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S1. Python codes in online repository 
We present the codes used in this paper in the following public repository:  
 
https://github.com/ali-akhavan89/generative-AI-and-simulation-modeling  
 
The online repository includes these five code files: 
 

•  Python code for estimating the parameters of the example model 

•  Python code for the example model, revised based on ChatGPT’s feedback 

•  Python code for estimating the parameters of the example model 

•  Python code used for sensitivity analysis by changing EFT and PAT 

•  Python code provided by ChatGPT to plot a heatmap for sensitivity analysis 
 

S2. Details of optimization iterations provided in a ChatGPT prompt 
 
Iteration  Total nfev Cost   Cost reduction  Step norm  Optimality    
0  1  5.4874e+08     1.96e+09     
1  2           8.3329e+06 5.40e+08 8.01e+02        6.03e+07     
2  3           5.3994e+06       2.93e+06        1.35e+03        2.83e+07     
3  4  5.2599e+06 1.40e+05 4.10e+02 9.64e+07     
4  5  3.6457e+06 1.61e+06 2.88e+02 4.16e+06     
5  6  3.4853e+06 1.60e+05 2.98e+02 2.73e+06     
6  7  3.3795e+06 1.06e+05 2.10e+02 2.45e+06     
7  8  3.2289e+06 1.51e+05 3.45e+02 1.18e+06     
8  9  2.9876e+06 2.41e+05 6.58e+02 1.28e+06     
9  10  2.9562e+06 3.14e+04 2.40e+01 2.08e+06     
10  11  2.9313e+06 2.50e+04 3.76e+01 1.92e+06     
11  13  2.9306e+06 6.12e+02 2.10e-01 5.53e+05     
12  14  2.9303e+06 3.91e+02 2.73e-02 3.83e+05     
13  15  2.9302e+06 1.51e+01 3.07e-02 3.90e+05     
14  16  2.9302e+06 4.82e+01 4.12e-03 2.47e+05     
15  17  2.9302e+06 2.03e+01 3.43e-03 4.41e+05     
16  19  2.9302e+06 1.56e+00 3.85e-04 1.94e+05     
17  27  2.9302e+06 2.47e-01 1.40e-08 1.66e+05     
18  34  2.9302e+06 1.31e-01 7.36e-12 1.91e+05     

 
 
  

https://github.com/ali-akhavan89/generative-AI-and-simulation-modeling
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S3. Supplementary figure 
 

 
Figure S1. Step-by-step instructions for setting up the Flask application provided by ChatGPT 
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S4. Model documentation provided in a ChatGPT prompt 

Introduction 
The purpose of this model is to replicate the impact of COVID-19 shock on US GDP growth and to 
estimate the change in consumer behavior. This model employs a system of ordinary differential 
equations (ODEs) to simulate the dynamic relationship between expected income, consumption, and the 
Gross Domestic Product (GDP) of the United States. By integrating key economic indicators and 
parameters such as the Marginal Propensity to Consume (MPC), Expectation Formation Time, and 
Production Adjustment Time, the model provides insights into how these factors interact over time, 
particularly in response to significant external shocks like the COVID-19 pandemic. 

The model accounts for the temporal shifts in consumer behavior resulting from the pandemic, 
particularly through the modification of the MPC during the COVID-19 period. This is achieved by 
adjusting the Reference MPC based on a parameter (alpha) during the initial phase of the pandemic, 
reflecting a decrease in consumer spending. The integration of real-world economic data, including 
investment, government expenditure, and net exports, further enhances the model’s applicability. 

Utilizing data from 2013 to 2023, the model offers a view of the pre-pandemic economic 
conditions, the immediate impact of the pandemic, and the subsequent recovery phase. This time frame 
allows for a detailed analysis of the pandemic’s effects on the U.S. economy and aids in understanding 
the resilience and adaptability of consumer behavior in the face of such unprecedented challenges. 

Model Parameters and Variables 
The model includes several key parameters and variables, each with a specific economic interpretation: 

• Marginal Propensity to Consume (MPC): This parameter represents the fraction of changes in 
income that the population will spend on consuming goods and services, as opposed to saving. It 
is central to understanding consumer behavior in the model. 

• Expectation Formation Time: This parameter indicates the time it takes for people to adjust 
their expectations regarding future income, reflecting the dynamic nature of the economy. 

• Production Adjustment Time: It signifies the time required for production levels to adapt to the 
prevailing level of demand and other economic indicators. 

• Investment, Government Expenditure, Net Exports: These are key components of the Aggregate 
Demand in the model. They are treated as external inputs and are fed into the model through 
interpolation of historical data. 
 

Code Description 

Libraries Used 
• NumPy: This library is used for numerical computing in Python. In this model, NumPy is primarily 

utilized for array manipulation and mathematical operations. 
• SciPy: The integrate and interpolate modules from SciPy are employed. The integrate module’s 

odeint function is crucial for solving the system of ordinary differential equations (ODEs) that 
form the core of the model. The interpolate module’s interp1d function is used to create a 
continuous function from discrete data points, allowing for the interpolation of economic data 
over time. 

• Matplotlib: This plotting library is used for creating static, interactive, and animated 
visualizations in Python. Matplotlib’s pyplot interface is used to plot the simulated GDP against 
historical data, providing a visual representation of the model’s output. 

• Pandas: A library offering data structures and data analysis tools. It is used for reading and 
manipulating the input data stored in an Excel file, making data handling efficient and 
straightforward. 
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Importing Data 
The model imports economic data from an Excel file using Pandas. This data includes time series for 
investment, government expenditure, net exports, and GDP. The data is collected from Federal Reserve 
Economic Data. The interp1d function from SciPy’s interpolate module is used to create continuous 
functions from these discrete data sets, enabling the model to utilize real-world economic data 
dynamically over the simulation period. 

Code Structure 
The core of the model is a function named model that defines a system of ODEs representing expected 
income and GDP. This function takes the current state of the system (expected income and GDP), time, 
and model parameters as inputs and returns the derivatives of expected income and GDP. The system of 
ODEs is solved using the odeint function from SciPy over a specified time range, and the results are 
plotted against historical data for comparison and analysis. 
 

Model Definition 
This economic model is constructed around a system of Ordinary Differential Equations (ODEs), which 
are utilized to simulate the dynamics of expected income and Gross Domestic Product (GDP) in response 
to economic variables and external shocks, such as the COVID-19 pandemic. 

System of ODEs 
The model uses two main ODEs that describe the evolution of Expected Income and GDP over time. 
These equations are central to capturing the dynamic behavior of the economy under various conditions. 

1. Change in Expected Income: This is modeled as the difference between GDP and Expected 
Income, divided by the Expectation Formation Time (EFT). This equation reflects how 
expectations about future income adjust over time based on the current state of the economy. 

2. Change in GDP: It is derived from the difference between Aggregate Demand and GDP, adjusted 
by the Production Adjustment Time (PAT). Aggregate Demand itself is calculated as the sum of 
Consumption (dependent on MPC and Expected Income), Investment (I), Government 
Expenditure (G), and Net Exports (NX). This equation embodies the response of GDP to 
fluctuations in overall economic demand. 

Model Function 
The model function encapsulates these ODEs. It is designed to be used with the odeint solver from SciPy, 
which numerically integrates these equations over a specified time period. 

• Inputs: The function accepts the current state vector (comprising Expected Income and GDP), 
the current time point, and a tuple of parameters (Reference MPC, EFT, PAT, alpha). 

• Outputs: It returns the derivatives of Expected Income and GDP as an array, representing the 
rate of change of these variables at each time point. 

COVID-19 Shock Adjustment 
A feature of the model is its ability to adjust for the economic impact of the COVID-19 pandemic. This is 
achieved through a temporal modification of the MPC during the initial phase of the pandemic (2020 to 
2020.25). The MPC is adjusted by a factor of alpha, representing the reduction in consumer spending 
due to the pandemic. This adjustment captures the immediate and pronounced shift in consumer 
behavior during the early stages of the crisis. 

Numerical Solution and Analysis 
The model’s ODEs are solved numerically using the odeint function over a predefined range of quarter-
year intervals from 2013 to 2023. This approach allows for an analysis of the model’s behavior over time, 
offering insights into the interplay between economic variables and their collective impact on GDP and 
expected income, especially during the period of the COVID-19 shock. 
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Data Sources 

Federal Reserve Economic Data (FRED) 
The data utilized in this economic model is sourced from the Federal Reserve Economic Data (FRED), a 
database maintained by the Federal Reserve Bank of St. Louis. FRED offers a wide array of economic 
data, making it a useful resource for empirical economic analysis and modeling. 

Data Selection and Relevance 
For this model, we have selected specific time series from FRED that are crucial for simulating the U.S. 
economy: 

• Investment Data: Reflects the total amount of investment in the economy over the time period. 
This data is integral to understanding the role of investment in driving economic growth. 

• Government Expenditure Data: Represents the spending by the government, a key component 
of the overall economic demand. 

• Net Exports Data: The difference between the country’s total value of exports and total value of 
imports, indicating the contribution of trade to the economy. 

• GDP Data: Gross Domestic Product figures provide the baseline against which the model’s 
output (simulated GDP) is compared. 

Data Handling and Processing 
The data is imported into the model using Pandas, a data manipulation library in Python. This allows for 
efficient handling and transformation of the time series data. The data is initially stored in an Excel file 
(Data.xls), which is read into the model. 
Interpolation of Data 
Given that the model operates on a continuous time frame, while the economic data is available in 
discrete time points, interpolation is essential. We used the interp1d function from SciPy’s interpolate 
module to create continuous functions from the discrete data points. This method ensures that the 
model can estimate economic variables at any given time within the simulation period. 
The interpolation is set to “extrapolate” to allow the model to estimate values beyond the range of the 
available data points. 

Data Reliability and Credibility 
The choice of FRED as the data source adds reliability to the model, given FRED’s reputation for providing 
accurate and up-to-date economic data. 
  

Simulation Execution 

Setting Up the Simulation Environment 
The simulation of the economic model is executed in a Python environment, requiring the installation of 
specific libraries: NumPy, SciPy, Matplotlib, and Pandas. These libraries are essential for numerical 
calculations, solving differential equations, data handling, and visualization. 

Defining Simulation Parameters 
The simulation is driven by a set of pre-defined parameters that are estimated later. However, in the 
version of the model without calibration, we used randomly assigned values: 

• Expectation Formation Time (EFT): Set at 2 years, this parameter governs the speed at which 
expected income adjusts to the GDP. 

• Production Adjustment Time (PAT): Set at 1 year, it dictates the responsiveness of GDP to 
changes in aggregate demand. 

• Net Exports: A fixed value of 10, representing the net export level in the model. 
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• Reference Marginal Propensity to Consume (MPC): Initially set at 0.8, indicating the proportion 
of income spent on consumption. 

• Alpha: Set at 0.4, this parameter represents the reduction in MPC during the COVID-19 shock 
period (2020 to 2020.25). 

Initializing Model Variables 
The model begins with specific initial conditions for the state variables: 

• Expected Income: Initially set at 250 (in billions of dollars), representing the starting value for 
expected consumer income. 

• GDP: The initial value is set at 16648.189 (in billions of dollars), aligning with historical GDP data 
at the start of the simulation period. 

Running the Simulation 
The simulation covers a period from 2013 to 2023, divided into quarter-year intervals. This time frame is 
selected to encapsulate the pre-pandemic economic conditions, the immediate impacts of the 
pandemic, and the beginning of the recovery phase. 
The core of the simulation involves solving the system of ODEs using the odeint function from SciPy. This 
numerical solver integrates the model equations over the specified time points, considering the initial 
conditions and parameters. The resulting output provides a time series of Expected Income and GDP 
values. 

Post-Processing and Analysis 
After the simulation, the results are unpacked and analyzed: 

• The expected income and GDP values are extracted from the results for further analysis. 
• These values are compared against the historical data to evaluate the model’s accuracy and to 

understand the economic impact of the COVID-19 shock. 

Visualization 
The final step involves visualizing the simulated GDP alongside the actual GDP data using Matplotlib. This 
graphical representation allows for an intuitive comparison of the model’s output with real-world data, 
highlighting the model’s effectiveness in simulating economic trends and shocks. 
 

Results and Visualization 

Analysis of Simulation Results 
Key findings include: 

1. Expected Income Trends: The model traces the trajectory of expected income, highlighting how 
consumer expectations evolve in response to changing economic conditions, including the 
impact of the COVID-19 pandemic. 

2. GDP Dynamics: The simulation illustrates the fluctuations in GDP, showing the immediate effects 
of external shocks and the gradual adaptation of the economy over time. This is particularly 
evident during the COVID-19 period, where the model captures the sharp contraction and 
subsequent recovery phases. 

3. Impact of COVID-19: The results demonstrate the significant impact of the COVID-19 shock on 
both expected income and GDP. The adjustment of MPC during the pandemic period models the 
reduction in consumer spending and its broader economic implications. 

4. Comparative Analysis: By juxtaposing the simulated data against actual historical data, the 
model’s ability in replicating real-world economic patterns is assessed.  

Visualization of Results 
Key components of the visualization include: 
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• Simulated GDP vs. Historical Data: A line graph is generated using Matplotlib, where the 
simulated GDP is plotted alongside the historical GDP data. This visualization aids in directly 
comparing the model’s predictions with actual economic outcomes. 

• Graphical Layout: The graph is designed for clarity and ease of understanding.  
 

Replication Steps 

Environment Setup 
To replicate the results of this economic model simulation, the following setup is required: 

1. Python Installation: Ensure Python (version recommended: 3.8 or newer) is installed.  
2. Library Installation: Install the required Python libraries: NumPy, SciPy, Matplotlib, and Pandas. 

This can be done using pip, Python’s package installer, with the command: 
pip install numpy scipy matplotlib pandas 

3. Data Files: Obtain the necessary data files from Federal Reserve Economic Data (FRED). 
Specifically, gather time-series data for Investment, Government Expenditure, Net Exports, and 
GDP. Save this data in an Excel file named ‘Data.xls’. 

Running the Model 
Follow these steps to execute the simulation: 

1. Code Preparation: Copy the provided Python code into a Python script (.py file) or a Jupyter 
notebook (.ipynb file). 

2. Data File Placement: Place the ‘Data.xls’ file in an accessible directory. Ensure the file path in the 
code matches the location of this file on your system. 

3. Parameter Adjustment (Optional): Adjust the model parameters (EFT, PAT, MPC, etc.) as needed 
to explore different scenarios or to align the model with updated economic data. 

4. Execute the Script: Run the script or notebook. If using a command line interface, navigate to 
the directory containing the script and execute it using: 

python script_name.py 

For Jupyter notebooks, run each cell sequentially. 

Analyzing the Output 
Upon execution, the model will generate a plot comparing the simulated GDP with the historical data. 
Examine this plot to assess the model’s performance and to understand the economic dynamics during 
the simulation period. 
 
Troubleshooting Common Issues 

• Data Import Errors: Ensure the ‘Data.xls’ file is correctly formatted and located in the specified 
path. Double-check the column names and data types. 

• Library Compatibility: If there are errors related to library functions, verify that you are using the 
recommended versions of Python and the libraries. 

• Numerical Instabilities: If the model produces unrealistic or unstable results, consider adjusting 
the initial conditions or the parameters, and ensure that the ODE solver is configured correctly. 
 

Further Exploration 
• Model Extension: Researchers can extend the model by incorporating additional economic 

factors or by adjusting it to simulate different economic scenarios. 
• Sensitivity Analysis: Conduct sensitivity analyses by varying key parameters and observing the 

impact on the model’s output, providing deeper insights into the dynamics of the economic 
system. 
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S5. Example of full ChatGPT’s response 
 
Prompt 
I want your feedback on my attempt to identify variables and develop a conceptual model for including 
COVID-19 shock in a simplified macroeconomic model of the consumption multiplier. I have put together 
the key relationships for my model. Can you check the attached photo and give me your feedback? Be 
critical.  

 
Initial model of consumption multiplier, provided in a ChatGPT prompt 
 
ChatGPT’s Full Response 
Based on your diagram, you seem to be incorporating the COVID-19 shock into a macroeconomic model 
by adjusting several variables that influence aggregate demand, specifically through changes in 
government expenditure, investment, and the marginal propensity to consume. Here are some critical 
points to consider: 

1. Government Expenditure: You indicate that government expenditure negatively affects 
aggregate demand, which is unconventional. Typically, increased government expenditure is a 
fiscal stimulus that increases aggregate demand. If you mean to show that COVID-19 has led to a 
decrease in other forms of government expenditure, it would be more accurate to show this as 
a positive relationship with a note that COVID-19 has caused a shift in the composition of 
expenditure. 

2. Investment: You’ve marked investment with a positive relationship to aggregate demand, which 
is correct. However, it’s important to specify the nature of the investment. During COVID-19, 
certain types of investment may have fallen (e.g., new commercial real estate), while others 
may have risen (e.g., healthcare infrastructure). 

3. Expected Income: The link between GDP and expected income is not entirely clear in the model. 
Normally, GDP would positively influence expected income, not negatively. If your intention is to 
show that the GDP has decreased due to COVID-19, thereby lowering expected income, then the 
direction of the arrow is correct, but it could be made clearer. 

4. Consumption: The relationship between expected income and consumption is correct; as 
expected income decreases, consumption typically does as well. However, the addition of the 
marginal propensity to consume (MPC) is crucial, and it appears you’ve depicted this 
relationship correctly. 

5. Marginal Propensity to Consume: The negative relationship between COVID-19 onset and the 
marginal propensity to consume is appropriate, assuming that the shock of the pandemic has 
made consumers more likely to save rather than spend. 
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6. Clarity: While the relationships are mostly indicated, it may help to clarify the time frame and 
conditions under which these relationships hold. For instance, initial government responses to 
COVID-19 often involved increased spending, which would generally boost aggregate demand. 

7. Feedback Mechanisms: Your model currently lacks feedback loops. For instance, consumption 
affects GDP, and the shock to one part of the model may cycle through and affect other parts 
multiple times. 

8. Exogenous and Endogenous Variables: It’s important to distinguish between what your model 
treats as exogenous (e.g., COVID-19 shock) and what it treats as endogenous. Make sure this is 
clearly stated. 

9. Causality: Ensure that the causality in your model reflects real-world dynamics and is supported 
by empirical evidence. 

10. Complexity and Simplifications: Every model simplifies reality. Be explicit about the 
simplifications you’re making and consider whether they might affect the validity of your 
model’s predictions. 

11. Assumptions: State the assumptions that underpin your model. This includes assumptions about 
behavior, markets, and the specific mechanisms of the COVID-19 shock. 

12. Data and Calibration: If this is more than a theoretical exercise, consider how you will calibrate 
your model. What data will you use? How will you account for uncertainty and potential 
changes in relationships due to the pandemic? 

13. Policy Implications: Think about the implications of your model for policy. What does it suggest 
about effective responses to the COVID-19 economic shock? 

In constructing such models, it is crucial to base your relationships on established economic theories and 
empirical data, and to be ready to adjust them as more information becomes available, especially in the 
context of an ongoing and unprecedented event like the COVID-19 pandemic. 
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S6. Example of iterative prompt refinement (three iterations)  
 

Iteration 1 
We started by asking a general question about developing an interface, presented below. 
 
Prompt 
Can you help me develop a user interface for the code I developed?  
 
ChatGPT’s Full Response 
To develop a user interface (UI) for your code, we have several options, including creating a simple 
graphical user interface (GUI) using Python libraries like Tkinter, PyQt, or building a web-based interface 
using frameworks like Flask or Streamlit. The choice depends on your preference and the intended users 
of the application. 
 
Option 1: Tkinter GUI 
Tkinter is a standard GUI toolkit for Python. It is lightweight and relatively easy to use for simple 
applications. 

• Advantages: Simple, no need for web servers or internet access. 
• Disadvantages: Limited in terms of styling and advanced features. 

Option 2: PyQt GUI 
PyQt is another GUI framework which offers more sophisticated widgets and styling options compared 
to Tkinter. 

• Advantages: More features and better styling options. 
• Disadvantages: More complex than Tkinter and requires understanding of the Qt framework. 

Option 3: Flask Web Interface 
Flask is a micro web framework for Python. It is great for creating web-based interfaces. 

• Advantages: Accessible from any device with a web browser, more modern interface 
possibilities. 

• Disadvantages: Requires a web server setup for remote access. 
Option 4: Streamlit 
Streamlit is a newer framework specifically designed for quickly building data science and machine 
learning apps. 

• Advantages: Very easy to set up, great for data visualization. 
• Disadvantages: Less flexibility for non-standard UI elements or complex interactions. 

 
Example of a Simple Tkinter UI 
Here is a basic example of what a Tkinter UI could look like for your application: 

• Input fields for parameters like Reference_MPC, alpha, EFT, PAT, Expected_Income0, and GDP0. 
• Buttons to run the simulation and to load data. 
• Graph area to display the plot generated by Matplotlib. 
• Status messages to inform the user of the current state of the application (e.g., "Running 

simulation...", "Simulation completed"). 
Would you like to proceed with one of these options, and if so, which one? Also, do you have any 
specific features or elements you want to include in the UI? 
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Iteration 2 
From the previous response, we realized that we should have considered the inputs to our model that 
can be changed by a user. To revise the prompt, we specified the inputs, which are the model 
parameters we are interested in. 
 
Prompt 
I want to create an interface with the parameters Reference Marginal Propensity to Consume (Reference 
MPC), Production Adjustment Time (PAT), Expectation Formation Time (EFT), and alpha as inputs for the 
code I developed. 
 
ChatGPT’s Full Response 
Creating an interface for your code involves a few steps. Since you want to input parameters like 
Reference Marginal Propensity to Consume (Reference MPC), Production Adjustment Time (PAT), 
Expectation Formation Time (EFT), and alpha, I recommend using a Python library like tkinter for a GUI-
based approach or ipywidgets if you’re working within a Jupyter Notebook. Here’s a basic outline for 
both approaches: 
Using tkinter for a Standalone Application 

• Install tkinter: If not already installed, you can install it using pip. 
• Create a GUI Window: Initialize the tkinter window. 
• Add Input Fields: Create input fields for Reference MPC, PAT, EFT, and alpha. 
• Add a Button: To run the simulation. 
• Define the Simulation Function: Include your existing code, modified to take inputs from the 

GUI. 
• Display Results: Possibly in a new window or as a download option. 

Here’s a basic skeleton code: 
 
import tkinter as tk 

from tkinter import filedialog 

import numpy as np 

from scipy.integrate import odeint 

from scipy.interpolate import interp1d 

import matplotlib.pyplot as plt 

import pandas as pd 

 

def run_simulation(Reference_MPC, EFT, PAT, alpha): 

    # Your existing simulation code here 

    # Modify to use the parameters from the GUI 

 

def on_run_clicked(): 

    Reference_MPC = float(entry_ref_mpc.get()) 

    EFT = float(entry_eft.get()) 

    PAT = float(entry_pat.get()) 

    alpha = float(entry_alpha.get()) 

    run_simulation(Reference_MPC, EFT, PAT, alpha) 

 

root = tk.Tk() 

root.title("Economic Model Simulation") 

 

tk.Label(root, text="Reference MPC").pack() 

entry_ref_mpc = tk.Entry(root) 

entry_ref_mpc.pack() 

 

tk.Label(root, text="EFT").pack() 

entry_eft = tk.Entry(root) 

entry_eft.pack() 

 

tk.Label(root, text="PAT").pack() 

entry_pat = tk.Entry(root) 

entry_pat.pack() 
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tk.Label(root, text="Alpha").pack() 

entry_alpha = tk.Entry(root) 

entry_alpha.pack() 

 

run_button = tk.Button(root, text="Run Simulation", command=on_run_clicked) 

run_button.pack() 

 

root.mainloop() 
 
Using ipywidgets for a Jupyter Notebook 

• Install ipywidgets: Use '!pip install ipywidgets in a Jupyter cell. 
• Create Widgets: For input fields and a button. 
• Display Widgets: Arrange them using layout options. 
• Link Function: Link your simulation function to the button click event. 

 
Here’s a basic example: 
 
import ipywidgets as widgets 

from IPython.display import display 

import numpy as np 

from scipy.integrate import odeint 

from scipy.interpolate import interp1d 

import matplotlib.pyplot as plt 

import pandas as pd 

 

def run_simulation(Reference_MPC, EFT, PAT, alpha): 

    # Your existing simulation code here 

    # Modify to use the parameters from the GUI 

 

ref_mpc_widget = widgets.FloatText(description='Reference MPC') 

eft_widget = widgets.FloatText(description='EFT') 

pat_widget = widgets.FloatText(description='PAT') 

alpha_widget = widgets.FloatText(description='Alpha') 

run_button = widgets.Button(description='Run Simulation') 

 

def on_run_clicked(b): 

    run_simulation(ref_mpc_widget.value, eft_widget.value, pat_widget.value, alpha_widget.value) 

 

run_button.on_click(on_run_clicked) 

 

display(ref_mpc_widget, eft_widget, pat_widget, alpha_widget, run_button) 

 
Remember, this is just a basic framework. You can expand upon this by adding more features like error 
handling, dynamic updating of graphs, etc. Also, make sure to adapt the simulation function to work 
with the GUI components. 
 

Iteration 3 
We realized that we could have specified the changes in the model to be considered as sliders where the 
user can change to see the updates in the model. We also included the details of the graph that we 
wanted to include in the interface.  
 
Prompt 
I’m interested in having a simple interactive interface for my model. I want to have four sliders to change 
the values for Reference Marginal Propensity to Consume (Reference MPC), Production Adjustment Time 
(PAT), Expectation Formation Time (EFT), and alpha, and the graph that be updated when I change the 
sliders. The graph should show Simulated GDP and Historical GDP. Of course, when I change the sliders, 
the Simulated GDP will be updated accordingly. Can you guide me on how to create this interface? 
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ChatGPT's Full Response 
Creating an interactive interface with sliders to adjust parameters in your model can be achieved using 
Jupyter widgets. These widgets allow interactive controls in a Jupyter notebook. Here's a step-by-step 
guide on how to create this interface: 

1. Import Necessary Libraries: You need to import ipywidgets for creating sliders and 
IPython.display for dynamic display. 

2. Define a Function to Update the Graph: Create a function that takes the slider values as inputs, 
runs the model with these parameters, and plots the graph. 

3. Create Sliders: Use ipywidgets to create sliders for each parameter you want to control 
(Reference MPC, PAT, EFT, and alpha). 

4. Display the Sliders and Graph: Use ipywidgets.interactive to link the sliders with the graph 
updating function. 

5. Optional Styling: You can adjust the layout and styling of the sliders and graph display according 
to your preference. 

 
Here is an example code to illustrate these steps: 

 
import ipywidgets as widgets 

from IPython.display import display, clear_output 

import matplotlib.pyplot as plt 

import numpy as np 

from scipy.integrate import odeint 

import pandas as pd 

# Other imports already in your code... 

 

# Assuming your model and other code components are correctly defined as above... 

 

# Step 2: Define a function to update the graph 

def update_graph(Reference_MPC, EFT, PAT, alpha): 

    results = odeint(model, y0, t, args=(Reference_MPC, EFT, PAT, alpha)) 

    Expected_Income_results, GDP_results = results.T   

 

    # Plotting 

    plt.figure(figsize=(10, 6)) 

    plt.plot(t, GDP_results, label="Simulated GDP") 

    plt.plot(t, GDP_Data(t), label="GDP Data", linestyle="--") 

    plt.xticks(np.arange(2013, 2024, 1), rotation=45) 

    plt.title("U.S. Simulated GDP vs. Historical Data") 

    plt.xlabel("Year") 

    plt.ylabel("Billions of Dollars") 

    plt.legend() 

    plt.grid(True) 

    plt.show() 

 

# Step 3: Create sliders 

slider_Reference_MPC = widgets.FloatSlider(value=0.84, min=0, max=1, step=0.01, 

description='Reference MPC:') 

slider_PAT = widgets.FloatSlider(value=0.27, min=0, max=1, step=0.01, description='PAT:') 

slider_EFT = widgets.FloatSlider(value=4.39, min=0, max=10, step=0.01, description='EFT:') 

slider_alpha = widgets.FloatSlider(value=0.28, min=0, max=1, step=0.01, description='Alpha:') 

 

# Step 4: Display the Sliders and Graph 

ui = widgets.VBox([slider_Reference_MPC, slider_PAT, slider_EFT, slider_alpha]) 

out = widgets.interactive_output(update_graph, {'Reference_MPC': slider_Reference_MPC, 'EFT': 

slider_EFT, 'PAT': slider_PAT, 'alpha': slider_alpha}) 

 

display(ui, out) 

 
Note: This code assumes you’re running it in a Jupyter notebook environment. The sliders will allow you 
to dynamically change the parameters and the graph will update accordingly. Remember to import your 
data and define the model function as in your original code. 
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