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1 Methods

1.1 Determining equilibria and stability

Recall that the dynamics of our model (under general resource allocation) are characterized
by the following system of equations:

dRu

dt
=

(w − wA)c

kc
− rdRu (1)

dRo

dt
= rdRu − (w − wA)p

kp

Ro

Ru +Ro
(2)

where wA = kA(Ru +Ro). Further recall that c and p are later adjusted to be functions of
Ru and Ro under the behavioral allocation scheme.

Determining the equilibrium positions under the general allocation scheme is fully tractable.
We set the derivatives equal to zero and solving provides a solution corresponding to ad-
ministrative bloat and solution corresponding to a functional administration level. The
administrative bloat solution is the pair Ru = 0 and Ro = w/kA. The functional adminis-
trative solution has the form:

Ru =
wc(kcp− ckp)

kc(ckAp− ckprd + kcprd)
(3)

Ro =
wkpc

2

kc(ckAp− ckprd + kcprd)
(4)

In the behavioral allocation scheme there is no apparent closed-form solution, so we deter-
mine the equilibria using a numerical solver (in our case, we use SciPy’s fsolve). Regarding
the stability of these solutions, we analytically determine the relevant second derivatives,
evaluate the Jacobian matrix of the system at the equilibrium positions, and then numeri-
cally solve for the eigenvalues of the system’s Jacobian.
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Interestingly, we find that the stability of the administrative bloat solution has a simple
form which allows us to understand the critical transition at kC = kP . Accordingly, we
address that in Section 1.3.

1.2 Simulation

Given the system of differential equations governing the system’s dynamics, we use Eu-
ler’s method to simulate in discrete time steps. We use the values of Ru and Ro at each
time step to determine the firm’s performance. We then consider what choice of decision
parameters, which we will refer to as the “management strategy”, results in the highest
performance.

To consider the optimal management strategies, we assume that the utility value being
optimized (UO) is equal to the utility of the firm (U) exponentially discounted over time
(i.e., UO

t = Ue−rt) at some constant rate r. We then use a maximization algorithm (in this
case, SciPy’s minimize function) to determine the management strategy which maximizes
the simulated utility over a finite time horizon (given by T ). (We minimize the utility
multiplied by negative one to obtain the maximum.)

We can consider optimization under a static management strategy and a dynamic manage-
ment strategy. As we have discussed, we determine the optimal static management strategy
by optimizing the decision parameters to maximize discounted utility over a fixed window.
To consider the optimal dynamic management strategy, we introduce an update time (given
by τ) which is much smaller than the time horizon. We then update the management strat-
egy every τ time steps. To do this, we begin with the optimal static management strategy
and simulate the system under that strategy for τ time steps. We then reevaluate the op-
timal strategy (given the new state of the system) and update the management strategy.
We simulate this new strategy for another τ time steps and repeat the evaluation process
again. We repeat this process of optimization, simulation, and re-optimization as long as
desired.

1.3 Derivation for critical transition in kc = kp

In our behavioral model, we observe that the number and character of equilibrium positions
in the system change at kC = kP . Here we consider why this occurs.

For the administrative bloat solution (which is a valid solution in both allocation schemes),
we find that the stability has a simple analytical solution. For our nonlinear system of
equations, we find the Jacobian, evaluate at the bloat position (Ru = 0, Ro = w/kA), and
calculate the eigenvalues of the system. These two eigenvalues are analytically tractable;
however, we will not go through the derivation here. We first present the resultant eigen-
values for the general allocation scheme:

λ1 = −rd λ2 = kA

(
p

kP
− c

kC

)
(5)

If we substitute c and p for the behavioral version and evaluate c̃ and p̃ at the bloat position,
then we obtain the eigenvalues of the behavioral version:

λ1 = −rd λ2 =
kA

2 + d̃

(
1

kP
− 1

kC

)
(6)

This is why we have a critical transition at kP = kC . The equilibrium is stable if both eigen-
values are negative, and because rd is a positive constant, λ1 is always negative. Therefore,
the administrative bloat position only changes stability when λ2 switches signs. Since kA
and d̃ are both positive, we see that λ2 can only change signs when the term in parenthesis
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changes signs. This only happens when kP = kC . If kP < kC , then λ2 is positive, and
the administrative bloat position is unstable. If kP > kC , then λ2 is negative, and the
administrative bloat position is stable.
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