
i

Supplemental - Multi-Method Approach of System Dynamics And Agent-Based Modeling: A Practical
Case Study of the Norwegian Dairy Supply Chain

Takuma Ono, Master of Philosophy in System Dynamics, University of Bergen

Hugo Herrera, Postdoctoral Fellow, System Dynamics Group, University of Bergen

2024 International System Dynamis Conference, August 4-8, Bergen, Norway

Appendix A: Expanded Model Conceptualization Diagram

ii

Appendix B: AnyLogic Stock-and-Flow Diagrams

Stock-and-Flow Diagram of Dairy Processors (5 Processor Agents)

iii

Stock-and-Flow Diagram of
Dairy Farms (1,527 Farm
Agents)

iv

Appendix C: AnyLogic System Dynamics Model
Component Description
The System Dynamic component itself is comprised of fairly standard structures. Annual dairy
product consumption from kommuner calculated exogenously from per capita consumption of
each dairy product, and these production targets will be relayed to their corresponding dairy
processors as individually arrayed goals in a goal-gap mechanism.

Dairy Processor Stock-and-Flow Structure
The consumption demands of dairy products received by the five Vestland county dairy
processors will depend on the nearby kommuner which identified them as the closest partner
processor to form a “handshake” with. The product demands from the customer kommuner are
summed into an arrayed variable as the goal of a goal-gap mechanism and identified as
consumptionDairy [..] (Figure 21). There are two purposes for the consumptionDairy variable,
one of which is the production target goal—renamed to desiredWholesaleDairy [..]—as
discussed previously, the other being the basis for the rawMilkDivisionRaio variable.

Figure 21: Dairy product demands from partner kommuner summed into an arrayed variable in a dairy processor agent

The rawMilkDivisionRatio determines how the total raw milk received from all of its partner dairy
farms should be apportioned among the four dairy products (Figure 21). As such,
rawMilkDivisionRatio is an arrayed variable which if summed to one value it must equal 1.0. This
division ratio is calculated by first translating the total demands of each dairy product to
amount of raw milk equivalent needed to fulfill them. This conversion factor is provided by the
parameter rawMilkPerDairyProduct, as adapted from the SYNAGRI NetLogo model (synagri.no,
Accessed 2024).

v

Figure 22: Calculating of rawMilkDivisionRatio, which determines the split of raw milk received.

Once the amount of raw milk needed for each dairy product is calculated, then milk
requirement for each product is then divided by the total raw milk requirement to determine the
“split” for each product. To demonstrate, the rawMilkDivisionRatio for the processor TINE
Meieriet Bergen calculated in Table 5.

Table 5: Calculation of rawMilkDivisionRatio for dairy processor TINE Meieriet Bergen

Product Kommuner Dairy
Product Demand
(tonnes / yr)

Raw milk per dairy
product (kg / kg)

Raw milk
required per
product (tonnes
/ yr)

Raw milk division
ratio (dimensionless)

Milk 9,291 1 9,291 0.25
Yoghurt 711 1.13 804 0.02
Butter 1,274 20 25,490 0.69
Cheese 230 6.91 1,591 0.04
 TOTAL 37,175

As noted previously, the kommuner consumption demand is also used as the desired dairy
product goal. The gap in the goal-gap structure is calculated by subtracting the arrayed
wholesale stock value from the desired consumption value (Figure 23).

vi

Figure 23: Goal-gap mechanism of dairy products and wholesale stock at dairy processor

The calculated gap is then multiplied by the aforementioned rawMilkPerDairyProduct to
determine the raw milk equivalent requirement for each dairy product
(requiredRawMilkByProdFromWS). This variable is still arrayed by product type, so it is summed
into a single value and added to the totalDesiredRawMilk variable, which is passed onto the
partner dairy farm agents.

The totalDesiredRawMilk variable must also correct for three other variables: stock of raw milk
waiting to be processed, raw milk lost from processing, and finished dairy product shipped out
from wholesale stock.

The wholesale stock of dairy products is preceded by purchased raw milk stock inventory, which
must also be corrected with a similar goal-gap mechanism (Figure 24). The
desiredWholesaleDairy is similarly multiplied by rawMilkPerDairyProduct then summed by array
to determine the total raw milk required. Finally, a gap is calculated by subtracting by the
current stock of supplyRawMilk. This value is then added to the totalDesiredRawMilk variable.

Figure 24: Raw milk inventory stock gap calculation also using the kommuner dairy consumption demand variable

vii

A small amount of processing loss occurs when converting the raw milk into dairy products.
This outflow is compensator for by simply adding the loss back to the totalDesiredRawMilk so
that dairy processors know to purchase extra milk to make up for the processing loss (Figure
25).

Figure 25: Raw milk processing loss outflow added back to totalDesiredRawMilk to make up the loss

Finally, another outflow that should be compensated for is the final dairy products shipped out
from the wholesale stock. This outflow is treated similarly to the processing loss outflow, but
the variable must first be converted into raw milk equivalent by again multiplying by
rawMilkPerDairyProduct factor, named shippedInRawMilk [..]. Then, because this outflow is
arrayed by dairy product type, it must then be summed into a single variable (sumShippedDairy)
before adding to totalDesiredRawMilk (Figure 26).

Figure 26: Outflow shippingDairy, arrayed by dairy product is converted into raw milk equivalent, then summed into single value
before adding to totalDesiredRawMilk

Dairy Farm Stock-and-Flow Structure
As seen in Appendix B: AnyLogic Stock-and-Flow Diagrams, because the dairy farm structure is
relatively large, it will be discussed using these four parts called sectors.

viii

Similar to kommuner consumption demand being the target goal for the dairy processor
structure, the totalDesiredRawMilk variable in turn becomes the target production goal for the
partner dairy farms (Figure 27).

Figure 27: Dairy farm sector for receiving production demand and selling produced milk

The total desired raw milk production from their partner processor is received, but the total
required milk is not helpful for a single farm agent on how much it should produce. Therefore, a
farm’s production volume is dividing by the total production volume of all farms connected to
the same dairy processor. This calculates the portion of the total milk required of the individual
farm and scales it proportionally to individual dairy farms (proportionDesiredMilk).

The proportional milk target is divided by the expected milk yield per cow over the same time
period, which determines the cow herd needed to fulfill the production needs of the partner
dairy processor (indicatedHerdSize). There is also an effect from the perceived financial viability
(to be discussed subsequently) of the farm which may increase or decrease the indicated herd
size. The model has a ceiling cow herd size of 500 (maxAllowedHerd), so no matter how much
the processor milk demand increases, the indicated herd size will not be greater than 500.

Once the indicatedHerdSize is determined (and capped at 500 if needed), this variable is used
to determine the cow herd stocks. The herd population is split into three: Cows, Heifers, and
Calves (Figure 28). The Cows stock is the only milk-producing population, so the indicated herd
size relate to this stock value. Heifers are cows that have not yet become pregnant, and is not
productive yet. Calves are produced from the Heifer and Cow population at the farm. The only
exogenous population input is transferred from nearby closing farms (to be discussed
subsequently).

ix

Figure 28: Cow herd operation sector of farm agent

Similar to the kommuner consumption demand gap, the gap is calculated between the
indicated herd size and the current value in the Cows stock. The calculated gap (gapCowHerd)
is added to the variable desiredBreederStock, which determines how many calves should be
recruited as Heifers instead of culled. The formula for desiredHeifers is documented in
Appendix D: System Dynamics Model Equation Documentation which is derived from an
equilibrium state, where inflow and outflows are equal, which allows for algebraic calculation of
the desired heifer value. The current Heifers value is subtracted from desiredHeifers to
calculate the gapHeifers, which is also added to the desiredBreederStock. Because the desired
number of heifer recruits cannot be less than 0 (minAllowedCows), the model puts a hard floor
on the allowed minimum value of the variable at 0 in the equation for desiredBreederStock.

The desiredBreederStock variable must be compared against the number of female calves
available to the farm. It is assumed that every Heifer and Cows produce 1 calf per year, which
inflows to the Calves stock. Then, the calves spend two years (24 months) before they are ready
to potentially become heifers. Since only females can be recruited as heifers, half of the calf
population is by default diverted to cullingCalves outflow. The other half is the maximum
allowed number of calves to be heifers (maxNewHeifers). Between desiredBreederStock and
maxNewHeifers, the lesser of the two is recruited as heifers, and the remainder diverted to
cullingCalves. The recruited Heifer stock population spends 1 year (12 months) before they
inflow to Cows stock.

There are three avenues of income for farms: raw milk from Cows, meat from culled cattle, and
subsidy (Figure 29). The number of Cows is multiplied by the monthlyYieldRawMilk to determine
the total raw milk production for the period. Then, the milk production is multiplied by the
producer price per tonne of raw milk (ppRawMilk) to determine the revenue from milk in NOK
(Norwegian Krone).

x

Figure 29: Revenue and cost sector of dairy farm agent

A farm may sell a portion of the population as meat through two outflows – culling calves and
culling cows. A cow’s average productive time is assumed to be 4 years, and are culled after
that period. Additionally, calves not recruited to be heifers are similarly culled, and the
combined production of meat is similarly multiplied by the corresponding producer price to
obtain meat revenue in NOK.

According to the SYNAGRI model data, dairy farms receive government subsidy in three ways:
from producing milk, managing livestock, and general farm subsidy (non-livestock). The total
subsidy is added to the revenues from milk and meat to determine the total revenue for the
period.

The cost side comes from two simple factors: variable cost and fixed cost. Variable cost is per
cow, which is 27,000 NOK per cow per year, according to Asheim (2014). The fixed cost comes
from all other costs, such as building maintenance and business overhead, and is a flat 225,000
NOK per farm (Asheim, 2014). The sum of the two factors become the totalFarmCost variable.

In the Financial Evaluation sector, the total revenue acts as the inflow into a cashReserve stock,
while the total cost plus personalSpending named spending, acts as the outflow from the stock
(Figure 30). A business performance indicator called operatingExpenseRatio is calculated by
dividing the spending by the revenue. Operating Expense Ratio, or OER, gives indication of the
business’s operating efficiency (zebra bi, 2023). This fraction is then normalized by a ratio of
0.70, considered to be a good OER for dairy farms (Nolan, 2023). This relativeOER fraction is 1.0
if the farm is performing normally. It will be greater than 1.0 if performing well, and less than 1.0
if underperforming. The relativeOER is used as a simple goal-gap mechanism, where the farm
holder’s perception of the farm’s viability is constantly being updated with an adjustment time
delay of 5 years. The perceivedFarmViability stock value is used as an effect to the
aforementioned indicatedHerdSize.

xi

Figure 30: Financial evaluation sector of the dairy farm agent model

Also, net value, or income, is calculated by subtracting cost from revenue. The SYNAGRI
NetLogo model uses accumulation of income over time to determine if a farm should continue
operating or close. Another inflow, addingFive accumulates the income in a new stock,
fiveAccum. At year 5 of the simulation, the total accumulation is divided by 5 to obtain the
variable constant benchmarkIncome, which is the average annual income in the first 5 years of
simulation.

At year 5, the delayFive outflow is then activated. This is because the value of fiveAccum is used
to annually calculate the 5 year average as a new variable recentIncome. In the 6th year, the
income from the 1st year is “discarded”, or outflow from fiveAccum stock; at 7th year, income
from 2nd year flows out (Figure 31). This is in effect a “conveyor” stock with a 5 year incubation
period, which keeps the fiveAccum stock to represent a running 5-year accumulation which can
be used to calculate the annual average recentIncome.

Figure 31: "Conveyor" system which continually calculates the 5-year running annual average

The decision-making process for farm closure is adopted from the SYNAGRI model. Each farm
evaluates its own financial performance annually by comparing their own ratio of recentIncome
to benchmarkIncome. Per the SYNAGRI model assumption, if the fraction is less than 0.85, then

xii

the farm agent undergoes a stochastic decision making process on whether to keep operating
or to close the farm and sell their cow herd to one of its neighbors.

When a farm has a ratio of less than 0.85 and has not received cows from a neighbor in the last
year, then the farm agent simply has a 25% chance of closing. If the farm does decide to close,
then it transfers is cow herd to a neighbor with the best financial viability, if any. If the closing
farm does not have any neighbors, then the farm agent and its cow herd is removed from the
simulation. If the farm “clears” the 25% chance of closing, it will keep operating until the next
annual financial self-evaluation.

One modification made to the SYNAGRI algorithm is that if a farm has received cows from a
neighbor who is closing, then the receiving farm should wait another year to re-evaluate its
financial viability, even if its recent-to-benchmark income is currently less than 0.85, so that it
has a chance to see whether the additional cows help with its finances.

xiii

Appendix D: System Dynamics Model Equation Documentation
Dairy Farm Agent

Farm Variable [unit] Equation Documentation
Calves(t) [cows] INTEG (+ breedingCalves - allocatingHeifers –

cullingCalves, (Cows + Heifers) * normalBirthRate
* timeToBeHeifer)

Stock: The initial value is determined analytically. Because in an
equilibrium inflows must be equal to outflows.
calves_born = calves_allocated_to_heifers + calves_to_culling
(Cow_Herd + Heifers) * normal_birth_rate =
calves_allocated_to_heifers + calf_maturation_rate -
calves_allocated_to_heifers
(Cow_Herd + Heifers) * normal_birth_rate = calf_maturation_rate
(Cow_Herd + Heifers) * normal_birth_rate = Calves / time_to_be_heifer
Calves = (Cow_Herd + Heifers) * normal_birth_rate * time_to_be_heifer

cashReserve (t) [NOK] INTEG (+ revenue – spending, 900000) Stock: This is the accumulation of revenue minus spending over the
simulation.

Cows (t) [cows] INTEG (+ paturation + gettingCows – culling,
numDairyCows)

Stock: Cows are the only cattle stock that is actively producing milk
on a farm. The initial value is given by SYNAGRI data.

cowsFromNeighbor [cows] INTEG (- gettingCows, 0) Stock: This structure is activated only when another farm agent who
is closing sells its herd.

fiveAccum [NOK] INTEG (+ addingFive – delayFive, 0) Stock: This structure accumulates income for five years, in which the
5-year benchmark annual income is calculated, then continues to be
used to calculate the running 5 year annual average.

Heifers(t) [cows] INTEG (+ allocatingHeifers – paturation, Cows *
timeToBecomeCow / normalCowLifetime)

Stock: Heifers are female cows allocated for milk production but have
not given birth yet. The number of initial heifers is calculated
analytically, since at equilibrium all flows should be equal.
Therefore the flow increasing herd should equal culling.

Increasing herd = culling
Heifers / time_to_become_cow = Cows / normal_cow_lifetime

and since at equilibrium Cows should equal the desired cow herd size:

Heifers = Cows * time_to_become_cow/normal_cow_lifetime

Perceived_Farm_Viability(t)
[dmnl]

INTEG (+/- adjustingPerception, 1) Stock: This is a soft value of how the farm holder feels about the
viability of the farm, with 1 being neutral. > 1 is good, < 1 is bad.

addingFive [NOK/month] revenue Flow: This is a duplicate of the flow revenue, but will be used for
the farm closure decision process

adjPerceptionTime [months] 60 Parameter: Default is 60 months (5 years), which is cited by dairy
economics studies as a medium-term outlook of dairy farms (Réquillart
et al., 2008).

xiv

Farm Variable [unit] Equation Documentation
adjustingPerception [1/months] perceptionGap / adjPerceptionTime Flow: This bidirectional flow adjusts the farmers' perception of farm

viability up/down according to the relative expense ratio.
allocatingHeifers
[cows/Months]

min(desiredBreederStock, maxNewHeifers) Flow: This flow takes the lesser of the two - the maximum available
female calves ready to become heifer, or the desired number of new
heifers

breedingCalves [cows/Months] (Heifers + Cows) * normalBirthRate Flow: Both heifers and cows are assumed to have the same birth rate,
1 calf per year per cow.

calfMaturing [cows/Months] Calves / timeToBeHeifer Variable: This is the total number of calves that become cattle ready
to either be allocated to be heifers or sent to culling. This
variable also includes males.

cattleForMeatProduction
[cows/month]

Cows * monthlyYieldDairyMeat Variable: A portion of the cow herd is assumed to be culled for meat
production per SYNAGRI data

costPerCow [NOK/(cows*month)] 27000 / 12 Parameter: variable costs for dairy cows include forages,
concentrates, and miscellaneous needs in livestock care (Asheim et
al., 2014)

culling [cows/Months] Cows / normalCowLifetime Flow: After the productive years of a dairy cow, it is assumed that
they are sent for meat processing.

cullingCalves [cows/Months] calfMaturing – allocatingHeifers Flow: Out of all of the calves not allocated to heifer population is
assumed to be sent out for culling and meat production

delayFive [NOK/month] delayMaterial(addingFive, 5, 0, 0) Material delay: This material delay aids in calculating the running
annual income average starting from the 5th year by starting to
subtract from the stock fiveAccum.

desired_herd_size [cows] min(maxAllowedCows, indicatedHerdSize) Min: Desired cow herd can be increased up to the ceiling of maximum
allowed herd size of 500 for a given farm size.

desiredBreederStock
[cows/Months]

max(0, (gapCowHerd + gapHeifers) / herdAdjTime +
culling)

Max: The desired number of new calves allocated for milk production
should equal the number of desired number of cows and heifers PLUS
replacement of culled cows. However, due to the dynamic this value
may be negative, which is not possible in a cow herd, so a floor of 0
desired new cow is implemented.

desiredHeifers [cows] maxHerdSize * timeToBecomeCow / normalCowLifetime Variable: This value is calculated the same as the initial Heifer
stock value. The equation shows the analytical relationship between
the current desired cow herd and the desired heifer cow herd

desiredTotalRawMilk
[tonnes/month]

From partner processor Java Variable: The total volume of milk requested by municipalities
and thus relayed to farm agents as production demand

xv

Farm Variable [unit] Equation Documentation
effectOfNeighborsOnCost

Points: (0.000, 1.000), (5.000, 0.750)

Table function: Number of neighbors within a distance (5km default)
allows for cost reduction down to 0.75.

effectOfPerceivedFarmViability
[dmnl]

Points: (0.000, 0.500), (1.000, 1.000), (2.000,
2.000)

Table function: The more a farmer perceives that their farm is
financially successful, they will want to continue their success by
expanding further. If they find that their farm is not successful,
they may look to reducing their farm for cost savings. "Success to
successful" archetype.

ceaseFarmingProb 0.25 Parameter: If the farm finds that if it is underperforming, this is
the probability at which it will close

farmIncomeViability 0.15 Parameter: Per SYNAGRI model data, this is the fraction of
benchmarkIncome which recentIncome must not be lower than when
compared to benchmarkIncome. If recentIncome is lower in the annual
financial check, then the agent will check if it should close

farmMilkContribution [dmnl] farmMilkProduction / totalFarmsRawMilk Variable: This fraction is calculated to determine the portion of the
total desired milk from processors the agent is responsible for

farmMilkProduction
[Liters/Months]

Cows * monthlyYieldRawMilk Variable: Only cows that have given birth can produce milk, and milk
yield is averaged out for all cows.

femaleFraction [dmnl] 0.5 Parameter: While sexed breeding is possible with cows, for simplicity
the biological 50-50 chance is used (geno.no, accessed 2023).

fiveYears [year] 5 Parameter: Allows for calculating the running 5-year annal average
income, recentIncome

xvi

Farm Variable [unit] Equation Documentation
fixedFarmCost [NOK/month] 225000 / 12 {Asheim} Parameter: The fixed costs include farm structures, machinery,

maintenance, as well as administration and management. Costs also
include hired labour (Asheim et al., 2014).

fractionDisposableIncome
[dmnl]

0.3 This portion of accumulated cash reserve is assumed to go to pay the
farmer’s own salary.

gapCowHerd [cows] desiredHerdSize - Cows Variable: The difference between the current cow herd size and the
desired cow herd size is the basis for driving herd growth behavior.

gapHeifers [cows] desiredHeifers – Heifers Variable: Once the number of desired heifers is determined then the
difference between the current number of heifers can be calculated

gettingCows [cows/month] cowsFromNeighbor * timeToGetCows Flow: inflow into farm agent’s mature Cow stock from closing farm
that sold its herd

herdAdjTime [months] 60 Parameter: The long adjustment time is rooted in the long lifetime of
cattle livestock buildings and related infrastructure, which limit
the flexibility with which farmers enter and exit the cattle sector.

indicatedHerdSize [cows] proportionDesiredMilk / monthlyYieldRawMilk *
effectOfPerceivedFarmViability

Variable: The current herd is influenced by the effect of perceived
farm viability, and the desired herd is adjusted up or down.

maxAllowedCows [cows] 500 Parameter: Assumption that a dairy farm cannot sustain more than a
certain population (500 default) of cows

maxNewHeifers [cows/Months] calfMaturing * femaleFraction Max: The maximum number of new heifers is the number of female weaned
calves each year.

minAllowedCows [cows/month] 0 Parameter: Physically impossible for recruitment rate to be less than
0 cows/month

meatRevenue [NOK/month] cattleForMeatProduction * ppDairyCowMeat Variable: Number of culled cows are multiplied by producer price (pp)
to get the total revenue from culling activities.

milkRevenue [NOK/month] farmMilkProduction * ppRawMilk Variable: Revenue from raw milk shipment is the amount of shipped raw
milk multiplied by its price.

monthlyYieldDairyMeat
[cows/(cows*month)]

SYNAGRI data Parameter: The portion of the cow herd culled for meat production is
sourced from SYNAGRI data

monthlyYieldRawMilk
[tonnes/(cows*month)]

From SYNAGRI data Parameter: Average dairy cow yield data from SYNAGRI is different for
each county, but this study only uses yield from Vestland county

normalBirthRate
[cows/(cows*month)]

1/12 Parameter: Dairy cows typically produce a new calf once every year,
which is required to maintain milk production (geno.no, accessed
2023).

normalCowLifetime [months] 48 Parameter: Determines the average productive life in years that
mature cows are milked. After the milking period they are assumed to
be processed for meat. Due to variability by region, practice, and
breed, the productive life can range from 3 up to 6 years. A
conservative estimate of 4 years is used (Dallago et al., 2021).

normalOER [dmnl] 0.7 Parameter: operating expense ratio of 0.7 is considered healthy for a
dairy farm (dairyherd.com, accessed 2023).

numDairyCows [cows] SYNAGRI data Parameter: This initializing cow herd value is imported from SYNAGRI
data.

xvii

Farm Variable [unit] Equation Documentation
operatingExpenseRatio [dmnl] spending / revenue Variable: Operating expense ratio can help gauge the efficiency of a

company. It is the fraction of revenue that is spent on operation
(zebrabi.com, accessed 2023).

parturition [cows/Months] Heifers / timeToBecomeCow Flow: As heifers give their first birth, they are considered cows,
and go to the main milk producing population.

perceptionGap [dmnl] relativeOER – perceivedFarmViability Variable: difference between the current relative OER and
perceivedFarmViability is calculated to determine how much the
perception should be adjusted, up or down.

personalSpending [NOK/month] cashReserve * fractionDisposableIncome Variable: A fraction of the available cash reserve is spent on
discretionary and disposable consumption.

ppDairyCowMeat [NOK/cows] SYNAGRI data Parameters: The producer price (pp) data for culled cows is imported
from the SYNAGRI data.

ppRawMilk [NOK/tonne] SYNAGRI data Parameter: Selling price of farm raw milk per tonne is sourced from
SYNAGRI model data

proportionDesiredMilk
[tonnes/month]

desiredTotalRawMilk * farmMilkContribution Variable: This calculation determines the production target for the
farm agent for this time step.

recentIncome [NOK/year] fiveAccum / fiveYears Variable: Starting from year 5 of simulation, this variable
continuously calculates the annual average income over a 5 year
period

recentToBenchmark [dmnl] recentIncome / benchmarkIncome Variable: The fraction of recentIncome compared to benchmarkIncome
calculates a value which if below a threshold (0.85 default) will
trigger a decision process to close the farm.

relativeOER [dmnl] normalOER / operatingExpenseRatio Variable: The normalizing value is in the numerator because a smaller
OER is more desirable, thus a smaller OER is perceived as more viable

revenue [NOK/month] totalRevenue Flow: Total revenue is the only contributor to the inflow to Cash
Reserve.

spending [NOK/month] totalFarmCost Flow: Total spending outflow comes from farm operation cost, cheese
production cost, and fraction from personal consumption

subsidies [NOK/month] (subsidyNonlivestock + subsidyMilk +
subsidyLivestock) / 12

Parameter: Subsidies from SYNAGRI data are summed into one variable

subsidyLivestock [NOK/year] SYNAGRI data Parameter: Per SYNAGRI data each farm agent has unique amounts of
subsidy for livestock husbandry

subsidyMilk [NOK/year] SYNAGRI data Parameter: Per SYNAGRI data each farm agent has unique amounts of
subsidy for operating a dairy farm

subsidyNonlivestock [NOK/year] SYNAGRI data Parameter: Per SYNAGRI data each farm agent has unique amounts of
subsidy for operating a farm in general

timeToBecomeCow [months] 12 Parameter: Once a heifer births her first calf, it is considered a
cow (swandairy.com, accessed 2023).

timeToBeHeifer [months] 24 Parameter: Cows typically give birth for the first time (i.e.
allocated to be heifers) 2 to 3 years of age (ciwf.org.uk, accessed
2023).

timeToGetCows [months] 1 Parameter: Assumption that a herd sold to the agent will be fully
incorporated within a year

xviii

Farm Variable [unit] Equation Documentation
totalFarmCost [NOK/month] (fixedFarmCost + variableFarmCost)

 * neighborMultiplier
Variable: total cost per time is simply the combination of the
variable per cow cost and fixed farm cost. A multiplier is included
for scenario testing of cost reduction via resource pooling with
neighbors

totalFarmsRawMilk
[tonnes/month]

From partner processor Java Variable: The total volume of milk purchased by the partnering
dairy processor is used to calculate the agent’s proportional
contribution to that total

totalRevenue [NOK/Months] milkRevenue + (meatRevenue + totalSubsidy) *
nonMilkRevenue

Variable: Sum of revenue from selling milk, meat, and receiving
subsidies

variableFarmCost [NOK/month] Cows * costPerCow Variable: The per cow cost is multiplied by the cow herd

Dairy Processor Agent

Processor Variable [unit] Equation Documentation
wholesaleStockDairy [tonnes] INTEG (+ processingMilk - shippingDairy ,

[wholesaleStockMilkCream,
wholesaleStockYoghurt,
wholesaleStockButter,
wholesaleStockCheese])

Stock [Arrayed]: This stock is represents the full amount that will
be shipped out to nearby municipalities this timestep. Arrayed by the
four dairy product categories. The full amount is expected to be
shipped out, but is consistently replenished through the inflow
processingMilk. Initial values for each dairy product category are
parameter inputs.

supplyRawMilk [tonnes] INTEG (+ sourcingMilk - toProcessing,
supplyRawmilk)

Stock: This stock acts equivalent to the receiving warehouse for the
processor. Raw milk produced by partnered farms inflow into this
stock. Initial values are calculated parameter inputs

totalConsumptionMilkCream
[tonnes/month]

SYNAGRI data Java variable: Milk consumption demand from all municipalities
partnered with this processor agent are summed and relayed to
calculate the goal in a goal-gap structure

totalConsumptionYoghurt
[tonnes/month]

SYNAGRI data Java variable: Yoghurt consumption demand from all municipalities
partnered with this processor agent are summed and relayed to
calculate the goal in a goal-gap structure

totalConsumptionButter
[tonnes/month]

SYNAGRI data Java variable: Butter consumption demand from all municipalities
partnered with this processor agent are summed and relayed to
calculate the goal in a goal-gap structure

totalConsumptionCheese
[tonnes/month]

SYNAGRI data Java variable: Cheese consumption demand from all municipalities
partnered with this processor agent are summed and relayed to
calculate the goal in a goal-gap structure

consumptionDairy [tonnes/month] [totalConsumptionMilkCream,
totalConsumptionYoghurt,
totalConsumptionButter,
totalConsumptionCheese]

Variable [Arrayed]: This variable simply collects the total
consumption demand into one arrayed variable for further calculations

desiredWholesaleDairy [tonnes] consumptionDairy[Dairy] * shippingTime Variable [Arrayed]: The consumption demand rate is multiplied by the
expected shipping time to determine the tonnes of dairy products that
need to be processed

xix

Processor Variable [unit] Equation Documentation
desiredWSbyProd [tonnes] desiredWholesaleDairy[Dairy] *

rawMilkPerDairyProduct[Dairy] *
(processingTime / shippingTime)

Variable [Arrayed]: The amount of raw milk needed per demanded dairy
product is calculated

gapRawMilkFromRM [tonnes] desiredWSbyProd.sum() – supplyRawMilk Variable: The arrayed raw milk demand is summed and subtracted by the
current raw milk supply stock to determine the gap of raw milk

totalDesiredRawMilk [tonnes/month] sumShippedDairy
 + lossFromProcessing
 + (gapRawMilkFromWS + gapRawMilkFromRM) /
purchaseTime

Variable: Gap of raw milk from the wholesale stock and raw milk
stock, as well as processing loss and loss through shipping outflow
are summed together to determine how much raw milk should be
requested of partnered farm agents

purchaseTime [month] 1 Parameter: It is assumed required raw milk will be ordered and
purchased within the month

gapWholesaleStockDairy [tonnes] desiredWholesaleDairy[Dairy] -
wholesaleStockDairy[Dairy]

Variable [Arrayed]: The desired consumption of dairy products by the
municipalities are subtracted by the current inventory of dairy
products to determine the gap in inventory

requiredRawMilkByProdFromWS
[tonnes]

gapWholesaleStockDairy[Dairy] *
rawMilkPerDairyProduct[Dairy]

Variable [Arrayed]: The gap in dairy products is converted to their
raw milk equivalents, but still arrayed by the four product
categories

gapRawMilkFromWS [tonnes] requiredRawMilkByProdFromWS.sum() Variable: The arrayed variable of dairy product gap in raw milk
equivalent is summed into one value

wholesaleStockMilkCream [tonnes] SYNAGRI data Parameter: Initial milk dairy product stock is calculated using
SYNAGRI model data

wholesaleStockYoghurt [tonnes] SYNAGRI data Parameter: Initial yoghurt dairy product stock is calculated using
SYNAGRI model data

wholesaleStockButter [tonnes] SYNAGRI data Parameter: Initial butter dairy product stock is calculated using
SYNAGRI model data

wholesaleStockCheese [tonnes] SYNAGRI data Parameter: Initial cheese dairy product stock is calculated using
SYNAGRI model data

shippingTime [month] 1 Parameter: It is assumed that any product in the processor warehouse
stock is shipped out within the month.

processingMilk [tonnes/month] milkForProcessing[Dairy] /
rawMilkPerDairyProduct[Dairy]

Flow [Arrayed]: The raw milk allocated to each dairy product category
is converted into the expected amount of final dairy products and
flows into the warehouse stock

shippingDairy [tonnes/month] wholesaleStockDairy[Dairy] / shippingTime Flow [Arrayed]: It is assumed that dairy products do not remain in
warehouse and are shipped out within the month

shippedInRawMilk [tonnes/month] shippingDairy[Dairy] *
rawMilkPerDairyProduct[Dairy]

Variable [Arrayed]: The amount of just shipped dairy products are
converted into their raw milk equivalents

sumShippedDairy [tonnes/month] shippedInRawMilk.sum() Variable: The arrayed shipped dairy products converted into raw milk
equivalents are summed into one value to be added to the total raw
milk requirement

rawMilkPerDairyProduct [dmnl] SYNAGRI data Parameter [Arrayed]: Tonnes of raw milk needed to produce 1 tonne of
dairy product varies by category, so this arrayed conversion factor
is used throughout the structure

xx

Processor Variable [unit] Equation Documentation
consRawMilkEquivalents
[tonnes/month]

consumptionDairy[Dairy] *
rawMilkPerDairyProduct[Dairy]

Variable [Arrayed]: Consumption demand rate arrayed by dairy products
from municipalities are converted into their raw milk equivalent

sumMilkConsumption [tonnes/month] consRawMilkEquivalents.sum() Variable: The arrayed consumption demand by dairy product categories
are summed into one raw milk value

rawMilkDivisionRatio [dmnl] (consumptionDairy[Dairy] *
rawMilkPerDairyProduct[Dairy]) /
sumMilkConsumption

Variable [Arrayed]: Raw milk requirements per arrayed dairy product
categories are each divided by the total raw milk requirement to
determine how the procured raw milk should be apportioned during
processing

relativeFulfillment [dmnl] sumShippedDairy / sumMilkConsumption Variable: Ratio between consumption demand and the actual mount of
dairy product delivered

fulfillmentGap [tonnes/month] sumMilkConsumption – sumShippedDairy Variable: The consumption rate is subtracted by the shipping rate to
determine deficit or excess

indicatedFarmsNeeded [farms] fulfillmentGap / avgFarmsRawMilk Variable: Number of additional farm partners is calculated by
considering the gap in fulfillment

dairyMinCapacity [dmnl] 0.85 Parameter: Per SYNAGRI model data this is the minimum
relativeFullfillment value that is acceptable for dairy processors

avgFarmsRawMilk
[tonnes/[farm*month]

totalFarmsRawMilk / partnerFarms Variable: Raw milk delivery rate for all currently partners farms are
divided by the number of farms to determine the average raw milk
delivery per farm monthly

partnerFarms [farms] partnerFarms.size() Java Variable: Number of elements in the parterFarms list array is
counted

totalFarmsRawMilk [tonnes/month] From partnered dairy farms Java Variable: Raw milk production from all partnered dairy farms are
summed into one variable

sourcingMilk [tonnes/month] totalFarmsRawMilk Flow: The summed total farm raw milk production variable is simply
used in this inflow

lossFromProcessing [tonnes/month] supplyRawMilk * processingWaste /
processingTime

Flow: All raw milk received from farms are expected to be processed
within the month with a portion of the volume lost to processing
waste

toProcessing [tonnes/month] supplyRawMilk * (1 - processingWaste) /
processingTime

Flow: Received raw milk not lost to processing outflows to the final
dairy product processing

milkForProcessing [tonnes/month] toProcessing * rawMilkDivisionRatio[Dairy] Variable [Arrayed]: The milk left over after processing loss is
apportioned their respective dairy product categories.

processingWaste [dmnl] 0.1105857 Parameter: SYNAGRI model assumption - for 1 tonne of raw milk
procured, 0.11 tonne is assumed to be lost in the processing stage

processingTime [momnth] 1 Parameter: All raw milk procured is assumed to undergo processing
within the month

Main, Kommuner, and Fylke Agents

xxi

Processor Variable [unit] Agent Equation Documentation
policyYear [year] Main 5 Parameter: The year from which farm agents will begin self-

evaluating financial performance. If they find recentIncome is
too low compared to benchmarkIncome they will check if they need
to close.

farmsFindNeighbors Main true Boolean: If set to true the farm agents will seek out other farm
agents to form dynamic network relationships

farmsSearchDistance Main true Boolean: If farmFindNeighbors AND this parameter are both set to
true, the farms will find their neighbors within a strict radius
(5km default). If this parameter is false, but farmFindNeighbors
is still true, the farms will instead search an incrementally
increasing radius until it finds 5 (by default) neighbors.

sellCowsWhenClosing Main false Boolean: If farmsFindNeighbors AND this parameter are set to
true, then a closing farm agent will transfer its cow herd
population to a neighbor with the greatest
perceivedFarmViability.

costSharing Main false Boolean: If farmsFindNeighbors AND this parameter are set to
true, depending on the number of neighbors the farm agents find,
they can reduce their total operation cost by up to 25%.

createNewFarms Main false Boolean: If set to true, if a dairy processor underdelivers
dairy products by a certain threshold compared to the
consumption demand, it can begin creating new farm agents to try
to boost production.

herdGrowth Main true Boolean: If set to true, this will allow the farm cow herd to
grow instead of staying statick like the agent-based model

nonMilkRevenue Main 1 Switch parameter: If 1, farm agents will obtain income from non-
milk sources such as meat and subsidies.

monthsPerYear [month / year] Main 12 Parameter: Conversion from months to year
BeefKgPerCapita [kg/(people*year)] Main 13.4001 Parameter: Country-wide beef consumption per capita rate
MilkCreamKgPerCapita [kg/(people*year)] Main 128.3 Parameter: Country-wide milk consumption per capita rate
YoghurtKgPerCapita [kg/(people*year)] Main 9.82 Parameter: Country-wide yoghurt consumption per capita rate
ButterKgPerCapita [kg/(people*year)] Main 3.18 Parameter: Country-wide butter consumption per capita rate
CheeseKgPerCapita [kg/(people*year)] Main 17.6 Parameter: Country-wide cheese consumption per capita rate
rmPerMilkCream [tonne/tonne] Main 1 Parameter: Amount of raw milk needed to produce milk
rmPerYoghurt [tonne/tonne] Main 1.13 Parameter: Amount of raw milk needed to produce yoghurt
rmPerButter [tonne/tonne] Main 20 Parameter: Amount of raw milk needed to produce butter
rmPerCheese [tonne/tonne] Main 6.91 Parameter: Amount of raw milk needed to produce cheese
annualMilkPrice [NOK/tonne] Main SYNAGRI data Parameters: The producer price (pp) data for culled cows is

imported from the SYNAGRI data.
annualMeatPrice [NOK/tonne] Main SYNAGRI data Parameter: Selling price of meat per tonne is sourced from

SYNAGRI model data
yieldRawMilk [tonnes/(cows*year)] Fylke SYNAGRI data Parameter: Average dairy cow yield data from SYNAGRI is

different for each county, but this study only uses yield from
Vestland county

xxii

Processor Variable [unit] Agent Equation Documentation
yieldDairyCowCarcass
[tonnes/(cows*year)]

Fylke SYNAGRI data Parameter: The portion of the cow herd culled for meat
production is sourced from SYNAGRI data

monthlyYieldRawMilk
[tonnes/(cows*month)]

Fylke yieldRawMilk / monthsPerYear Variable: The annual raw milk yield data is converted to per
monthly

monthlyYieldDairyCowCarcass
[tonnes/(cows*month)]

Fylke yieldDairyCowCarcass /
monthsPerYear

Variable: The annual cow carcass yield data is converted to per
monthly

Population [people] Kommune SYNAGRI data Parameter: Parameter: Population projection data is sourced from
SYNAGRI data and unique to each Kommune agent

kgPerTonne [kg/tonne] Kommune 1000 Parameter: Conversion factor from kg to metric tonne
consumptionBeef [tonne/month] Kommune PCBeef * population /

kgPerTonne / monthsPerYear
Variable: Per capita consumption is multiplied by kommune
population to get the demand for beef

consumptionMilkCream [tonne/month] Kommune (PCMilkCream * population /
kgPerTonne) / monthsPerYear

Variable: Per capita consumption is multiplied by kommune
population to get the demand for milk

consumptionYoghurt [tonne/month] Kommune PCYoghurt * population /
kgPerTonne / monthsPerYear

Variable: Per capita consumption is multiplied by kommune
population to get the demand for yoghurt

consumptionButter [tonne/month] Kommune PCButter * population /
kgPerTonne / monthsPerYear

Variable: Per capita consumption is multiplied by kommune
population to get the demand for butter

consumptionCheese [tonne/month] Kommune PCCheese * population /
kgPerTonne / monthsPerYear

Variable: Per capita consumption is multiplied by kommune
population to get the demand for cheese

xxiii

Appendix E: AnyLogic Java Code Documentation
Function name [Agent] Java code Documentation
On startup [Farms] setFarmPartners();

if(main.farmsFindNeighbors == true) {
 if(main.farmsSearchDistance == true) {
 neighborsByDistance();
 } else {
 neighborsNearestFive();
 }

 if(main.costSharing == true) {
 countNeighbors = neighborFarms.size();
 }
}

When farm agent is created, first call
for function setFarmPartners(). Then if
the switch farmsFindNeighbors is true
then if the farmsSearchDistance switch is
true then call for function
neighborsByDistance(). Else call for call
for function neighborsNearestFive().
Finally if the costSharing scenario
switch is true then count the number of
neighbors identified

setFarmPartners [Farms] dairy partnerDairy = this.getNearestAgentByRoute(main.dairies);
this.set_partnerDairy(partnerDairy);
partnerDairy.partnerFarms.add(this);

for (Kommune k : main.kommuner) {

 if (this.kommuneId == k.kommuneId) {
 this.set_partnerKommune(k);
 }

 for (Fylke y : main.fylker) {
 if (k.fylkeId == y.fylkeId) {
 k.set_partnerFylke(y);
 this.set_partnerFylke(y);
 }
 }
}

Find the farm agent’s closes processor,
and make it the partnered processor.

Also, take the farm’s unique municipality
ID and match it with the list of
municipalities with their IDs and match.
Take the farm’s unique county ID and also
match with list of counties and their
IDs.

neighborsByDistance [Farms] neighborFarms.addAll(agentsInRange(main.farms, 5, KILOMETER));

if(neighborFarms.size() != 0)
for(farm f : neighborFarms) {
 f.farmsConsiderMeNeighbor.add(this);
}

Find all other farms within a 5 km range
and add to array list neighborFarms. If
there are any neighbors found, then add
own self to the neighbors’ array list
farmsConsiderMeNeighbor

neighborsNearestFive
[Farms]

ArrayList<farm> farmCollection = new ArrayList<farm>();

farmCollection.addAll(agentsInRange(main.farms, 50, KILOMETER));

while(neighborFarms.size() < 5 && farmCollection.size() > 0) {

Create an empty array list
farmCollection. Search for number of
neighbors within a 5 km radius. If there
are less than 5 neighbors, expand the
search by 5km increments until at least 5

xxiv

Function name [Agent] Java code Documentation
 farm newNeighbor = this.getNearestAgentByRoute(farmCollection);
 neighborFarms.add(newNeighbor);
 farmCollection.remove(newNeighbor);
}

if(neighborFarms.size() != 0)
for(farm f : neighborFarms) {
 f.farmsConsiderMeNeighbor.add(this);
}

are found. Once at least 5 neighbors are
found add to the farmCollection array
list.

From the farmCollection array find the 5
nearest neighbor farms and add to array
neighborFarms.

Add own self to the neighbors’ array list
farmsConsiderMeNeighbor

totalFarmsRawMilk [Farms] double totalMilk = 0;
if(partnerDairy != null) {
totalMilk = partnerDairy.totalFarmsRawMilk;
}
return totalMilk;

Obtain the total amount of raw milk the
partner dairy processor is currently
procuring from all dairy farms

desiredTotalRawMilk [Farms] double totalMilk = 0;
if(partnerDairy != null) {
totalMilk = partnerDairy.totalDesiredRawMilk;
}
return totalMilk;

Obtain the total amount of raw milk
required by the partner dairy processor

monthlyYieldRawMilk [Farms] double monthlyMilkYield = 0;
if(partnerFylke != null) {
monthlyMilkYield = partnerFylke.monthlyYieldRawMilk;
}
return monthlyMilkYield;

Obtain the current milk yield value from
the partnered county

monthlyYieldDairyMeat
[Farms]

double monthlyMeatYield = 0;
if(partnerFylke != null) {
monthlyMeatYield = partnerFylke.monthlyYieldDairyCowCarcass;
}
return monthlyMeatYield;

Obtain the current dairy cattle meat
yield from the partnered county

closeFarmDecision [Farms] if (recentToBenchmark < (1 - farmIncomeViability) && gotCows.isActive() !=
true) {
 if (Math.random() < ceaseFarmingProb) {

 if(main.sellCowsWhenClosing == true) {
 sellCowsToNeighbor();
 }

 createBrownfield();
 closeFarm();

 }
}

If the recentToBenchmark ratio is less
than the (1 – farmIncomeViability), which
is 0.85 by default AND have not received
cow herd from a neighbor farm in the
recent year, then enter decision process
to close farm.

With a probability of ceaseFarmingProb
(0.25 by default), if the
sellCowsWhenClosing switch is true, then
call the function sellCowsToNeighbor().
Then create a new ClosedFarm agent in
place of oneself for record keeping. Then
finally call the closeFarm() function.

xxv

Function name [Agent] Java code Documentation
sellCowsToNeighbor [Farms] if(neighborFarms.size() != 0) {

 richNeighbor = top(neighborFarms, n -> n.perceivedFarmViability);
 richNeighbor.cowsFromNeighbor = Cows + richNeighbor.cowsFromNeighbor;
 richNeighbor.gotCows.restart();
 }

If the farm has any neighbors, then find
the neighbor farm with the best perceived
farm viability and give own population of
cows to that neighbor.

The receiving neighbor is also safe from
itself closing for 1 year to see if its
financial situation improves

closeFarm [Farms] if(farmsConsiderMeNeighbor.size() != 0) {
 for(farm f : farmsConsiderMeNeighbor)
 f.neighborFarms.remove(this);
}

partnerDairy.partnerFarms.remove(this);

main.remove_farms(this);

If other farms consider me neighbor, then
remove oneself from each of their
farmsConsiderMeNeighbor array list.

Remove oneself from the dairy processor’s
list of partnered dairy farms

Finally, remove oneself from agent
population of dairy farms in the
simulation

createBrownfield ClosedFarm justClosedFarm = main.add_closedFarms();
justClosedFarm.setLocation(this);
justClosedFarm.Cows = this.Cows;
justClosedFarm.farmId = this.farmId;
justClosedFarm.richNeighbor = this.richNeighbor;
justClosedFarm.recentToBenchmark = this.recentToBenchmark;
justClosedFarm.createdDate = this.createdDate;
justClosedFarm.countNeighbors = this.neighborFarms.size();
justClosedFarm.closedDate = date();
if(richNeighbor != null) richNeighbor.farmsThatSoldToMe.add(justClosedFarm);

Create one agent in the closedFarms
population. Transfer to this new agent
the following information about oneself:
location, farmID, which neighbor received
my cows, the income at which the farm
closed, when it was created, how many
neighbors, when was it closed.

Add oneself to the neighbor agent’s list
farmsThatSoldToMe of farms that has given
cows to it.

totalFarmsRawMilk
[Processor]

double totalFarmsRawMilk = 0;
if(partnerFarms != null) {
totalFarmsRawMilk = sum(partnerFarms, f -> f.farmMilkProduction);
}

return totalFarmsRawMilk;

Take the raw milk production from all the
partnered dairy farms and sum them

totalConsumptionMilkCream
totalConsumptionYoghurt
totalConsumptionButter
totalConsumptionCheese
[Processor]

double sumMilkCream = 0.0;
double sumYoghurt = 0.0;
double sumButter = 0.0;
double sumCheese = 0.0;

ArrayList<Double> dairyTotals = new ArrayList<Double>();

if(kommunerToSellTo != null) {

Take the dairy product consumption demand
from all partnered municipalities and sum
them according to each dairy product
array.

Take the total consumption demand for
each dairy product and add to a newly
created, empty array list dairyTotals.

xxvi

Function name [Agent] Java code Documentation
 for(Kommune k : kommunerToSellTo) {
 sumMilkCream += k.consumptionMilkCream;
 sumYoghurt += k.consumptionYoghurt;
 sumButter += k.consumptionButter;
 sumCheese += k.consumptionCheese;
 }
}

dairyTotals.add(sumMilkCream);
dairyTotals.add(sumYoghurt);
dairyTotals.add(sumButter);
dairyTotals.add(sumCheese);

return dairyTotals;

fulfillmentCheck
[Processor]

double check = -1;

if(time(YEAR) >= main.policyYear) {
 if(relativeFulfillment < dairyMinCapacity) {
 check = 1;
 } else {
 check = 0;
 }
}

return check;

If the current relative fulfillment is
less than the dairy minimum capacity
(0.85 default) then the switch will be
set to 1 (true) and dairy will begin
requesting more farm agents, else the
switch will be 0 and no new farms will be
created

needFarms [Processor] if(fulfillmentCheck == 1) {
farmDeficitWait.restart();
}

If fulfillment is found to be deficient,
then a 3-year waiting period is triggered
where the processor agent decides that it
needs to start signaling that more farm
agents are needed

enoughFarms [Processor] if(fulfillmentCheck == 0) {
farmDeficitWait.reset();
requestMoreFarms = false;
}

If fulfillment is found to be sufficient
then the processor will cancel the
default 3-year waiting period and also
changes the requestMoreFarms switch to
false.

farmDeficitWait [Processor] requestMoreFarms = true;
minMaxDairy();

After a 3-year delay, and if enoughFarms
function isn’t called in the meantime,
then the requestMoreFarms switch is set
to true.

Also, a max and minimum latitude and
longitude is assessed as a boundary to
create new farm agents

xxvii

Function name [Agent] Java code Documentation
minMaxDairy [Processor] for(farm f : partnerFarms) {

if(f.getLatitude() < minLatDairy) {
minLatDairy = f.getLatitude();
} else if(f.getLatitude() > maxLatDairy) {
maxLatDairy = f.getLatitude();
}

if(f.getLongitude() < minLongDairy) {
minLongDairy = f.getLongitude();
} else if(f.getLongitude() > maxLongDairy) {
maxLongDairy = f.getLongitude();
}

}

For all farm agents partners with this
processor agent, go through all the farms
and find the minimum and maximum latitude
and longitude values.

Establish this as the “box” in which new
farm agents will be created.

creatingMoreFarms
[Processor]

double openedFarmCows = 0;

if(requestMoreFarms == true) {
farm justOpenedFarm = main.add_farms();
justOpenedFarm.fylkeId = "46";
justOpenedFarm.partnerDairy = this;
partnerFarms.add(justOpenedFarm);

justOpenedFarm.jumpTo(
uniform(minLatDairy, maxLatDairy),
uniform(minLongDairy, maxLongDairy)
);

openedFarmCows = zidz(avgFarmsRawMilk,
justOpenedFarm.partnerFylke.monthlyYieldRawMilk);
justOpenedFarm.Cows = openedFarmCows;
}

If requestMoreFarms switch is activated,
then create a new farm agent. Assign the
county ID to be Vestland, then add the
new farm agent to own array list of
partnered farms.

Randomly relocate the new farm within the
bounds established by function
minMaxDairy().

To get the farm start operating, give the
current average cow herd size to the Cows
stock of the new farm. This allows the
new agent to start contributing raw milk
production, and also the cow herd can
start growing.

setProcessorPartners
[Kommune]

dairy dairyToBuyFrom = this.getNearestAgentByRoute(main.dairies);
this.set_dairyToBuyFrom(dairyToBuyFrom);
dairyToBuyFrom.kommunerToSellTo.add(this);

Have each municipality agent look for the
closest dairy farm agent. Make the
closest processor the partner dairy
processor.

Add oneself to the processor’s list of
kommunerToSellTo.

xxviii

Appendix F: System Dynamics Model Equivalent in Stella

xxix

xxx

Appendix G: How to Navigate and Run the AnyLogic
Model
To open and view the AnyLogic model, the modeling software first needs to be downloaded and
installed. Upon clicking the “Download” link from their website, there will be an option for three
versions—Personal Learning Edition (PLE), University Researcher, and Professional
(anylogic.com, Accessed May 2024). The PLE version is free for non-commercial application and
the hybrid model was built upon this edition.

Figure 32: Three AnyLogic versions available on the website, PLE is recommended and free to use

The AnyLogic software itself is based on the Java programming language, and upon first opening
the software, there may be a prompt to install separately Java Runtime Environment 11 (JRE) or
later. The hybrid model depends on numerous exogenous data which is sourced from Excel
tables; therefore, the alp AnyLogic model file must remain in its original directory to run
correctly.

The default setting opens a welcome page where the user can explore sample models. This
page can however be closed to view the main model window (Figure 33). The model should
show the Main model canvas, which is the top model structure which contains all the agents
and model elements.

xxxi

Figure 33: AnyLogic default welcome window

Figure 34: Main model canvas and Projects navigation panel on left side of the window and Properties on the right side

On the left side of the window there should be a side panel with two tabs, Projects and Palette
(Figure 34). The Palette tab can be disregarded as that is used only for model construction. The
Projects tab is a way to navigate all model elements like a folder structure. The red icons with
the stick figure in the center represent agents placed in the model. The blue icons with X in the
center represent the type of analyses configured in the model. Simulation is simply running the
model, while MonteCarlo is the 1000-run Monte Carlo analysis described in section 4. The
cylinder icon labelled Database is a repository of tables imported from Excel which the model
uses to populate the agents during the simulation. Right side of the window is the Properties

xxxii

frame, which will be used to view the documentation of model components such as the stock-
and-flow and Java objects. For example, scrolling above the map will show several “Top-level”
main Parameter objects, represented by a circle with a black wedge. Clicking on
rmPerMilkCream will reveal data properties for this object Figure 35).

Figure 35: Object properties of parameter rmPerMilkCream and arrayed variable rawMilkPerDairyProduct [..]

The top section of the properties is the object’s basic information—name, data type (integer,
double, string, Boolean, etc), and default value. For a parameter, the value will appear here. For
a variable with a formula—called Dynamic Variable represented by a simple circle—the
equation will in the default value instead. Under the Advanced section, most objects will have
System dynamics units box checked and the appropriate unit populated. Most objects will have
the Static radio button selected, but exogenous parameters that change over time, such as milk
yield, will have Dynamic button selected instead. If the model object is arrayed by the four dairy
products, the System dynamics array box on the top will be checked, and on the canvas the
object name will have an additional suffix [..], such as rawMilkPerDairyProduct [..] as seen in
Figure 35. Regardless of the model object under review, the Description section should be
populated documentation information which will be the same as the ones documented in
Appendix D: System Dynamics Model Equation Documentation and Appendix E: AnyLogic Java
Code Documentation.

The agents, either in the Projects or the left side of the Main model canvas, can be double
clicked to investigate their inner System Dynamics components. Model agents are farms,
processors, kommuner, and fylker. There are two other agents—slaughterhouses and
checkpoints. They can be disregarded as they are copied over from the SYNAGRI agent-based
model but not in active use with the hybrid implementation. The agent closedFarms is used only
for accounting purposes and can be disregarded.

Double clicking on the farms agent, for example, reveals its inner System Dynamics component
simulating the cow herd growth structure (Figure 36). There are a few model objects that do not
appear on the Main canvas—variables, Java functions, and events. Variables are represented by

xxxiii

an orange circle icon with a V in the middle. They effectively act as ghost converters in Stella or
shadows in Vensim. In the hybrid model, values must be passed from agent to agent, this can
only be achieved by using variables as the recipient of the data.

Figure 36: Stock-and-flow structure view of the dairy farm agents upon double clicking

Java functions are represented by a light blue circle with an F in the center of the icon. Java
functions can essentially serve any purpose as long as the Java syntax is correct. In the hybrid
implementation it serves numerous key purposes: retrieving values from other agents, neighbor-
searching algorithm on the map, checking own financial viability, farm closure decision
procedure, and adding/deleting farm agents. Events are essentially Java functions, but can be
triggered at specific intervals or under certain conditions. They are represented by orange
lightning bolts. Events are critical because the farm agents’ financial self-evaluation must be set
to begin after a certain period (5 years default), then annually afterwards, which can all be
readily configured. The final object is Collections, which is essentially a list of agents that are
beneficial to be organized in one place for Java variables to access. Collections allow dairy
processor agents to retrieve raw milk production values from all of the farm agents connected to
them. Moreover, each farm agents have a small collection of neighbors, one of which may
receive its cow herd upon closure.

All of the AnyLogic model objects described are summarized in Table 6.

Table 6: Key AnyLogic model object icons, name, and modeling purpose

Object
Icon

Object Name Model Purpose

Parameter

Contains exogenous data, which can be static or dynamic, such as
inputs of historical data from a table

Dynamic
Variable

Calculates equations on a continual basis every model DT

Agent

The “actors” in the model. Contains System Dynamic component as
well as lives on the map canvas in the Main model object.

xxxiv

Variable

Mainly acts as “ghost” values between agents, but can be used for any
modeling purpose by Java functions

Function Java code which can be executed for any purpose necessary

throughout the simulation

Event

Java code which can be deployed at any specific simulation time,
frequency, and condition.

Collection List of agents which can be modified dynamically.

To run the model simulation, click the down arrow next to the green play button under the menu
bar of the window (Figure 37). There will be two options available, Simulation and MonteCarlo.
Simulation should be selected to simply view the model results.

Figure 37: Simulation options available in the model

Once the simulation window opens, it is recommended to click on two objects to run the model
effectively (Figure 38). First, the fast forward icon on the bottom of the window allows the
simulation to run fast as the computer processor allows. Then, the gear icon on the bottom right
can be clicked to open the Developer Panel, which shows informative simulation dialogue such
as when a farm must close and when a dairy processor has created a new farm agent.

xxxv

Figure 38: AnyLogic simulation window with virtual run speed and developer panel open (circled red)

The map shows many green dots, representing farm agents, and blue buildings, representing the
diary processors. The size of the green circles represent the relative size of the cow herd of the
farm agent. However, it should be noted that the size of the circle does not represent the
physical land area of each farm. Toward the latter half of the simulation, many green circles will
turn brown, indicating that farm has shut down. There will also be blue circles that appear
randomly. These are farm agents which are created by dairy processors that need to boost raw
milk procurement. Each icon can be clicked to reveal the System Dynamic structure of the
specific agent. Moreover, each stock-and-flow object can be clicked to reveal the running value
of that object Figure 39). To return to the Main canvas, the Home icon above the Developer
Panel can be clicked.

xxxvi

Figure 39: Running simulation value of the cow herd population for farm agent 8, go Main canvas by clicking Home (circled red)

Finally, to the right of the map in the Main canvas, there are several key indicators which can be
seen continually updating as the simulation progresses (Figure 40).

xxxvii

Figure 40: Selected KPIs for the model simulation

