do not have known correct answers at the time the decisions are made. Examples

include determining which strategy a company should adopt, whether legislators should pass a

particular bill. While a factually correct answer does not exist when the group makes a choice, cer-

tain choices may yield more adaptive outcomes—though only apparent in hindsight. For example,

one strategy can lead to greater future revenue for the company, and one bill aimed at reducing

the unemployment rate turns out more successful than the alternative. From the perspective of

individual participants, however, the process is the same whether or not a correct answer exists in

priori or it is only known in hindsight, as they remain agnostic to the correct answer throughout

the collective decision-making process.

Our model can be further extended to scenarios where no objective right or wrong answer ex-

ists, even in hindsight. Such situations are particularly relevant to democratic elections, such as

deciding which candidate should be elected president. In these cases, a sensible objective for the

collective decision making process is for collective decisions to reflect the majority preference among
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participants’ independent judgments. In these cases, the parameter I can be reinterpreted as the

likelihood of any individual to prefer X over Y while independent. Within this new interpretation

of parameters, the model could be used to evaluate whether the collective decision aligns with the

majority’s independent preferences. Assuming I > 0.5, that is effectively selecting option X.

While our model focuses on binary choices, most experiments in collective intelligence involve nu-

merical estimation tasks, likely inspired by Galton (1907)’s classic demonstration of cow weight

estimation. However, many of the highest-stakes decisions in organizations and society are discrete

choices—such as selecting a president or strategy. This consideration motivated our choice to focus

on discrete choices in our study, and we advocate for more experimental research on such decisions

within the collective intelligence community. Although discrete choice and numerical estimation

tasks are closely related—for instance, some discrete decisions can be derived by thresholding con-

tinuous values—Becker et al. (2022) demonstrated that insights from numerical estimation tasks

cannot always be directly applied to related discrete choices derived from thresholding. Future stud-

ies could also extend our modeling framework to numerical estimation tasks by replacing the social

influence term, S(x̃), with a function that incorporates the mean or median of others’ numerical

estimates.

In collective intelligence research and social behavioral sciences more broadly, there have been seri-

ous concerns over experiments conducted under narrowly specified conditions attempting to make

broad conclusions that contradict each other. The condition of applicability for these experimental

results is frequently under-specified, complicating efforts to derive actionable insights. Our finding

underscores this issue, showing that aspects of experimental design beyond the primary independent

variable—social influence—such as sequential versus synchronous updating and task difficulty, play

a critical role in shaping conclusions about whether social influence improves or impairs collective

accuracy.

The same concern over the applicability problem has been brought to attention in the collective

intelligence community by Almaatouq et al. (2024). Echoing Newell (1973), they liken such ex-

periments to “playing 20 questions with nature,” oversimplifying complex phenomena into a series

of binary answers. To address this concern, they advocate for using machine learning to predict

general outcomes from experimental data, moving away from human-centered interpretations in
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order to gain predictability. While we acknowledge the same problem, we believe the solution need

not forgo interpretability. Our results demonstrate that by carefully formulating simple, human-

interpretable mathematical models, we can reconcile disparate findings. Despite the complexity

of the experimental literature, many outcomes can be understood as the interaction of the same

psychosocial mechanisms of human behavior with various structure of experimental setups. The

insights derived from these models can help the design of future collective intelligence experiments

to carefully consider nuanced but critical factors, such as which updating procedure and tasks to

use.

Besides implications for the collective intelligence community, our work raises important questions

for the broader social and behavioral research community. The multi-equilibrium behavior our work

highlights is a common feature of collective human behavior driven by reinforcing feedback loops

that amplify initial advantages (Arthur, 1989; Sterman, 2000). How can experiments meaningfully

account for the complexity of multi-equilibrium dynamics? Most experimental methods rely on

comparing means between conditions, but this approach fails to capture the important properties

of bimodal distributions effectively. This underscores the need for better methods to study multi-

equilibrium phenomena. Inspiration may come from “multiple-worlds” experiments, such as the

music lab study by Salganik et al. (2006) or the partisan polarization experiment by Macy et al.

(2019), which explicitly examine the existence and characteristics of multiple equilibria.
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Gürçay, B., Mellers, B. A., & Baron, J. (2015). The power of social influence on estimation accuracy.

Journal of Behavioral Decision Making, 28 (3), 250–261.

Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of

between-group differences. Evolution and Human Behavior, 19 (4), 215–241.

Hong, L., & Page, S. E. (2004). Groups of diverse problem solvers can outperform groups of high-

ability problem solvers. Proceedings of the National Academy of Sciences, 101 (46), 16385–

16389.

Jayles, B., Kim, H.-r., Escobedo, R., Cezera, S., Blanchet, A., Kameda, T., Sire, C., & Theraulaz,

G. (2017). How social information can improve estimation accuracy in human groups. Pro-

ceedings of the National Academy of Sciences, 114 (47), 12620–12625.

Kao, A. B., Berdahl, A. M., Hartnett, A. T., Lutz, M. J., Bak-Coleman, J. B., Ioannou, C. C.,

Giam, X., & Couzin, I. D. (2018). Counteracting estimation bias and social influence to

improve the wisdom of crowds. Journal of The Royal Society Interface, 15 (141), 20180130.

Lorenz, J., Rauhut, H., Schweitzer, F., & Helbing, D. (2011). How social influence can undermine

the wisdom of crowd effect. Proceedings of the National Academy of Sciences, 108 (22),

9020–9025.

Macy, M., Deri, S., Ruch, A., & Tong, N. (2019). Opinion cascades and the unpredictability of

partisan polarization. Science Advances, 5 (8), eaax0754.
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