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Abstract 
The integration of artificial intelligence (AI) techniques into system dynamics (SD) may show 

promising potential for enhancing the dynamic modelling process, structure and behaviour 

analysis, and decision-making capabilities in complex systems. This article explores the 

advancements and future directions in combining AI with SD modelling. Especially, we highlight 

specific applications of AI techniques that can be employed at different stages of the SD modelling 

process, including augmented SD with computer vision, dynamic model building in natural 

language, and AI-generated learning environment design. It is expected that AI tools like ChatGPT 

can play a key role of copilot to help develop model structures and understand dynamic behaviours. 

Furthermore, we discuss the key benefits, challenges, and opportunities that may arise from AI-

enriched modelling and simulation, emphasizing the need for interdisciplinary collaboration and 

bold attempts in the SD society. 
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1. Introduction 

During the 1950s, artificial intelligence (AI) and system dynamics (SD) were found almost in the 

meantime. It’s considered by many that the field of AI research was born at a workshop hosted by 

John McCarthy and Marvin Minsky at Dartmouth College in 1956 (Anyoha, 2017). By the same 

year, Professor Jay Forrester joined the MIT Sloan School of Management and began to apply 

engineering insights to management and business issues, which led to the creation of SD later 

(Lane, 2007). There is no doubt that both disciplines have made tremendous progress and 

contributions to social and human development over the last sixty years. Specifically, the launch 
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of ChatGPT (Open AI, 2022) has successfully attracted the wide public attention and tiggered 

much concern on human safety in the short future (Makridakis, 2017; Marr, 2018). However, it 

has been widely acknowledged that AI techniques can greatly boost the productivity of human 

beings, according to suggestive evidence (Brynjolfsson et al., 2023; Noy & Zhang, 2023) and to 

our own user experience. As a general-purpose technology, integrating AI techniques into other 

disciplines is expected to stimulate their development into a new era and bring many possibilities 

in the foreseeable future. 

With regard to SD, there had already been some methodological advances and successful 

applications of machine learning algorithms and techniques in the domain focusing on automated 

parameter estimation and calibration, decision support and policy optimization, and loop 

dominance analysis (An et al., 2015; Schoenberg et al., 2020; Yücel & Barlas, 2011), prior to the 

announcement of ChatGPT. Not long after this, there has been a growing trend of integrating SD 

modelling workflow and advance AI techniques. For instance, a few recent studies show great 

promise in combining AI language models with qualitative SD research like constructing causal 

loop diagrams (CLD) from textual data (Hosseinichimeh et al., 2024; Veldhuis et al., 2024) or 

replicating interview data analysis with ChatGPT (Jalali & Akhavan, 2024). In addition, 

Rahmandad et al. (2025) underscored the potential of deep learning technique of Amortized 

Bayesian Inference for scalable likelihood-free parameter estimation in quantitative SD modelling 

work, and Hu (2025) talked about how to embed and simulate SD models directly in ChatGPT 

conversational AI. 

Looking ahead, the need for significant changes in the field of SD in order to realize its full promise 

had been well recognized by the founder Prof. Forrester (2007). Hence, incorporating some state-

of-art AI techniques into SD is expected to revolutionize the traditional dynamic modelling process, 

structure and behaviour analysis, group model building, and so on (Sterman, 2000, ch. 22.2). For 

this reason, this article is intended to present some subjective but visionary perspectives or ideas 

on how to advance SD with the emergence of AI by giving several possible application cases. The 

primary purpose of this research is to explore the frontier and to share useful insights with the wide 

SD modellers to work together and prepare for the challenges and opportunities lying on the path 

forward (Sterman, 2018). 
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2. The dissemination of ChatGPT 
ChatGPT is an AI chatbot built upon GPT-3.5 and GPT-4, which was developed by OpenAI and 

launched on November 30, 2022 (Wikipedia, 2023b). In essence, it is driven by large language 

models (LLMs) based on a wide variety of training data. As an advance natural language 

processing (NLP) tool, ChatGPT can be used to compose written content, to solve math problems, 

to write programming codes, and much more new possibilities and functions are still under 

development. As human beings, we can always get instant answers, find creative inspiration, and 

learn something new from ChatGPT (OpenAI, 2023), which has made it extraordinarily popular 

among students, scholars, reporters, programmers, and others. According to the user data3 (Cuevas, 

2023), it is reported that ChatGPT reached 1 million users in just 5 days from launch. By contrast, 

it took approximately 75 days and 5 months for Instagram (Meta Platforms, Inc.) and Spotify 

(Spotify AB) respectively to achieve the same number of active users in the past. Furthermore, we 

build a simple SD model for the innovation diffusion process by using the classic and generic 

“Bass Diffusion” model structure (Sterman, 2000, Ch. 9), shown in Fig. 1 (a). In general, the 

adoption rate (AR) is an aggregation of the “advertising” effect and “word of mouth” effect. At 

the very beginning, the positive feedback loop (R) dominates the innovation diffusion process and 

reinforces the “word of mouth” effect as the number of adopters (A) increases. Therefore, more 

and more potential users start to adopt these new digital platforms and an exponential growth trend 

is generated. Fig. 1 (b) compares the development paths to 1 million users for each platform and 

illustrates how fast the adoption of ChatGPT is. However, as the number of potential adopters (P) 

declines and market saturates, the negative feedback loops (B1 & B2) will gradually dominate the 

system and the AR will decrease in the end. Although the SD model in Fig. 1 is overly compact 

with a number of simplifying assumptions, it helps aid understanding of the dynamic innovation 

adoption process and clearly indicates the potential “limits to growth” (Meadows, 2008, ch. 2) in 

the future by making the negative feedback loops (B1 & B2) explicit in the model.  

 
3 The data are very limited because there are no detailed daily user data available for reference and calibration. 
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Fig. 1. Model structure and dynamic behavior for the 3 digital platforms’ adoption, see APPENDIX A for detailed 
model documentation. In (a), the SD model structure is the same for modelling the diffusion of each platform, but the 
calibrated parameter (i.e., Adoption Fraction i) values are different by using the array function. In (b), the simulation 
runs from 0 to 150 days, but the behaviors are omitted for brevity when the number of users reach 1 million. 
 

3. The potential of AI to improve SD modelling process 

Instead of focusing on the adoption dynamics of ChatGPT, it is of great concern and interest to SD 

modellers or practitioners that how we can take advantage of sophisticated AI techniques to aid 

and improve our modelling practice. More than 2 decades ago, the well-known SD expert with 

great foresight - Professor John Sterman (2000, ch. 22.2) talked about automated help, like 

dimension consistency test, robustness test, and others by harnessing AI tools. According to his 

vision, “it should soon be possible for simulation software to serve as an automated model-

building tutor and guide” (Sterman, 2000, pp. 897-898). Given the great potential of AI techniques, 

the integration of AI into SD is expected to offer a whole new way to build and understand SD 

models in the future. And the long-sought holy grail of automated dynamic model building will 

eventually happen. To reach this goal, there are some promising directions, as depicted in Fig. 2, 

where AI techniques are supposed to be applicable from a broad range of domains, including but 

not limited to augmented SD models with computer vision, to dynamic model building in natural 

language, and to AI-generated management flight simulator. 
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Fig. 2. Schematic diagram of possible AI-driven application cases in the field of SD. 
 

• Augmented SD with computer vision 

The transformation of static stock and flow diagrams (SFD) into fully interactive, embedded SD 

simulation models represents a significant advancement in modelling practice. By leveraging NLP 

capabilities, such as those offered by ChatGPT, alongside computer vision and standardized file 

formats like XMILE (xmile-v1.0, 2015), modellers can now automate the extraction of structural 

information from hand-drawn or digitally produced SFDs and rapidly generate executable 

simulation models. 

The first step in this integrated workflow involves the use of ChatGPT to analyze images of SFDs. 

Through computer vision techniques, potentially augmented by deep learning-based object 

detection methods, the static diagram is processed to identify the fundamental components of an 

SD model. ChatGPT is then queried to classify these visual elements into stocks, flows, auxiliary 

variables, and connectors. This initial extraction phase provides a structured representation of the 

diagram in JSON format, which captures not only the variable names but also the inherent causal 

links between them. Once the model structure is identified, the next step is to refine the model by 

requesting ChatGPT to suggest appropriate equations, units, and parameters for each variable. 
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The subsequent phase involves the conversion of the structured JSON output into a formal XMILE 

file. XMILE is an XML-based standard for representing SD models, which is widely adopted for 

its interoperability between different SD modelling tools like Vensim (ventana systems inc), Stella 

(isee systems inc, 2023), and Anylogic (The AnyLogic Company). By building an API interface 

between ChatGPT and the SD modelling software, the JSON data can be programmatically 

transformed into the XMILE format. This process involves mapping the JSON fields such as 

variable names, equations, inflows, outflows, and connector relationships into the corresponding 

XMILE tags. For instance, stock variables in the JSON are written as <stock> elements with 

nested <eqn>, <inflow>, and <outflow> tags, and flows and auxiliaries are mapped in a similar 

way as required by the XMILE specification. APPENDIX B presents the sample Python code to 

create interactive and embedded SD simulations directly from static SFDs by using the computer 

vision of ChatGPT. 

This integrated approach exemplifies the concept of “augmented SD”, where advanced AI tools 

not only facilitate model creation but also serve as a bridge between static diagrammatic 

representations and interactive simulations (Gunturu et al., 2024). By automating the tedious and 

error-prone process of manual model transcription, SD modellers and practitioners can focus on 

refining model logic, validating assumptions, and exploring complex system behaviours more 

efficiently. Furthermore, the seamless embedding of these models into SD simulation software via 

a standardized API can accelerate the iteration cycle and fosters greater reproducibility in 

modelling studies. In summary, the use of ChatGPT in conjunction with computer vision 

techniques to extract and annotate static SFDs and the subsequent translation of these annotations 

into standard XMILE files, provides a powerful framework for the creation of interactive and 

embedded SD simulations. This augmented modelling approach not only enhances productivity 

but also opens new avenues for research and application in the field of SD. 

• Dynamic model building in natural language 

With the help of AI language models like ChatGPT, it has been demonstrated that users can explore 

SD models through natural language interactions (Hu, 2025). To be more exact, by translating SD 

models with PySD (Martin-Martinez et al., 2022), ChatGPT is capable of running simulations 

based on user-provided parameters and offering explanations for cause and effect relationships, 

and providing detailed analyses and visualization of the simulation results. However, there is a key 
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question related to the application case suggested by Hu (2025) – where does the fundamental SD 

model come from? It seems that the previous study solely deals with using ChatGPT to aid our 

understanding of extant SD modelling work without toughing upon the origin of SD models, 

namely the fundamental structure development. 

As a causal modelling methodology, the model structure is essential for SD simulation work 

because structure determines behavior (Kampmann & Oliva, 2009; Meadows, 2008, ch. 2; 

Schoenenberger et al., 2021; Sterman, 2000). Choosing the appropriate and reasonable SD model 

structure is generally difficult and iterative, which mostly depends on the modeller’s understanding 

of the research context at hand and their experience in SD modelling. Over the last few decades, 

SD modellers have learned to build dynamic models by placing stocks and flows one by one on a 

blank page, which is time-consuming and limited to our mental model database. Although the 

popular SD simulation software Stella (isee systems inc, 2023) provides a new function called 

“Assembly” at the moment, it still has some limitations. One of the challenges is “availability”. 

As human beings are bounded by rationality and memory, the ideal model structures are not always 

available when we need. For example, the modeller has to be very familiar with all the stored 

assemblies first, then they can select one or more assemblies and add to the model structure. 

Without good understanding of all the stored model structures in the assembly, the modellers can 

easily get lost and do not know how to select and what to select at all.  

On the contrary, LLMs like ChatGPT have been trained with massive data, so they can swiftly 

connect users’ prompts with the most relevant information stored in their data center. Therefore, 

by leveraging the extensive knowledge base of LLMs, natural language-based model development 

could be a game changer, and will permit autonomous SD model structure suggestion, replacing 

the traditional modelling method. For example, instead of building a population model by placing 

all the stocks, flows, auxiliary variables, and connectors between them on the canvas of SD 

modelling software, we can simply ask ChatGPT to propose the possible model structures to us. If 

we want to incorporate the “aging chain” (Sterman, 2000, ch. 12.1) into the population model, we 

can tell ChatGPT to refine the suggested model structure with further hints or prompts. The 

interactions between users and AI chatbots ought to be iterative in order to achieve the desired 

model structure. In general, building SD models is an art depending on the modellers’ 

understanding of the research problem of interest, and there is no absolutely standard or correct 
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answer to the underlying model structure indeed. Once users are satisfied with the fundamental 

model structure, ChatGPT can additionally suggest equations, units, and parameters at their request. 

By then, the natural language-based model development process is over. Next, users may ask 

ChatGPT to export the suggested model as the XMILE format file and simulate it on the traditional 

SD modelling software, or they can directly ask ChatGPT to perform the simulation and provide 

in-depth analysis of simulation results. 

• AI-generated learning environment design 

Another possible integration of AI technique into SD is model-based learning environment design, 

also known as “management flight simulators (MFS)” or simply referring to simulation games. As 

emphasized by Box (1976), “All models are wrong, but some are useful.” Furthermore, it has been 

acknowledged that the usefulness of a model (i.e., any model, not limited to SD models) depends 

on not only the quality and credibility of the model per se, but the effectiveness of results and 

insights communication with the widest possible audience such as customers, decision-makers, or 

policy-makers. On this ground, the model-based interface can be used to increase the ease of 

communication and test the final users’ own assumptions by providing an interactive approach to 

the decision-making process (Tsaples & Tarnanidis, 2020). Sterman (2014a, 2014b) introduced a 

wide range of interactive web-based SD simulations for strategy and sustainability. More recently, 

the popularity of C-ROADS (https://www.climateinteractive.org/c-roads/) and En-ROADS 

(https://www.climateinteractive.org/en-roads/) among the scholars, government, business units, 

NGOs, and so on has demonstrated the great value of interactive simulators in real world (Creutzig 

& Kapmeier, 2020; Kapmeier et al., 2021; Sterman et al., 2013). 

Given the importance of model-based learning environment in practice, modellers should not only 

focus on building “good” models, but also attach importance to model-based interface design 

for facilitating learning. However, it usually takes a lot of time and efforts to design an interactive 

simulator from a blank page. Although Stella Architect from version 3 (isee systems inc, 2023) 

and Forio (Forio Corporation) provide several pre-built interface templates that users can select 

and then customize, these platforms have not been smart and intelligent enough to design the 

interface automatically based on the underlying model structure and research context. At this stage, 

the “Design” function provided by the SD simulation software - Stella is quite similar to the 

traditional PowerPoint (Microsoft Corporation, 2023) templates, but our goal or expectation is to 

https://www.climateinteractive.org/c-roads/
https://www.climateinteractive.org/en-roads/
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use next-generation AI techniques including ChatGPT to learn the fundamental model structure, 

to tell a good story about the fundamental SD model, and then create user-friendly simulators.  For 

example, Microsoft has recently introduced “Microsoft 365 Copilot” to all the Office suites 

(Spataro, 2023). As is emphasized, “Copilot in PowerPoint helps you create beautiful 

presentations with a simple prompt, adding relevant content from a document you made last week 

or last year” (Spataro, 2023). Rather than prepare presentation slides page by page, “Microsoft 

365 Copilot” can now automate the whole presentation slides preparation given some written texts 

and a new wave of productivity growth has been unlocked by AI. For this reason, we strongly 

believe that the SD model-based learning environment design can be or should be automated in 

the short future, and we need a revolutionary way to work. 

How could the working path be? Firstly, the modeller can give some introductory information 

about the research background, research question, and research purpose. Based on relevant inputs, 

the simulation software should be able to automatically develop aesthetic pages for presentation 

with necessary texts, shapes, graphs, or even online pictures organized in an organic way. With 

respect to model structure explanation, the software shall be able to identify the key stocks and 

flows, and feedback loops in the fundamental model based on the calculated loop dominance 

information (Schoenberg et al., 2020; Schoenberg et al., 2023) and expand the model structure 

page by page for an excellent story-telling experience. Afterwards, the software might guide users 

to the control panel and let them play with controllable variables in the model and identify high-

leverage policy for improvement. In the end, the simulation software is supposed to learn from the 

users’ decision-making process and share some useful insights or suggestions with target audience. 

 

4. Discussion 

At the end of last century, Richardson (1996) called for technical support for understanding the 

connections between model structure and dynamic behaviour. Given the fast development in 

computer science over recent years, the powerful AI techniques are changing the way we work, 

the way we learn, the way we drive, you name it. Numerous workflows can be automated with the 

application of advanced AI techniques, including the development and analysis of simulation 

models (Widman & Loparo, 1990; Zeigler et al., 2009). Hence, a combination of AI and SD seems 

to hold promise in this context. In the future, it is believed that artificial general intelligence (AGI) 
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can accomplish any intellectual tasks that we human beings can perform or achieve even better 

performance (Wikipedia, 2023a). Until then, there are going to be plenty of both opportunities and 

challenges that the SD society has to take on. 

• Interactions between AI and SD 

The interplay between AI and SD is creating novel opportunities to model complex systems and 

simultaneously advance AI research and development. On one hand, AI technologies are being 

integrated into SD modelling methods to automate and enhance processes such as model 

construction, calibration, and parameter estimation, as has been documented at the beginning. On 

the other hand, systems thinking and dynamic modelling offer a powerful framework to improve 

AI research by identifying latent unintended negative consequences resulting from the 

development and application of AI techniques. This perspective helps researchers and policy-

makers understand and optimize the adaptability, stability, and safety of AI algorithms, leading to 

the design of more robust, transparent, and explainable systems (Martin et al., 2020; 

Moosavihaghighi, 2024; Nabavi & Browne, 2023; Prabhakaran & Martin, 2020). Together, these 

dual approaches promise to create a synergistic environment where AI not only accelerates SD 

modelling but also benefits from the holistic insights provided by SD. 

• Aid understanding of complex model behaviours 

Considering the extraordinary NLP capability of ChatGPT, the modeller can easily communicate 

with the chatbot and hence ask it to help explain the complex behavior in terms of the feedback 

structure of the underlying SD model (Mitchell, 2023). From this perspective, AI-powered LLMs 

like ChatGPT play an important role of “individualized” tutor, who may provide coherent 

responses to any queries with regard to the interrelationship between model structure and dynamic 

behaviour. It is expected that there would be iterative rounds of prompting and discussion between 

ChatGPT and final users. We believe the interaction between people and ChatGPT in natural 

language can significantly ease the understanding of complex systems for individuals and provide 

valuable policy insights for decision-makers, as echoed by Mitchell (2023). 

• Pay attention to possible limitations 

So far we have mainly discussed the exciting and promising applications of AI techniques to the 

automated SD model building and interface design, but the potential limitations of some advanced 

AI tools such as ChatGPT have not been investigated at all. One of the biggest challenges faced 
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by AI is the ability to “reason” and “think” (Boden, 2018; Ray, 2023). As the anonymous Twitter 

account ARC Tracker previously noted, “AI isn’t yet capable of reasoning, so anything it writes is 

merely a summary of information rather than novel critique or insight.” (Wilcox, 2023). Before 

the introduction of OpenAI o1 model4, the LLMs do not really understand the underlying cause 

and effect because they simply using sophisticated statistical methods to put words together in a 

reasonable sequence based on the massive training documents (Mitchell, 2023). However, several 

chatbots nowadays can perform complex reasoning by producing a long internal chain of thought 

trained with reinforcement learning before it answers. To a large degree, AI technology is 

accelerating unpredictably all over the world, and some limitations may automatically disappear 

with more synthetic data and better algorithm training in the short future. When applying AI 

techniques to SD modelling, we do need to be cautious because AI is not perfect currently. As 

emphasized on the website of OpenAI, “ChatGPT can make mistakes. Check important info.” 

• Worry the diminishing modelling ability 

Like the ever-lasting concerns and debates about the impact of AI writing tools (Iskender, 2023; 

Johinke et al., 2023; Marzuki et al., 2023), there may be growing concern over the apparently 

significant impact of the powerful generative AI technologies on the development of human 

modelling skills. Although this article has by far expressed an optimistic attitude towards the 

integration of AI technologies into SD, some people may worry about the diminishing modelling 

ability of individuals over time. It is well known that practice makes perfect. Hence, modellers 

may get fewer opportunities to practice their SD modelling skills if they become overly dependent 

on automated modelling functions. In my opinion, such kind of worries are largely unnecessary. 

The overarching goal of modelling is very often to solve a problem. If the solution is found no 

matter by human workers or AI robots, then the goal is met. According to the latest experimental 

evidence on the productivity effects of generative AI, Noy and Zhang (2023) found that ChatGPT 

substantially raised productivity and reduced the inequality between workers. Therefore, it is better 

to treat AI-powered chatbots as a modelling assistant who allows the modeller to gain inspirations 

or brainstorm ideas and to spend more time learning the suggested SD model structure in this 

context. More importantly, there is no call for completely depriving the right or option of dynamic 

modelling in a traditional way (i.e., building models completely manually) in this article. By 

 
4 For more information of OpenAI o1: https://openai.com/index/learning-to-reason-with-llms/  

https://openai.com/index/learning-to-reason-with-llms/
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contrast, it highlights the interaction between modellers and machine by taking advantage of 

advance AI technologies to build better SD models and gain better insights into the complex 

system under investigation. In essence, we hope that the SD society can enjoy the benefits from 

the integration of AI into SD methodology. 

• Challenges on the path forward 

The mission of fully automated SD model development may look gloomy or impossible to some 

people including SD experts because of the tremendous workload and crazy ideas. It is true if we 

have to develop all the necessary techniques from scratch. Fortunately, this is not the case as lots 

of advance AI techniques and algorithms are open source and readily available. Therefore, 

software developers can easily deploy and integrate some AI tools like ChatGPT into their own 

SD simulation software products through API or other connecting ways. It will harness the 

breakthrough and advance in other scientific fields like computer science and help reduce the 

complexity with respect to automated SD model development to a manageable level. To achieve 

the target, the need for interdisciplinary collaborations between AI researchers (external 

knowledge) and SD modellers and practitioners (internal insights) is urgent. Most importantly, 

“Scholars and practitioners in the field need to recognize the importance of these efforts and 

support them actively.” (Richardson, 1996). More concerted efforts and great passion from the SD 

society are in need of to continuously push the boundary of SD methodology and believe the magic 

will become true someday. 

 

5. Conclusion 

This article provides a vision for future research and applications of AI-enriched SD modelling 

and simulation, underlining the transformative potential of AI-driven tools in achieving automated 

model building and interface design in natural language. By harnessing the potential of AI in SD 

modelling, AI tools like ChatGPT can play an important role of copilot to improve the dynamic 

modelling process and to enhance the understanding of complex systems. By that time, we may 

say that a truly high-level intelligence era within the SD domain has finally come. There is no 

doubt that the whole society has to undertake massive work and face critical challenges so as to 

meet the target. However, if autonomous driving is soon possible in the real world, why can’t it be 

automated modelling? To be bold or not to be, that is a question.  
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APPENDIX A Model Documentation 

Variable Equation Properties Units Documentation 

Adopters_A
[App](t) 

Adopters_A[App](t - dt) + 
(Adoption_Rate_AR[App]) * 
dt 

INIT 
Adopters_A[App
] = 0 

People 
The number of 
active adopters in 
the system. 

Potential_A
dopters_P[A
pp](t) 

Potential_Adopters_P[App](t 
- dt) + ( - 
Adoption_Rate_AR[App]) * 
dt 

INIT 
Potential_Adopte
rs_P[App] = 
Total_Population
_N - Adopters_A 

People 

The number of 
potential adopters 
is determined by 
the total 
population size 
and the current 
number of active 
adopters. 

Adoption_R
ate_AR[App
] 

Adoption_from_Advertising 
+Adoption_from_Word_of_M
outh 

 People
/Day 

The rate at which 
a potential 
adopter becomes 
an active adopter. 
This is driven by 
advertising efforts 
and the word of 
mouth effect. 

Adoption_Fr
action_i[Cha
tGPT] 

.036  
Dimen
sionles
s 

The fraction of 
times a contact 
between an active 
adopter and a 
potential adopter 
results in 
adoption. 

Adoption_Fr
action_i[Inst
agram] 

.00128  
Dimen
sionles
s 

The fraction of 
times a contact 
between an active 
adopter and a 
potential adopter 
results in 
adoption. 

Adoption_Fr
action_i[Spo
tify] 

.00058  
Dimen
sionles
s 

The fraction of 
times a contact 
between an active 
adopter and a 
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potential adopter 
results in 
adoption. 

Adoption_fr
om_Adverti
sing[App] 

Advertising_Effectiveness_a*
Potential_Adopters_P 

 People
/Day 

Adoption can 
result from 
advertising 
according to the 
effectiveness of 
the advertising 
effort with the 
pool of potential 
adopters. 

Adoption_fr
om_Word_o
f_Mouth[Ap
p] 

Contact_Rate_c*Adoption_Fr
action_i*Potential_Adopters_
P*Adopters_A/Total_Populati
on_N 

 People
/Day 

Adoption by word 
of mouth is driven 
by the contact rate 
between potential 
adopters and 
active adopters 
and the fraction of 
times these 
interactions will 
result in adoption. 
The word of 
mouth effect is 
small if the 
number of active 
adopters relative 
to the total 
population size is 
small. 

Advertising
_Effectivene
ss_a[App] 

.00000001  1/Day 

Advertising 
results in adoption 
according the 
effectiveness of 
the advertising. 

Contact_Rat
e_c 100  1/Day 

The rate at which 
active adopters 
come into contact 
with potential 
adopters. 



                                                                                  Boston MA, USA 
 

 20 

Total_Popul
ation_N 1e+009  People The size of the 

total population. 

	

Run Specs 

Start Time 0 

Stop Time 150 

DT 1/4 

Time Units Day 

Integration Method Euler 

	

Array Dimension Indexed by Elements 

App Label (3) 
ChatGPT, 
Instagram, 
Spotify 
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APPENDIX B Static SD Model Identification in OpenAI 
from openai import OpenAI 
import base64 
import json 
import re 
import xml.etree.ElementTree as ET 
 
# Set your OpenAI API key (ensure this is kept secure) 
openai_api_key = "YOUR_API_KEY" 
client = OpenAI( 
    api_key = openai_api_key, 
) 
 
def extract_components_from_image(image_path): 
    """ 
    Extracts the components of a stock and flow diagram using the OpenAI API. 
    The function reads an image file, encodes it in base64, and sends it to 
the API 
    with a prompt to extract stocks, flows, auxiliaries, and connectors. 
    Each variable may now also include location keys "x" and "y". 
    Expected output is a JSON object with keys: 'stocks', 'flows', 
'auxiliaries', 'connectors'. 
    """ 
    # Read and encode the image file 
    with open(image_path, "rb") as image_file: 
        image_data = image_file.read() 
    encoded_image = base64.b64encode(image_data).decode("utf-8") 
 
    # Construct the prompt 
    prompt = ( 
            "Analyze the following image (provided as a base64 encoded 
string) of a stock and flow diagram. " 
            "Extract the following information in JSON format: stocks, flows, 
auxiliaries, and connectors. " 
            "Return a JSON object with keys: 'stocks', 'flows', 
'auxiliaries', 'connectors'. " 
            "Each of 'stocks', 'flows', and 'auxiliaries' should be an array 
of objects with a 'name' property, and an 'eqn' property for reasonable 
equations that you may suggest. Note: only constant values for 'stocks'." 
            "As well as their relative location information in the given 
image: 'x' and 'y' coordinates (in pixels). " 
            "For stocks, also extract 'inflows' and 'outflows' as lists of 
flow names." 
            "Keep all the names of stocks, flows, and auxiliaries the same as 
they were shown in the stock and flow diagram." 
            "Each connector should be an object with properties 'src' and 
'tgt' and ONLY take the arrow links between model variables into account." 
            "There is no need of accounting for the causal links from 'flows' 
to 'stocks' in the 'connectors'" 
            "To avoid any omissions, make sure and check every object with 
properties 'src' and 'tgt' in 'connectors' has been classified as either 
'stocks', or 'flows', or 'auxiliaries'" 
            "Add their causal relationships in 'connectors' part if any 
variable is used as part of the equation of another variable" 
            "The base64 image is: " + encoded_image 
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    ) 
 
    response = client.chat.completions.create( 
        model="gpt-4o", 
        messages=[ 
            { 
                "role": "user", 
                "content": [ 
                    { 
                        "type": "text", 
                        "text": prompt, 
                    }, 
                    { 
                        "type": "image_url", 
                        "image_url": {"url": 
f"data:image/png;base64,{encoded_image}"}, 
                    }, 
                ], 
            } 
        ], 
        response_format={"type": "json_object"}, 
        temperature=0.5, 
        top_p=0.1 
    ) 
 
    # Debug: Print the entire API response to see its structure 
    print("Raw API response:") 
    print(response) 
 
    # Extract and check the response content 
    structured_data = response.choices[0].message.content 
    if not structured_data.strip(): 
        raise ValueError("API returned an empty response. Check your model 
access, prompt, and image input.") 
 
    # Debug: Print the extracted content before parsing 
    # print("Extracted content:") 
    # print(structured_data) 
 
    # Parse the JSON from the API response 
    try: 
        model_data = json.loads(structured_data) 
        with open('output.json', 'w') as outfile: 
            json.dump(model_data, outfile, indent=2) 
    except json.JSONDecodeError as e: 
        print("Failed to parse JSON. The extracted content is:") 
        print(structured_data) 
        raise e 
 
    # Extract and parse the JSON from the API response 
    # structured_data = response.choices[0].message.content 
    # model_data = json.loads(structured_data) 
 
    return model_data 
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# NS = "http://docs.oasis-open.org/xmile/ns/XMILE/v1.0" 
# 
# def ns_tag(tag): 
#     return f"{{{NS}}}(Bjørnelv et al.)" 
 
def clean_eqn(eqn): 
    """ 
    Replace spaces within multi-word variable names in an equation string 
    with underscores, while preserving spaces between tokens. 
    This regex finds sequences of at least two words (letters with spaces) 
    and joins them with underscores. 
    """ 
    pattern = r'\b([A-Za-z]+(?:\s+[A-Za-z]+)+)\b' 
    def repl(match): 
        # Join the matched group (a multi-word variable name) with 
underscores. 
        return '_'.join(match.group(1).split()) 
    return re.sub(pattern, repl, eqn) 
 
def generate_xmile(model_data, filename): 
    """ 
    Converts the structured model data into an XMILE file. 
    """ 
    # Create the root XMILE element 
    xmile = ET.Element("xmile", {"version": "1.0"}) 
 
    # Add header information 
    header = ET.SubElement(xmile, "header") 
    model_name = ET.SubElement(header, "name") 
    model_name.text = "Converted System Dynamics Model" 
 
    # Simulation specifications 
    sim_specs = ET.SubElement(xmile, "sim_specs") 
    start = ET.SubElement(sim_specs, "start") 
    start.text = "0" 
    stop = ET.SubElement(sim_specs, "stop") 
    stop.text = "100" 
    dt = ET.SubElement(sim_specs, "dt") 
    dt.text = "1/4" 
 
    # Model section 
    model = ET.SubElement(xmile, "model") 
    variables = ET.SubElement(model, "variables") 
 
    # Add stocks 
    for stock in model_data.get("stocks", []): 
        stock_el = ET.SubElement(variables, "stock", {"name": stock["name"]}) 
        if "eqn" in stock and stock["eqn"]: 
            eqn_el = ET.SubElement(stock_el, "eqn") 
            eqn_el.text = stock["eqn"] 
        # Add inflow tags if available 
        for inflow in stock.get("inflows", []): 
            ET.SubElement(stock_el, "inflow").text = inflow.replace(" ", "_") 
        for outflow in stock.get("outflows", []): 
            ET.SubElement(stock_el, "outflow").text = outflow.replace(" ", 
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"_") 
 
    for flow in model_data.get("flows", []): 
        flow_el = ET.SubElement(variables, "flow", {"name": flow["name"]}) 
        if "eqn" in flow and flow["eqn"]: 
            eqn_el = ET.SubElement(flow_el, "eqn") 
            eqn_el.text = clean_eqn(flow["eqn"]) 
 
    for aux in model_data.get("auxiliaries", []): 
        aux_el = ET.SubElement(variables, "aux", {"name": aux["name"]}) 
        if "eqn" in aux and aux["eqn"]: 
            eqn_el = ET.SubElement(aux_el, "eqn") 
            eqn_el.text = clean_eqn(aux["eqn"]) 
 
    # # Structure section for connectors (causal relationships) - how to 
represent the connectors in XMILE format?! 
    # structure = ET.SubElement(model, "structure") 
    # for conn in model_data.get("connectors", []): 
    #     ET.SubElement(structure, "connector", {"from": conn["src"], "to": 
conn["tgt"]}) 
 
    # Create views element and a single view element 
    views = ET.SubElement(model, "views") 
    view = ET.SubElement(views, "view") 
 
    # Add connector elements in the view with sequential uid starting from 1 
    connectors = model_data.get("connectors", []) 
    for i, conn in enumerate(connectors, start=1): 
        connector_attribs = { 
            "uid": str(i),  # Sequential uid starting from 1 
            "angle": str(conn.get("angle", "0")) 
        } 
        connector_el = ET.SubElement(view, "connector", 
attrib=connector_attribs) 
        from_el = ET.SubElement(connector_el, "from") 
        from_el.text = conn["src"] 
        to_el = ET.SubElement(connector_el, "to") 
        to_el.text = conn["tgt"] 
 
    # Output display objects for variables (if needed, we re-output them 
here) 
    for stock in model_data.get("stocks", []): 
        attribs = { 
            "x": str(stock.get("x", "0")), 
            "y": str(stock.get("y", "0")), 
            "name": stock["name"] 
        } 
        ET.SubElement(view, "stock", attrib=attribs) 
 
    for flow in model_data.get("flows", []): 
        attribs = { 
            "x": str(flow.get("x", "0")), 
            "y": str(flow.get("y", "0")), 
            "name": flow["name"] 
        } 
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        # ET.SubElement(view, "flow", attrib=attribs) 
        flow_view = ET.SubElement(view, "flow", attrib=attribs) 
        # Generate <pts> in view as well using the same rule: 
        try: 
            flow_x = float(flow.get("x", 0)) 
        except ValueError: 
            flow_x = 0.0 
        flow_y = flow.get("y", "0") 
        pts_el = ET.SubElement(flow_view, "pts") 
        ET.SubElement(pts_el, "pt", attrib={"x": str(flow_x - 60), "y": 
str(flow_y)}) 
        ET.SubElement(pts_el, "pt", attrib={"x": str(flow_x + 60), "y": 
str(flow_y)}) 
 
    for aux in model_data.get("auxiliaries", []): 
        attribs = { 
            "x": str(aux.get("x", "0")), 
            "y": str(aux.get("y", "0")), 
            "name": aux["name"] 
        } 
        ET.SubElement(view, "aux", attrib=attribs) 
 
    # Write the XMILE file 
    tree = ET.ElementTree(xmile) 
    tree.write(filename, encoding="utf-8", xml_declaration=True) 
 
def print_summary(model_data): 
    """ 
    Prints a summary of the model data, including the number of stocks, 
flows, 
    and auxiliary variables, as well as their names. 
    """ 
    stocks = model_data.get("stocks", []) 
    flows = model_data.get("flows", []) 
    auxiliaries = model_data.get("auxiliaries", []) 
    connectors = model_data.get("connectors", []) 
 
    print("\nModel Summary:") 
    print(f"Number of stocks: {len(stocks)}") 
    print("Stocks:", ", ".join([stock["name"] for stock in stocks])) 
 
    print(f"\nNumber of flows: {len(flows)}") 
    print("Flows:", ", ".join([flow["name"] for flow in flows])) 
 
    print(f"\nNumber of auxiliary variables: {len(auxiliaries)}") 
    print("Auxiliaries:", ", ".join([aux["name"] for aux in auxiliaries])) 
 
    print(f"\nNumber of connectors: {len(connectors)}") 
 
def main(): 
    # Path to your stock and flow diagram image 
    image_path = "image.png" 
 
    # Step 1: Extract the components using the OpenAI API 
    model_data = extract_components_from_image(image_path) 
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    print("Extracted model data:") 
    print(json.dumps(model_data, indent=2)) 
 
    # Print summary of the extracted model data 
    print_summary(model_data) 
 
    # Step 2: Generate the XMILE file from the extracted model data 
    xmile_filename = "SD model.xmile" 
    generate_xmile(model_data, xmile_filename) 
    print(f"XMILE file '{xmile_filename}' generated successfully!") 
 
 
if __name__ == "__main__": 
    main() 

 
 How It Works: 

1. Image Extraction: 

• The function extract_components_from_image reads your image file, encodes it as a 

base64 string, and sends it along with a prompt to the OpenAI API. 

• The prompt instructs the model to extract stocks, flows, auxiliaries, and connectors from 

the diagram and suggest equations in a specified JSON format. 

• The response is parsed into a Python dictionary (model_data). 

2. XMILE Generation: 

• The function generate_xmile takes the model_data dictionary and creates an XMILE 

format structure. 

• It creates XML elements for stocks, flows, auxiliary variables, and connectors. 

• Finally, it writes the XMILE file (model.xmile). 

3. Main Function: 

• The main function ties the extraction and XMILE generation together. 

• It first extracts the model data from the image, prints it for verification, then generates and 

saves the XMILE file. 

 

This provides a complete end-to-end solution for converting an image of a stock and flow diagram 

into a structured simulation model in XMILE format. The code can be run in Python environment, 

and users or developers need to apply for their own API key for use from the OpenAI website5. 

 
5 OpenAI API website: https://platform.openai.com/api-keys  

https://platform.openai.com/api-keys
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For the use of other chatbots like Geminin, Claude, Grok, and so on, it is recommended to adjust 

the client and message parts according to the development requirements of corresponding 

platforms. 

  


