Balancing People, Planet, and Profit in Urban Food Waste Management

Supplementary Materials

Ali Parsa¹, Marco Van De Wiel^{1,2}, Ulrich Schmutz¹, Ivan Taylor³, Jana Fried¹

- 1. Centre for Agroecology, Water and Resilience, Coventry University, UK
- 2. College of Agriculture and Environmental Sciences, UNISA, South Africa
- 3. Policy Dynamics Inc., Canada

Appendix 1- Model Equations, Data Points and Assumptions

Appendix 2- Costs and Benefits of Food Waste Management

Appendix 3- Validation: Building Confidence in Usefulness of the Model

List of Appendices

Appendix 1. Model Equations, Data Points, and Assumptions	1
Table A1.1. Array Variables and Dimensions	2
Table A1.2. Primary Production Food, Surplus, and Waste Equations	2
Table A1.3. Manufacture Food, Surplus, and Waste Equations	4
Table A1.4. Retail Food, Surplus, and Waste Equations	6
Table A1.5. HaFS Food, Surplus, and Waste Equations	8
Table A1.6. Household Food, Surplus, and Waste Equations	11
Table A1.7. Urban Surplus and Waste Equations	13
Table A1.8. Energy Footprint of Food Sector Equations	15
Table A1.9. Water Footprint of Food Sector Equations	18
Table A1.10. Carbon Footprint of Food Sector Equations	20
Table A1.11. Socio-Economic Impacts Equations	22
Table A1.12. Food (Waste) Parameters, Values and Data Sources	32
Table A1.13. Energy, Water and Climate Parameters, Values and Data Sources	43
Table A1.14. Socio-Economic Parameters, Values and Data Sources	51
Table A1.15. Stock Initial Values	57
Table A1.16. Parameters for Scenario Specification	59
Appendix 2. Costs and Benefits of Food Waste Management	61
Table A2.1. Costs and benefits of food waste management in Bristol	61
Appendix 3. Validation: Building Confidence in Usefulness of the Model	70
A3.1. Boundary Adequacy and Structure Assessment	73
A3.2. Extreme Conditions Test Applied	76
A3.3. Sensitivity Analysis Applied	78
A3.4. Concluding Remarks of Model Validation	81
References for Appendices	82

Appendix 1. Model Equations, Data Points, and Assumptions

The food waste dynamics model was first developed to simulate the urban food waste impacts on food, energy, water and climate (FEWC) nexus in the case of Bristol city, UK (Parsa et al., 2023). The model is now expanded to explore the socio-economic impacts of food waste management as well. This document reports the variables, parameters and equations of both studies. The data is divded into 16 tables (Tables A1.1 to A1.16) for enhanced readability. The following equation and data tables are sufficient to replicate and reproduce the environmental and socio-economic model and the findings reported in both studies.

The model is developed in Stella Architect (isee systems, 2019) and uses Euler Integration method to explore the system behavior for 12 years (STARTTIME=0, STOPTIME=12, and DT=0.25). Overall, the model has 517 (618) variables (i.e., array expansion in parentheses), including 14 (22) Stocks, 50 (58) Flows, and 453 (538) Converters. Excluding the Stocks, 181 (224) variables are Constants, 2 (2) are Graphical, and 322 (372) varioables are defined by Equations.

Following tables (Tables A1.1 to A1.16) provide the full list of equations, parameter values, data sources, and assumptions of the model.

1

Table A1.1. Array Variables and Dimensions

ARRAY DIMENSIONS	SUBSCRIPT NAMES
ENERGY_CONSUMPTION_OF_UK_HOUSEHOLD_FOOD[Fu	Fuels =
els]	Electricity,Natural_Gas,
energy_use_per_tonne_of_household_food[Fuels]	Oil,Solid_Fuels
household_energy_consumption[Fuels]	
HOUSEHOLD_ENERGY_COST_PER_MWH[Fuels]	
AVERAGE_CONSUMPTION_PER_BUSINESS[HaFs_busines	HaFs_businesses =
ses]	Restaurants,Pubs,Educ
AVERAGE_PURCHASE_PER_BUSINESS[HaFs_businesses]	ation,Healthcare,Hotels,
HaFS_growth[HaFs_businesses]	Quick_Service,Services,
Urban_HaFS_Businesses[HaFs_businesses]	Leisure,Others

Table A1.2. Primary Production Food, Surplus, and Waste Equations

EQUATION	UNIT
initial_production_waste =	Tonne/
INIT(Primary_Production*PRODUCTION_WASTE_FRACTION)	Year
Primary_Production(t) = Primary_Production(t - dt) + (primary_production_rate -	Tonne
production_local_supply - production_surplus - production_to_manufacture -	
production_waste_rate) * dt	
INFLOWS:	1
primary_production_rate =	Tonne/
production_shortfall+production_expected_outflow	Year
OUTFLOWS:	
production_local_supply =	Tonne/
urban_farming_to_household+urban_farming_to_HaFS	Year
production_surplus =	Tonne/
production_total_to_animal_feed+production_total_redistribution	Year
production_waste_rate =	Tonne/
Primary_Production*PRODUCTION_WASTE_FRACTION-	Year

production_waste_reduction-production_redistribution_change-	
production_to_animal_feed_change	
production_expected_outflow =	Tonne/
production_surplus+production_local_supply+production_to_manufacture+produ	Year
ction_waste_rate	
production_demand = production_to_manufacture+	Tonne/
INIT(production_surplus)+INIT(production_waste_rate)+production_local_supply	Year
-production_waste_reduction	
production_redistribution_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_REDISTRIBUTION_CHANGE_	Year
FRACTION/100)	
production_shortfall = production_demand-	Tonne/
Primary_Production/STOCK_ADJUSTMENT_TIME	Year
production_to_AD_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_TO_AD_CHANGE_FRACTION/	Year
100)	
production_to_animal_feed_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_TO_ANIMAL_FEED_CHANGE	Year
_FRACTION/100)	
production_to_compost_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_TO_COMPOST_CHANGE_FR	Year
ACTION/100)	
production_to_incineration_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_TO_INCINERATION_CHANGE	Year
_FRACTION/100)	
production_to_landfill_change =	Tonne/
initial_production_waste*RAMP(PRODUCTION_TO_LANDFILL_CHANGE_FRA	Year
CTION/100)	
production_total_redistribution =	Tonne/
production_redistribution_change+PRODUCTION_INITIAL_REDISTRIBUTION	Year
production_total_to_animal_feed =	Tonne/
production_to_animal_feed_change+PRODUCTION_INITIAL_TO_ANIMAL_FE	Year
ED	
Production_Waste(t) = Production_Waste(t - dt) + (production_waste_rate -	Tonne
production_to_landfill - production_to_incineration - production_to_AD -	
production_to_compost) * dt	

INFLOWS:	
production_waste_rate =	Tonne/
Primary_Production*PRODUCTION_WASTE_FRACTION-	Year
production_waste_reduction-production_redistribution_change-	
production_to_animal_feed_change	
OUTFLOWS:	
production_to_landfill =	Tonne/
Production_Waste*PRODUCTION_TO_LANDFILL_FRACTION+production_to_I	Year
andfill_change	
production_to_incineration =	Tonne/
Production_Waste*PRODUCTION_TO_INCINERATION_FRACTION+productio	Year
n_to_incineration_change	
production_to_AD =	Tonne/
Production_Waste*PRODUCTION_TO_AD_FRACTION+production_to_AD_cha	Year
nge	
production_to_compost =	Tonne/
Production_Waste *PRODUCTION_TO_COMPOST_FRACTION	Year
+production_to_compost_change	
production_waste_reduction =	Tonne/
initial_production_waste*RAMP(PRODUCTION_REDUCTION_CHANGE_FRAC	Year
TION/100)	

Table A1.3. Manufacture Food, Surplus, and Waste Equations

EQUATION	UNIT
initial_manufacture_waste =	Tonne/
INIT(Manufacture_Inventory*MANUFACTURE_WASTE_FRACTION)	Year
Manufacture_Inventory(t) = Manufacture_Inventory(t - dt) +	Tonne
(production_to_manufacture - manufacture_waste_rate - manufacture_to_retail -	
manufacture_surplus) * dt	
INFLOWS:	
production_to_manufacture =	Tonne/
manufacture_shortfall+manufacture_expected_outflow	Year
OUTFLOWS:	

manufacture_waste_rate =	Tonne/
Manufacture_Inventory*MANUFACTURE_WASTE_FRACTION-	Year
manufacture_waste_reduction-manufacture_to_redistribution_change-	
manufacture_to_animal_feed_change	
manufacture_surplus =	Tonne/
manufacture_total_redistribution+manufacture_total_to_animal_feed	Year
manufacture_expected_outflow =	Tonne/
manufacture_to_retail+manufacture_surplus+manufacture_waste_rate	Year
manufacture_demand =	Tonne/
manufacture_to_retail+INIT(manufacture_waste_rate)+INIT(manufacture_surplu	Year
s)	
manufacture_shortfall = manufacture_demand-	Tonne/
Manufacture_Inventory/STOCK_ADJUSTMENT_TIME	Year
manufacture_to_AD_change =	Tonne/
RAMP(MANUFACTURE_TO_AD_CHANGE_FRACTION/100)*initial_manufactu	Year
re_waste	
manufacture_to_animal_feed_change =	Tonne/
RAMP(MANUFACTURE_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initia	Year
I_manufacture_waste	
manufacture_to_compost_change =	Tonne/
RAMP(MANUFACTURE_TO_COMPOST_CHANGE_FRACTION/100)*initial_m	Year
anufacture_waste	
manufacture_to_incineration_change =	Tonne/
RAMP(MANUFACTURE_TO_INCINERATION_CHANGE_FRACTION/100)*initi	Year
al_manufacture_waste	
manufacture_to_landfill_change =	Tonne/
RAMP(MANUFACTURE_TO_LANDFILL_CHANGE_FRACTION/100)*initial_ma	Year
nufacture_waste	
manufacture_to_redistribution_change =	Tonne/
MIN(MANUFACTURE_EDIBLE_SURPLUS_FRACTION*initial_manufacture_wa	Year
ste,	
RAMP(MANUFACTURE_TO_REDISTRIBUTION_CHANGE_FRACTION/100)*i	
nitial_manufacture_waste)	
manufacture_total_redistribution =	Tonne/
MANUFACTURE_INITIAL_REDISTRIBUTION+manufacture_to_redistribution_c	Year
hange	

manufacture total to animal feed =	Tonne/
MANUFACTURE_INITIAL_TO_ANIMAL_FEED+manufacture_to_animal_feed_c	Year
hange	rour
Manufacture Waste(t) = Manufacture Waste(t - dt) + (manufacture waste rate	Tonne
- manufacture to AD - manufacture to incineration - manufacture to compost	Tonne
- manufacture_to_landfill) * dt	
INFLOWS:	- (
manufacture_waste_rate =	Tonne/
Manufacture_Inventory*MANUFACTURE_WASTE_FRACTION-	Year
manufacture_waste_reduction-manufacture_to_redistribution_change-	
manufacture_to_animal_feed_change	
OUTFLOWS:	
manufacture_to_AD =	Tonne/
MANUFACTURE_TO_AD_FRACTION*Manufacture_Waste+manufacture_to_A	Year
D_change	
manufacture_to_incineration =	Tonne/
Manufacture_Waste*MANUFACTURE_TO_INCINERATION_FRACTION+manuf	Year
acture_to_incineration_change	
manufacture_to_compost =	Tonne/
MANUFACTURE_TO_COMPOST_FRACTION*Manufacture_Waste+manufactu	Year
re_to_compost_change	
manufacture_to_landfill =	Tonne/
 Manufacture_Waste*MANUFACTURE_TO_LANDFILL_FRACTION+manufactur	Year
e_to_landfill_change	
manufacture waste reduction =	Tonne/
 initial_manufacture_waste*RAMP(MANUFACTURE_REDUCTION_FRACTION/	Year
100)	
,	

Table A1.4. Retail Food, Surplus, and Waste Equations

EQUATION	UNIT
initial_retail_waste = INIT(Retail_Inventory*RETAIL_WASTE_FRACTION)	Tonne/
	Year

Retail_Inventory(t) = Retail_Inventory(t - dt) + (manufacture_to_retail - retail_waste_rate - retail_to_consumer - retail_surplus) * dt	Tonne
INFLOWS:	
manufacture_to_retail = retail_shortfall+retail_expected_outflow	Tonne/ Year
OUTFLOWS:	
retail_waste_rate = Retail_Inventory*RETAIL_WASTE_FRACTION-	Tonne/
retail_waste_reduction-retail_to_redistribution_change-	Year
retail_to_animal_feed_change	
retail_to_consumer = HaFS_purchase+household_purchase	Tonne/
	Year
retail_surplus = retail_total_to_animal_feed+retail_total_redistribution	Tonne/
	Year
retail_expected_outflow = retail_to_consumer+retail_surplus+retail_waste_rate	Tonne/
	Year
retail_demand =	Tonne/
retail_to_consumer+INIT(retail_surplus)+INIT(retail_waste_rate)	Year
retail_shortfall = retail_demand-	Tonne/
Retail_Inventory/STOCK_ADJUSTMENT_TIME	Year
retail_to_AD_change =	Tonne/
RAMP(RETAIL_TO_AD_CHANGE_FRACTION/100)*initial_retail_waste	Year
retail_to_animal_feed_change =	Tonne/
RAMP(RETAIL_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_retail_	Year
waste	
retail_to_compost_change =	Tonne/
RAMP(RETAIL TO COMPOST CHANGE FRACTION/100)*initial retail wast	Year
e	
retail to incineration change =	Tonne/
RAMP(RETAIL TO INCINERATION CHANGE FRACTION/100)*initial retail	Year
waste	
retail to landfill change =	Tonne/
RAMP(RETAIL TO LANDFILL CHANGE FRACTION/100)*initial retail wast	Year
e	
retail to redistribution change =	Tonne/
MIN(RETAIL EDIBLE SURPLUS FRACTION*initial retail waste,	Year
	rear

DAMP/DETAIL TO DEDICTORDUTION QUANCE EDACTION/(2014) 11 1	
RAMP(RETAIL_TO_REDISTRIBUTION_CHANGE_FRACTION/100)*initial_ret	
ail_waste)	
retail_total_redistribution =	Tonne/
retail_to_redistribution_change+RETAIL_INITIAL_REDISTRIBUTION	Year
retail_total_to_animal_feed =	Tonne/
retail_to_animal_feed_change+RETAIL_INITIAL_TO_ANIMAL_FEED	Year
Retail_Waste(t) = Retail_Waste(t - dt) + (retail_waste_rate - retail_to_AD -	Tonne
retail_to_incineration - retail_to_compost - retail_to_landfill) * dt	
INFLOWS:	1
retail_waste_rate = Retail_Inventory*RETAIL_WASTE_FRACTION-	Tonne/
retail_waste_reduction-retail_to_redistribution_change-	Year
retail_to_animal_feed_change	
OUTFLOWS:	
retail_to_AD =	Tonne/
RETAIL_TO_AD_FRACTION*Retail_Waste+retail_to_AD_change	Year
retail_to_incineration =	Tonne/
Retail_Waste*RETAIL_TO_INCINERATION_FRACTION+retail_to_incineration	Year
_change	
retail_to_compost =	Tonne/
retail_to_compost_change+RETAIL_TO_COMPOST_FRACTION*Retail_Wast	Year
e	
retail_to_landfill =	Tonne/
Retail_Waste*RETAIL_TO_LANDFILL_FRACTION+retail_to_landfill_change	Year
retail_waste_reduction =	Tonne/
initial_retail_waste*RAMP(RETAIL_REDUCTION_FRACTION/100)	Year
	<u> </u>

Table A1.5. HaFS Food, Surplus, and Waste Equations

EQUATION	UNIT
HaFS_Food(t) = HaFS_Food(t - dt) + (HaFS_from_farm + HaFS_purchase -	Tonne
HaFS_waste_rate - HaFS_surplus - HaFS_consumption) * dt	
INFLOWS:	
HaFS_from_farm = urban_farming_to_HaFS	Tonne/
	Year

HaFS_purchase = hafs_shortfall+hafs_expected_outflow	Tonne/ Year
	real
OUTFLOWS:	
HaFS_waste_rate = HAFS_WASTE_FRACTION*HaFS_Food-	Tonne
HaFS_waste_reduction-HaFS_to_redistribution_change	Year
HaFS_surplus = HaFS_total_redistribution	Tonne
	Year
HaFS_consumption =	Tonne
SUM(Urban_HaFS_Businesses*AVERAGE_CONSUMPTION_PER_BUSINESS	Year
)	
hafs_expected_outflow = HaFS_consumption+HaFS_waste_rate+HaFS_surplus	Tonne
	Year
HaFS_food_demand =	Tonne
SUM(Urban_HaFS_Businesses*AVERAGE_PURCHASE_PER_BUSINESS)	Year
hafs_shortfall = HaFS_food_demand-	Tonne
HaFS_Food/STOCK_ADJUSTMENT_TIME-HaFS_from_farm	Year
HaFS_to_AD_change =	Tonne
RAMP(HAFS_TO_AD_CHANGE_FRACTION/100)*initial_HaFS_waste	Year
HaFS_to_compost_change =	Tonne
RAMP(HAFS_TO_COMPOST_CHANGE_FRACTION/100)*initial_HaFS_waste	Year
HaFS_to_incineration_change =	Tonne
RAMP(HAFS_TO_INCINERATION_CHANGE_FRACTION/100)*initial_HaFS_w	Year
aste	
HaFS_to_landfill_change =	Tonne
RAMP(HAFS_TO_LANDFILL_CHANGE_FRACTION/100)*initial_HaFS_waste	Year
HaFS_to_redistribution_change =	Tonne
RAMP(HAFS_TO_REDISTRIBUTION_CHANGE_FRACTION/100)*initial_HaFS	Year
waste	
HaFS_total_redistribution =	Tonne
HaFS to redistribution change+HAFS INITIAL REDISTRIBUTION	Year
HaFS Waste(t) = HaFS Waste(t - dt) + (HaFS waste rate - HaFS to AD -	Tonne
HaFS to compost - HaFS to landfill - HaFS to incineration) * dt	
INFLOWS:	
HaFS_waste_rate = HAFS_WASTE_FRACTION*HaFS_Food-	Tonne
HaFS waste reduction-HaFS to redistribution change	Year
OUTFLOWS:	

HaFS_to_AD =	Tonne/
HAFS_TO_AD_FRACTION*HaFS_Waste+HaFS_to_AD_change	Year
HaFS_to_compost =	Tonne/
HAFS_TO_COMPOST_FRACTION*HaFS_Waste+HaFS_to_compost_change	Year
HaFS_to_landfill =	Tonne/
HaFS_Waste*HAFS_TO_LANDFILL_FRACTION+HaFS_to_landfill_change	Year
HaFS_to_incineration =	Tonne/
HaFS_Waste*HAFS_TO_INCINERATION_FRACTION+HaFS_to_incineration_c	Year
hange	
HaFS_waste_reduction =	Tonne/
MIN(HAFS_EDIBLE_SURPLUS_FRACTION*initial_HaFS_waste,	Year
initial_HaFS_waste*RAMP(HAFS_REDUCTION_FRACTION/100))	
initial_HaFS_waste = INIT(HaFS_Food*HAFS_WASTE_FRACTION)	Tonne/
	Year
urban_farming_to_HaFS =	Tonne/
RAMP(URBAN_FARMING_TO_HAFS_CHANGE_FRACTION/100)*INIT(HaFS_	Year
food_demand)	
Urban_HaFS_Businesses[Restaurants](t) =	Outlet
Urban_HaFS_Businesses[Restaurants](t - dt) + (HaFS_growth[Restaurants]) *	
dt	
Urban_HaFS_Businesses[Pubs](t) = Urban_HaFS_Businesses[Pubs](t - dt) +	Outlet
(HaFS_growth[Pubs]) * dt	
Urban_HaFS_Businesses[Education](t) = Urban_HaFS_Businesses[Education](t	Outlet
- dt) + (HaFS_growth[Education]) * dt	
Urban_HaFS_Businesses[Healthcare](t) =	Outlet
Urban_HaFS_Businesses[Healthcare](t - dt) + (HaFS_growth[Healthcare]) * dt	
Urban_HaFS_Businesses[Hotels](t) = Urban_HaFS_Businesses[Hotels](t - dt) +	Outlet
(HaFS_growth[Hotels]) * dt	
Urban_HaFS_Businesses[Quick_Service](t) =	Outlet
Urban_HaFS_Businesses[Quick_Service](t - dt) +	
(HaFS_growth[Quick_Service]) * dt	
Urban_HaFS_Businesses[Services](t) = Urban_HaFS_Businesses[Services](t -	Outlet
dt) + (HaFS_growth[Services]) * dt	
Urban_HaFS_Businesses[Leisure](t) = Urban_HaFS_Businesses[Leisure](t - dt)	Outlet

Urban_HaFS_Businesses[Others](t) = Urban_HaFS_Businesses[Others](t - dt) + (HaFS_growth[Others]) * dt	Outlet
INFLOWS:	
HaFS_growth[HaFs_businesses] =	Outlet/
Urban_HaFS_Businesses*HAFS_GROWTH_INACTIVATION*CGROWTH(HAF	Year
S_GROWTH_FRACTION)	
HaFS_inflow = HaFS_purchase + urban_farming_to_HaFS	Tonne/
	Year

Table A1.6. Household Food, Surplus, and Waste Equations

EQUATION	UNIT
Household_Food(t) = Household_Food(t - dt) +	Tonne
(household_from_other_sources + household_purchase -	
household_waste_rate - household_consumption - household_surplus) * dt	
INFLOWS:	
household_from_other_sources =	Tonne/
total_redistribution+urban_farming_to_household	Year
household_purchase = household_shortfall+household_expected_outflow	Tonne/
	Year
OUTFLOWS:	<u> </u>
household_waste_rate =	Tonne/
Household_Food*HOUSEHOLD_WASTE_FRACTION-	Year
household_waste_reduction-household_to_animal_feed_change	
household_consumption =	Tonne/
Urban_Population*PER_CAPITA_NUTRIENT_CONSUMPTION	Year
household_surplus = household_total_to_pet_feed	Tonne/
	Year
household_expected_outflow =	Tonne/
household_surplus+household_consumption+household_waste_rate	Year
household_demand =	Tonne
Urban_Population*HOUSEHOLD_PER_CAPITA_FOOD_PURCHASE	

Household_Food)/STOCK_ADJUSTMENT_TIME- household_from_other_sources Year household_from_other_sources Tonne/ RAMP(HOUSEHOLD_TO_AD_CHANGE_FRACTION/100)*initial_household_ waste Year home_composting_change = Tonne/ RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_hous sehold_waste Year household_to_animal_feed_change = Tonne/ RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial nousehold_waste Year household_to_incineration_change = Tonne/ RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial nousehold_vaste Year household_to_animal_feed_change = Tonne/ RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial nousehold_vaste Year household_to_animal_feed_change + Tonne/ RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous tehold_waste Year household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED Year household_to_animal_feed_change+HOUSEHOLD_NUNTIAL_TO_PET_FEED Year household_waste Tonne/ household_waste(t - dt) + (household_waste_rate - household_to_animal_feed_change Tonne/ household_to_animal_feed_change+Inousehold_waste_rate = household_waste_rate = household_waste_rate = household_was	household_shortfall = (household_demand-	Tonne/
household_to_AD_change = Tonne/ RAMP(HOUSEHOLD_TO_AD_CHANGE_FRACTION/100)*initial_household_ Year waste Tonne/ home_composting_change = Tonne/ RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_hou Year sehold_waste Tonne/ household_to_animal_feed_change = Tonne/ RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_hou Year household_waste Tonne/ household_to_incineration_change = Tonne/ RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial Year household_waste Tonne/ household_to_lo_animal_feed_change = Tonne/ RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial Year household_to_lo_animal_feed_change +HOUSEHOLD_INITIAL_TO_PET_FEED Year household_total_to_pet_feed = Tonne/ household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED Year household_to_aseer_rate = Tonne/ household_to_aseter_tet = Tonne/ household_to_aseter_tet = Tonne/ household_waste_rate = Tonne/ household_to_AD = Anone/ household_to_A	Household_Food)/STOCK_ADJUSTMENT_TIME-	Year
RAMP(HOUSEHOLD_TO_AD_CHANGE_FRACTION/100)*initial_household_ wasteYearhome_composting_change = RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_household_wasteTonne/ Yearhousehold_to_animal_feed_change = NAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_ household_to_incineration_change = Nousehold_wasteTonne/ Yearhousehold_to_incineration_change = NAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial_ household_wasteTonne/ Yearhousehold_to_landfill_change = RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteTonne/ Yearhousehold_to_landfill_change = RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteTonne/ Yearhousehold_to_landfill_change = RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteTonne/ Yearhousehold_toa_landfill_change = Nousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED YearYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED YearYearhousehold_waste_rate = household_to_asewer - household_to_landfill)* dtTonne/ Year <i>INFLOWS:</i> household_waste_rate = household_waste_rate = household_to_AD = household_to_incineration = household_to_AD = household_to_incineration = household_to_incineration = household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol YearTonne/ Year	household_from_other_sources	
wasteTonne/home_composting_change =Tonne/RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_hou sehold_wasteYearhousehold_to_animal_feed_change =Tonne/RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_ household_wasteYearhousehold_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial_ household_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_toalinal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_anet_feed =Tonne/household_wasteTonne/household_to_anet_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_anet_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_abehold_to_incineration - home_composting - household_to_abehold_to_andfill)* dtTonne/ <i>INFLOWS:</i> YearYearhousehold_roaste_reduction-household_to_animal_feed_changeTonne/ <i>OUTFLOWS:</i> YearYearhousehold_to_AD = household_to_AD change+Household_Waste*HOUSEHOLD_TO_AD_FRACTIONYearhousehold_to_AD change+Household_Waste*HOUSEHOLD_TO_AD_FRACTIONYearhousehold_to_AD change+Household_Waste*HOUSEHOLD_TO_AD_FRACTIONYearhousehold_to_AD change+Household_Waste*HOUSEHOLD_TO_AD_FRACTIONYearhousehold_to_incineration = household_waste*HOUSEHOLD_TO_INCINERATION_FRACTION+householYear	household_to_AD_change =	Tonne/
home_composting_change =Tonne/RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_houYearsehold_wasteTonne/household_to_animal_feed_change =Tonne/RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_ household_twasteYearhousehold_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial_ household_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_ household_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_AD - household_to_landfill)* dtTonne/ <i>INFLOWS:</i> Tonne/household_to_aste_rate =Tonne/household_waste_reduction-household_to_animal_feed_changeYear <i>OUTFLOWS:</i> Tonne/household_to_AD =Tonne/household_to_AD =Tonne/household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACTYearhousehold_to_incineration =Tonne/household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+householYear	RAMP(HOUSEHOLD_TO_AD_CHANGE_FRACTION/100)*initial_household_	Year
RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_hou sehold_wasteYearhousehold_to_animal_feed_change =Tonne/RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_ household_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial_ household_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_to_asewer - household_to_incineration - home_composting - household_to_asewer - household_to_animal_feed_changeTonne/INFLOWS:Yearhousehold_waste_rate =Tonne/household_waste_rate =Tonne/household_waste_rate =Tonne/household_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_rate =Yearhousehold_waste_reduction-household_to_animal_feed_changeYearOUTFLOWS:Yearhousehold_to_AD =Yearhousehold_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Yearhousehold_to_incine	waste	
sehold_wasteTonne/household_to_animal_feed_change =Tonne/RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial household_wasteYearhousehold_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED VearYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED VearYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED Nousehold_to_aswer - household_to_incineration - home_composting - household_to_sewer - household_to_landfill)* dtTonne/INFLOWS:VearTonne/household_food*HOUSEHOLD_WASTE_FRACTION- household_to_AD = household_to_animal_feed_changeYearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/household_to_incineration =Yearhousehold_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/household_to_incineration =Yearhousehold_to_incineration =Yearhousehold_to_incineration =Tonne/household_to_incineration =Yearhousehold_to_incineration =Yearhousehold_to_incineration =Yearhousehold_to_aniteration =Year </td <td>home_composting_change =</td> <td>Tonne/</td>	home_composting_change =	Tonne/
Nousehold_to_animal_feed_change =Tonne/RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial household_wasteYearhousehold_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_YET_FEEDYearhousehold_to_anotheng_compositing - household_to_andrill) * dtTonne/household_waste_rate =Nonne/household_waste_rate = household_to_aAD - household_to_animal_feed_changeYearhousehold_to_AD = household_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYear	RAMP(HOUSEHOLD_COMPOSTING_CHANGE_FRACTION/100)*initial_hou	Year
RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial household_waste Year household_to_incineration_change = Tonne/ RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_waste Year household_to_landfill_change = Tonne/ RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial household_to_landfill_change = Tonne/ RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial _household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED _Year Year Household_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill)* dt Tonne/ INFLOWS:	sehold_waste	
household_wasteTonne/Nousehold_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_wasteYearhousehold_wasteTonne/Nousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED YearYearHousehold_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne/ <i>INFLOWS:</i> Yearhousehold_Food*HOUSEHOLD_WASTE_FRACTION- household_to_AD =Tonne/YearOUTFLOWS:Yearhousehold_to_AD =Tonne/household_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACTYearIONYearhousehold_to_incineration =Tonne/YearYe	household_to_animal_feed_change =	Tonne/
household_to_incineration_change =Tonne/RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearhousehold_to_sewer - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne/INFLOWS:YearYearhousehold_to_GAD =Tonne/household_to_AD =Yearhousehold_to_AD =Tonne/household_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACTYearIONYearhousehold_to_incineration =Tonne/Year<	RAMP(HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_FRACTION/100)*initial_	Year
RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial _household_wasteYearhousehold_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_waste(t) = Household_Waste(t - dt) + (household_waste_rate - household_to_aneworket)Tonne/household_to_sewer - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne/INFLOWS:Yearhousehold_Food*HOUSEHOLD_WASTE_FRACTION- household_to_ante_reduction-household_to_animal_feed_changeYearOUTFLOWS:Tonne/ Yearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT YearYearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT YearYearhousehold_to_Maste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol YearYear	household_waste	
_household_wasteTonne/household_to_landfill_change =Tonne/RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_waste(t) = Household_Waste(t - dt) + (household_waste_rate - household_to_abc - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne/ <i>INFLOWS:</i> Tonne/household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_rate =Tonne/Household_waste_reduction-household_to_animal_feed_changeYear <i>OUTFLOWS:</i> Tonne/household_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/household_to_incineration =Tonne/YearYearHousehold_to_maste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol YearYear	household_to_incineration_change =	Tonne/
Image: Constraint of the second sec	RAMP(HOUSEHOLD_TO_INCINERATION_CHANGE_FRACTION/100)*initial	Year
RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous ehold_wasteYearhousehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_Waste(t) = Household_Waste(t - dt) + (household_waste_rate - household_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne/ <i>INFLOWS:</i> Tonne/Household_waste_rate =Tonne/Household_waste_reduction-household_to_animal_feed_changeYearOUTFLOWS:Yearhousehold_to_AD =Tonne/household_to_AD =Tonne/household_to_AD =Yearhousehold_to_AD =Yearhousehold_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/YearYear	_household_waste	
ehold_wasteTonne/household_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_Waste(t) = Household_Waste(t - dt) + (household_waste_rate -Tonnehousehold_to_AD - household_to_incineration - home_composting -Tonne/household_to_sewer - household_to_landfill) * dtTonne/ <i>INFLOWS:</i> Tonne/household_waste_rate =Tonne/Household_waste_reduction-household_to_animal_feed_changeYear <i>OUTFLOWS:</i> Tonne/household_to_AD =Tonne/household_to_AD =Tonne/household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACTYearIONNousehold_to_incineration =Tonne/YearYearYear	household_to_landfill_change =	Tonne/
Image: Nonsehold_total_to_pet_feed =Tonne/household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_Waste(t) = Household_Waste(t - dt) + (household_waste_rate -Tonne/household_to_AD - household_to_incineration - home_composting -Tonne/household_to_sewer - household_to_landfill) * dtTonne/INFLOWS:Tonne/household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_changeYearOUTFLOWS:Tonne/household_to_AD =Tonne/household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/household_to_incineration =Tonne/YearYear	RAMP(HOUSEHOLD_TO_LANDFILL_CHANGE_FRACTION/100)*initial_hous	Year
household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEEDYearHousehold_Waste(t) = Household_Waste(t - dt) + (household_waste_rate - household_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne <i>INFLOWS:</i> INFLOWS:household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_changeYear <i>OUTFLOWS:</i> Ionne/ Yearhousehold_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration = household_to_incineration = household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol YearYear	ehold_waste	
Household_Waste(t) = Household_Waste(t - dt) + (household_waste_rate - household_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dtTonne <i>INFLOWS:</i> Tonne/household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_changeYear <i>OUTFLOWS:</i> Tonne/household_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYear	household_total_to_pet_feed =	Tonne/
household_to_AD - household_to_incineration - home_composting - household_to_sewer - household_to_landfill) * dt <i>INFLOWS:</i> household_waste_rate = Tonne/ Household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_change <i>OUTFLOWS:</i> household_to_AD = Tonne/ household_to_AD = Tonne/ household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT ION household_to_incineration = Tonne/ Household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+household Year	household_to_animal_feed_change+HOUSEHOLD_INITIAL_TO_PET_FEED	Year
household_to_sewer - household_to_landfill) * dtINFLOWS:household_waste_rate =Tonne/Household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_changeYearOUTFLOWS:OUTFLOWS:household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol YearYear	Household_Waste(t) = Household_Waste(t - dt) + (household_waste_rate -	Tonne
INFLOWS: Tonne/ household_waste_rate = Tonne/ Household_Food*HOUSEHOLD_WASTE_FRACTION- Year household_waste_reduction-household_to_animal_feed_change Year OUTFLOWS: Tonne/ household_to_AD = Tonne/ household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT Year ION Tonne/ household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol Year	household_to_AD - household_to_incineration - home_composting -	
household_waste_rate =Tonne/Household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_changeYearOUTFLOWS:Tonne/household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT IONYearhousehold_to_incineration =Tonne/Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+householYear	household_to_sewer - household_to_landfill) * dt	
Household_Food*HOUSEHOLD_WASTE_FRACTION- household_waste_reduction-household_to_animal_feed_change Year OUTFLOWS:	INFLOWS:	1
household_waste_reduction-household_to_animal_feed_change OUTFLOWS: household_to_AD = household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT Year ION household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_FRACTION+househol Year	household_waste_rate =	Tonne/
OUTFLOWS: Tonne/ household_to_AD = Tonne/ household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT Year ION Tonne/ household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_FRACTION_FRACTION+househol Year	Household_Food*HOUSEHOLD_WASTE_FRACTION-	Year
household_to_AD =Tonne/household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACTYearIONhousehold_to_incineration =Tonne/Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+householYear	household_waste_reduction-household_to_animal_feed_change	
household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT Year ION household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol Year	OUTFLOWS:	1
ION household_to_incineration = Tonne/ Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol Year	household_to_AD =	Tonne/
household_to_incineration =Tonne/Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+householYear	household_to_AD_change+Household_Waste*HOUSEHOLD_TO_AD_FRACT	Year
Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol Year	ION	
	household_to_incineration =	Tonne/
d_to_incineration_change	Household_Waste*HOUSEHOLD_TO_INCINERATION_FRACTION+househol	Year
	d_to_incineration_change	

home_composting =	Tonne/
home_composting_change+HOME_COMPOSTING_FRACTION*Household_	Year
Waste	
household_to_sewer =	Tonne/
HOUSEHOLD_TO_SEWER_FRACTION*Household_Waste	Year
household_to_landfill =	Tonne/
HOUSEHOLD_TO_LANDFILL_FRACTION*Household_Waste+household_to_	Year
landfill_change	
household_waste_reduction =	Tonne/
MIN(HOUSEHOLD_EDIBLE_FRACTION*initial_household_waste,	Year
initial_household_waste*RAMP(HOUSEHOLD_REDUCTION_FRACTION/100)	
)	
initial_household_waste =	Tonne/
INIT(Household_Food*HOUSEHOLD_WASTE_FRACTION)	Year
total_redistribution = HaFS_total_redistribution +	Tonne/
manufacture_total_redistribution + production_total_redistribution +	Year
retail_total_redistribution	
urban_farming_to_household =	Tonne/
RAMP(URBAN_FARMING_TO_HH_CHANGE_FRACTION/100)*INIT(househo	Year
ld_demand)	
Urban_Population(t) = Urban_Population(t - dt) + (population_growth_rate) * dt	Persons
INFLOWS:	
population_growth_rate =	Persons
Urban_Population*POPULATION_GROWTH_INACTIVATION*	/ Year
CGROWTH(POPULATION_GROWTH_FRACTION)	
household_inflow = household_purchase + household_from_other_sources	Tonne/
	Year
total_food_shopping_distance =	km/
INIT(Urban_Population)*FOOD_SHOPPING_DISTANCE_PER_PERSON	Year

Table A1.7. Urban Surplus and Waste Equations

EQUATION

total_food_surplus_and_waste = HaFS_waste_rate + household_surplus +	Tonne/
HaFS_surplus + household_waste_rate + manufacture_surplus +	Year
manufacture_waste_rate + production_surplus + production_waste_rate +	
retail_surplus + retail_waste_rate	
Total_Food_Waste = total_food_surplus_and_waste-	Tonne/
total_redistribution_and_animal_feed	Year
New_Food_Waste_Definition = total_food_surplus_and_waste-	Tonne/
total_redistribution	Year
total_redistribution = HaFS_total_redistribution +	Tonne/
manufacture_total_redistribution + production_total_redistribution +	Year
retail_total_redistribution	
total_redistribution_and_animal_feed = HaFS_total_redistribution +	Tonne/
household_total_to_pet_feed + manufacture_total_redistribution +	Year
manufacture_total_to_animal_feed + production_total_redistribution +	
production_total_to_animal_feed + retail_total_redistribution +	
retail_total_to_animal_feed	
collected_food_surplus_and_waste = commercial_food_waste_to_compost +	Tonne/
total_food_waste_to_AD + total_food_waste_to_incineration +	Year
total_food_waste_to_landfill + total_surplus_to_pig_feed	
commercial_food_waste_to_compost = HaFS_to_compost +	Tonne/
manufacture_to_compost + retail_to_compost	Year
total_food_waste_to_AD = HaFS_to_AD + household_to_AD +	Tonne/
manufacture_to_AD + production_to_AD + retail_to_AD	Year
total_food_waste_to_compost = commercial_food_waste_to_compost +	Tonne/
home_composting + production_to_compost	Year
total_food_waste_to_incineration = HaFS_to_incineration +	Tonne/
household_to_incineration + manufacture_to_incineration +	Year
production_to_incineration + retail_to_incineration	
total_food_waste_to_landfill = HaFS_to_landfill + household_to_landfill +	Tonne/
manufacture_to_landfill + production_to_landfill + retail_to_landfill	Year
total_surplus_to_pig_feed = manufacture_total_to_animal_feed +	Tonne/
production_total_to_animal_feed + retail_total_to_animal_feed	Year
commercial_food_waste_to_AD = HaFS_to_AD + manufacture_to_AD +	Tonne/
production_to_AD + retail_to_AD	Year

commercial_food_waste_to_incineration = HaFS_to_incineration +	Tonne/
manufacture_to_incineration + production_to_incineration +	Year
retail_to_incineration	
commercial_food_waste_to_landfill = HaFS_to_landfill + manufacture_to_landfill	Tonne/
+ production_to_landfill + retail_to_landfill	Year

Table A1.8. Energy Footprint of Food Sector Equations

EQUATION	UNIT
energy_footprint_of_redistribution[Fuels] =	MWh/
total_surplus_redistribution*ENERGY_USE_PER_TONNE_OF_REDISTRIBUTI	Year
ON	
energy_footprint_of_surplus_and_waste_transport =	MWh/
energy_for_food_surplus_&_waste_collection+energy_for_digestate_transport	Year
energy_footprint_of_water_abstraction =	MWh/
ENERGY_INTENSITY_OF_WATER_USE*total_water_footprint	Year
energy_for_digestate_transport =	MWh/
(total_food_waste_to_AD+commercial_food_waste_to_compost)*transportation_	Year
energy_per_tonne_of_waste/WASTE_TO_AD_&_COMPOST_CONVERSION_F	
ACTOR	
energy_for_food_surplus_&_waste_collection =	MWh/
collected_food_surplus_and_waste*transportation_energy_per_tonne_of_waste	Year
ENERGY_USE_PER_TONNE_OF_HAFS_FOOD[Fuels] =	MWh/
ENERGY_CONSUMPTION_OF_UK_HAFS/TOTAL_UK_HAFS_FOOD	Tonne
energy_use_per_tonne_of_household_food[Electricity] =	MWh/
ENERGY_CONSUMPTION_OF_UK_HOUSEHOLD_FOOD[Electricity]/TOTAL_	Tonne
UK_HOUSEHOLD_FOOD	
energy_use_per_tonne_of_household_food[Natural_Gas] =	MWh/
ENERGY_CONSUMPTION_OF_UK_HOUSEHOLD_FOOD[Natural_Gas]/TOTA	Tonne
L_UK_HOUSEHOLD_FOOD	
energy_use_per_tonne_of_household_food[Oil] =	MWh/
shopping_energy_per_tonne_of_food	Tonne
energy_use_per_tonne_of_household_food[Solid_Fuels] = 0	MWh/
	Tonne

ENERGY USE PER TONNE OF MANUFACTURE FOOD[Fuels] =	MWh/
ENERGY CONSUMPTION OF UK FOOD MANUFACTURE/TOTAL UK MA	Tonne
NUFACTURE_FOOD	Tonne
energy_use_per_tonne_of_primary_production[Fuels] =	MWh/
ENERGY_CONSUMPTION_OF_UK_AGRICULTURE/TOTAL_UK_PRIMARY_P RODUCTION	Tonne
energy_use_per_tonne_of_retail_food[Electricity] =	MWh/
ENERGY_CONSUMPTION_OF_UK_RETAIL[Electricity]/TOTAL_UK_RETAIL_ FOOD	Tonne
energy_use_per_tonne_of_retail_food[Natural_Gas] =	MWh/
ENERGY_CONSUMPTION_OF_UK_RETAIL[Natural_Gas]/TOTAL_UK_RETAI	Tonne
 energy_use_per_tonne_of_retail_food[Oil] =	MWh/
(UK_transportation_energy_for_food_products+ENERGY_CONSUMPTION_OF	Tonne
_UK_RETAIL[Electricity])/TOTAL_UK_RETAIL_FOOD	
energy_use_per_tonne_of_retail_food[Solid_Fuels] =	MWh/
ENERGY_CONSUMPTION_OF_UK_RETAIL[Solid_Fuels]/TOTAL_UK_RETAIL _FOOD	Tonne
HaFS energy consumption[Fuels] =	MWh/
HaFS_inflow*ENERGY_USE_PER_TONNE_OF_HAFS_FOOD	Year
household_energy_consumption[Electricity] =	MWh/
energy_use_per_tonne_of_household_food[Electricity]*household_inflow	Year
household_energy_consumption[Natural_Gas] =	MWh/
energy_use_per_tonne_of_household_food[Natural_Gas]*household_inflow	Year
household_energy_consumption[Oil] =	MWh/
energy_use_per_tonne_of_household_food[Oil]*household_inflow	Year
household_energy_consumption[Solid_Fuels] =	MWh/
energy_use_per_tonne_of_household_food[Solid_Fuels]*household_inflow	Year
household_food_shopping_energy_use =	MWh/
total_food_shopping_distance*ENERGY_CONSUMPTION_OF_AVERAGE_CA	Year
R	
manufacture_energy_consumption[Fuels] =	MWh/
manufacture_acquisition*ENERGY_USE_PER_TONNE_OF_MANUFACTURE_ FOOD	Year

net_energy_footprint_of_AD[Electricity] =	MWh/
total food waste to AD*(NET ELECTRICITY PER TONNE OF AD+NET E	Year
NERGY PER TONNE OF REPLACED FERTILISER[Electricity])	
net energy footprint of AD[Natural Gas] = 0	MWh/
	Year
net energy footprint of AD[Oil] =	MWh/
total_food_waste_to_AD*NET_ENERGY_PER_TONNE_OF_REPLACED_FER	Year
TILISER[Oil]	i cai
net_energy_footprint_of_AD[Solid_Fuels] = 0	MWh/
	Year
net_energy_footprint_of_composting[Fuels] =	MWh/
total_food_waste_to_compost*NET_ENERGY_PER_TONNE_OF_REPLACED_	Year
FERTILISER	
net_energy_footprint_of_incineration =	MWh/
NET_ENERGY_PER_TONNE_OF_INCINERATION*total_food_waste_to_incine	Year
ration	
net energy footprint of landfill =	MWh/
total_food_waste_to_landfill*NET_ENERGY_PER_TONNE_OF_LANDFILL	Year
net energy footprint of replaced animal feed =	MWh/
NET ENERGY PER TONNE OF REPLACED PIG FEED*total surplus to pi	Year
g_feed+PET_FEED_AVOIDED_ENERGY*household_total_to_pet_feed	
net energy footprint of sewer[Electricity] =	MWh/
household_to_sewer*(NET_ELECTRICITY_PER_TONNE_OF_SEWER_TREAT	Year
MENT+NET ENERGY PER TONNE OF REPLACED FERTILISER[Electricity	
])	
net_energy_footprint_of_sewer[Natural_Gas] = 0	MWh/
	Year
net energy footprint of sewer[Oil] =	MWh/
household to sewer*NET ENERGY PER TONNE OF REPLACED FERTILI	Year
SER[Oil]	
net_energy_footprint_of_sewer[Solid_Fuels] = 0	MWh/
	Year
primary production energy consumption[Eucle] -	MWh/
primary_production_energy_consumption[Fuels] =	
energy_use_per_tonne_of_primary_production*primary_production_rate	Year
retail_energy_consumption[Fuels] =	MWh/
retail_acquisition*energy_use_per_tonne_of_retail_food	Year

shopping_energy_per_tonne_of_food =	MWh/
household_food_shopping_energy_use/household_inflow	Tonne
transportation_energy_per_tonne_of_waste =	MWh/
AVERAGE_COLLECTION_DISTANCE*AVERAGE_TRANSPORT_ENERGY_P	Tonne
ER_TONNE_KM	
UK_transportation_energy_for_food_products =	MWh/
FOOD_PRODUCTS_ROAD_TRANSPORT*AVERAGE_TRANSPORT_ENERG	Year
Y_PER_TONNE_KM	
electricity_footprint_of_food = HaFS_energy_consumption[Electricity] +	MWh/
household_energy_consumption[Electricity] +	Year
manufacture_energy_consumption[Electricity] +	
primary_production_energy_consumption[Electricity] +	
retail_energy_consumption[Electricity]	
total_energy_footprint = SUM(net_energy_footprint_of_AD[*]) +	MWh/
SUM(HaFS_energy_consumption[*]) +	Year
SUM(energy_footprint_of_redistribution[*]) +	
SUM(household_energy_consumption[*]) +	
SUM(manufacture_energy_consumption[*]) +	
SUM(net_energy_footprint_of_composting[*]) +	
net_energy_footprint_of_replaced_animal_feed +	
SUM(primary_production_energy_consumption[*]) +	
energy_footprint_of_water_abstraction + net_energy_footprint_of_landfill +	
energy_footprint_of_surplus_and_waste_transport +	
<pre>net_energy_footprint_of_incineration + SUM(retail_energy_consumption[*]) +</pre>	
SUM(net_energy_footprint_of_sewer[*])	

Table A1.9. Water Footprint of Food Sector Equations

EQUATIONS	UNIT
HaFS_water_consumption =	m³/
WATER_USE_PER_TONNE_OF_HAFS*HaFS_inflow	Year
household_water_consumption =	m³/
WATER_USE_PER_TONNE_OF_HOUSEHOLD*household_inflow	Year

manufacture_water_consumption =	m³/
WATER_USE_PER_TONNE_OF_MANUFACTURE*manufacture_acquisition	Year
primary_production_water_consumption =	m³/
water_abstraction_per_tonne_of_production*primary_production_rate	Year
retail_water_consumption =	m³/
retail_acquisition*WATER_USE_PER_TONNE_OF_RETAIL	Year
water_abstraction_for_electricity_generation =	m³/
electricity_footprint_of_food*FRESHWATER_ABSTRACTION_PER_MWh_ELE	Year
CTRICITY	
water_abstraction_per_tonne_of_production =	m³/
BLUE_WATER_FOOTPRINT_OF_UK_PRIMARY_PRODUCTION/TOTAL_UK_	Tonne
PRIMARY_FOOD_CONSUMPTION	
water_footprint_of_AD =	m³/
total_food_waste_to_AD*NET_WATER_PER_TONNE_OF_AD+FRESHWATER	Year
_ABSTRACTION_PER_MWh_ELECTRICITY*net_energy_footprint_of_AD[Elect	
ricity]	
water_footprint_of_animal_feed =	m³/
PIG_FEED_AVOIDED_WATER*total_surplus_to_pig_feed+PET_FEED_AVOID	Year
ED_WATER*household_total_to_pet_feed	
water_footprint_of_compost =	m³/
NET_WATER_PER_TONNE_OF_COMPOST*total_food_waste_to_compost	Year
water_footprint_of_incineration =	m³/
total_food_waste_to_incineration*NET_WATER_PER_TONNE_OF_INCINERA	Year
TION	
+FRESHWATER_ABSTRACTION_PER_MWh_ELECTRICITY*net_energy_foot	
print_of_incineration	
water_footprint_of_landfilling =	m³/
total_food_waste_to_landfill*NET_WATER_PER_TONNE_OF_LANDFILL+FRE	Year
SHWATER_ABSTRACTION_PER_MWh_ELECTRICITY*net_energy_footprint_	
of_landfill	
water_footprint_of_redistribution =	m³/
energy_footprint_of_redistribution[Electricity]*FRESHWATER_ABSTRACTION_	Year
PER_MWh_ELECTRICITY	
water_footprint_of_sewer =	m³/
NET_WATER_PER_TONNE_OF_SEWER*household_to_sewer	Year
	1

total_water_footprint = HaFS_water_consumption +	m³/
household_water_consumption + manufacture_water_consumption +	Year
primary_production_water_consumption + retail_water_consumption +	
water_abstraction_for_electricity_generation + water_footprint_of_AD +	
water_footprint_of_animal_feed + water_footprint_of_compost +	
water_footprint_of_incineration + water_footprint_of_landfilling +	
water_footprint_of_redistribution + water_footprint_of_sewer	

Table A1.10. Carbon Footprint of Food Sector Equations

EQUATION	UNIT
AD_carbon_footprint =	Tonne
(net_emission_fracion_of_AD_electricity+NET_EMISSION_PER_TONNE_OF_	CO _{2e} /
REPLACED_FERTILISER)*total_food_waste_to_AD	Year
carbon_footprint_of_animal_feed =	Tonne
total_surplus_to_pig_feed*PIG_FEED_AVOIDED_EMISSION+PET_FEED_AVO	CO _{2e} /
IDED_EMISSION*household_total_to_pet_feed	Year
carbon_footprint_of_composting =	Tonne
NET_EMISSION_PER_TONNE_OF_REPLACED_FERTILISER*total_food_was	CO _{2e} /
te_to_compost	Year
carbon_footprint_of_energy_for_water_abstraction =	Tonne
FUELS_EMISSION_FACTOR[Electricity]*energy_footprint_of_water_abstraction	CO _{2e} /
	Year
carbon_footprint_of_incineration =	Tonne
total_food_waste_to_incineration*INCINERATION_NET_EMISSION_FRACTIO	CO _{2e} /
Ν	Year
carbon_footprint_of_landfill =	Tonne
total_food_waste_to_landfill*LANDFILL_NET_EMISSION_FRACTION	CO _{2e} /
	Year
carbon_footprint_of_redistribution =	Tonne
total_surplus_redistribution*EMISSION_PER_TONNE_OF_REDISTRIBUTION	CO _{2e} /
	Year

carbon_footprint_of_surplus_and_waste_transport =	Tonne
energy_footprint_of_surplus_and_waste_transport*FUELS_EMISSION_FACTO	CO _{2e} /
R[Oil]	Year
emission_per_tonne_of_HaFS =	Tonne
SUM(ENERGY_USE_PER_TONNE_OF_HAFS_FOOD*FUELS_EMISSION_FA	CO _{2e} /
CTOR)	Tonne
emission_per_tonne_of_household =	Tonne
SUM(energy_use_per_tonne_of_household_food*FUELS_EMISSION_FACTOR	CO _{2e} /
)	Tonne
emission_per_tonne_of_manufacture =	Tonne
SUM(ENERGY_USE_PER_TONNE_OF_MANUFACTURE_FOOD*FUELS_EMI	CO _{2e} /
SSION_FACTOR)	Tonne
emission_per_tonne_of_production =	Tonne
UK_AGRICULTURE_TERRITORIAL_EMISSIONS/TOTAL_UK_PRIMARY_PRO	CO _{2e} /
DUCTION	Tonne
emission_per_tonne_of_production_electricity =	Tonne
FUELS_EMISSION_FACTOR[Electricity]*energy_use_per_tonne_of_primary_pr	CO _{2e} /
oduction[Electricity]	Tonne
emission_per_tonne_of_retail =	Tonne
SUM(energy_use_per_tonne_of_retail_food*FUELS_EMISSION_FACTOR)	CO _{2e} /
	Tonne
HaFS_emission = HaFS_inflow*emission_per_tonne_of_HaFS	Tonne
	CO _{2e} /
	Year
household emission = emission per tonne of household*household inflow	Tonne
	CO _{2e} /
	Year
manufacture emission =	Tonne
emission per tonne of manufacture*manufacture acquisition	CO _{2e} /
	Year
net emission fracion of AD electricity =	Tonne
NET_ELECTRICITY_PER_TONNE_OF_AD*FUELS_EMISSION_FACTOR[Elec	CO _{2e} /
tricity]	Tonne
primary production emission =	Tonne
(emission per tonne of production electricity+emission per tonne of product	CO _{2e} /
ion)*primary production rate	Year
	real

retail_emission = retail_acquisition*emission_per_tonne_of_retail	Tonne
	CO _{2e} /
	Year
Sewer_electricity_emission_factor =	Tonne
NET_ELECTRICITY_PER_TONNE_OF_SEWER_TREATMENT*FUELS_EMIS	CO _{2e} /
SION_FACTOR[Electricity]	Tonne
Sewer_treatment_carbon_footprint =	Tonne
(Sewer_electricity_emission_factor+NET_EMISSION_PER_TONNE_OF_REPL	CO _{2e} /
ACED_FERTILISER)*household_to_sewer	Year
total_carbon_footprint = Sewer_treatment_carbon_footprint +	Tonne
carbon_footprint_of_energy_for_water_abstraction + HaFS_emission +	CO _{2e} /
AD_carbon_footprint + carbon_footprint_of_animal_feed +	Year
carbon_footprint_of_composting + carbon_footprint_of_incineration +	
carbon_footprint_of_landfill + carbon_footprint_of_redistribution +	
carbon_footprint_of_surplus_and_waste_transport + household_emission +	
manufacture_emission + primary_production_emission + retail_emission	

Table A1.11. Socio-Economic Impacts Equations

EQUATION	UNIT
Very_Low_Food_Secure_Population(t) =	Person
<pre>Very_Low_Food_Secure_Population(t - dt) + (very_low_food_security_rate -</pre>	
suffering_very_low_food_security) * dt	
INFLOWS:	1
very_low_food_security_rate = population_with_very_low_food_security-	Person/
redistribution_beneficiaries	Year
OUTFLOWS:	1
suffering_very_low_food_security =	Person/
Very_Low_Food_Secure_Population/MEASUREMENT_PERIOD	Year
population_with_very_low_food_security =	Person/
VERY_LOW_FOOD_SECURITY_FRACTION*Urban_Population	Year
VERY_LOW_FOOD_SECURITY_FRACTION = TIME	Per
	Year

Low_Food_Secure_Population(t) = Low_Food_Secure_Population(t - dt) + (low food security rate - suffering low food security) * dt	Person
INFLOWS:	
low_food_security_rate =	Person/
population_with_low_food_security+redistribution_beneficiaries	Year
OUTFLOWS:	
suffering_low_food_security =	Person/
Low_Food_Secure_Population/MEASUREMENT_PERIOD	Year
population_with_low_food_security =	Person/
LOW_FOOD_SECURITY_FRACTION*Urban_Population	Year
LOW_FOOD_SECURITY_FRACTION = TIME	Per
	Year
food_insecure_population = suffering_very_low_food_security +	Person/
suffering_low_food_security	Year
redistribution_beneficiaries = (total_redistribution-	Person/
INIT(total_redistribution))/HOUSEHOLD_PER_CAPITA_FOOD_PURCHASE	Year
redistribution_benefit =	£/Year
total_redistribution*household_purchasing_cost_per_tonne_of_food	
redistribution_cost =	£/Year
REDISTRIBUTION_COST_PER_TONNE_OF_FOOD*total_redistribution	
redistribution_GVA =	£/Year
total_redistribution*REDISTRIBUTION_GVA_PER_TONNE_OF_SURPLUS	
household_AD_cost =	£/Year
SEPARATE_COLLECTION_AND_DISPOSAL_COST*household_to_AD	
household_composting_cost =	£/Year
home_composting*HOME_COMPOSTING_NET_COST	
household_energy_cost =	£/Year
SUM(HOUSEHOLD_ENERGY_COST_PER_MWH*household_energy_consu	
mption)	
household_energy_consumption[Electricity] =	MWh/Ye
energy_use_per_tonne_of_household_food[Electricity]*household_inflow	ar
household_energy_consumption[Natural_Gas] =	MWh/Ye
energy_use_per_tonne_of_household_food[Natural_Gas]*household_inflow	ar
household_energy_consumption[Oil] =	MWh/Ye
energy_use_per_tonne_of_household_food[Oil]*household_inflow	ar

household_energy_consumption[Solid_Fuels] =	MWh/Ye
energy_use_per_tonne_of_household_food[Solid_Fuels]*household_inflow	ar
energy_use_per_tonne_of_household_food[Electricity] =	MWh/to
ENERGY_CONSUMPTION_OF_UK_HOUSEHOLD_FOOD[Electricity]/TOTAL	nne
_UK_HOUSEHOLD_FOOD	
energy_use_per_tonne_of_household_food[Natural_Gas] =	MWh/to
ENERGY_CONSUMPTION_OF_UK_HOUSEHOLD_FOOD[Natural_Gas]/TOT	nne
AL_UK_HOUSEHOLD_FOOD	
energy_use_per_tonne_of_household_food[Oil] =	MWh/to
shopping_energy_per_tonne_of_food	nne
energy_use_per_tonne_of_household_food[Solid_Fuels] = 0	MWh/to
	nne
shopping_energy_per_tonne_of_food =	MWh/to
household_food_shopping_energy_use/household_inflow	nne
household_food_shopping_energy_use =	MWh/Ye
total_food_shopping_distance*ENERGY_CONSUMPTION_OF_AVERAGE_C	ar
AR	
household_water_cost =	£/Year
CHARGE_PER_CUBIC_METER*household_water_consumption	
household_water_consumption =	m3/Year
WATER_USE_PER_TONNE_OF_HOUSEHOLD*household_inflow	
household_purchasing_cost_per_tonne_of_food =	£/Tonne
HOUSEHOLD_PER_CAPITA_FOOD_COST/HOUSEHOLD_PER_CAPITA_F	
OOD_PURCHASE	
household_food_purchase_cost =	£/Year
household_purchasing_cost_per_tonne_of_food*household_purchase	
replaced_pet_food_benefit =	£/Year
household_total_to_pet_feed*PET_FEED_NET_COST	
household_incineration_and_landfill_cost =	£/Year
RESIDUAL_COLLECTION_AND_DISPOSAL_COST*(household_to_incinerati	
on+household_to_landfill)	
household_food_waste_treatment_cost =	£/Year
replaced_pet_food_benefit+household_AD_cost+household_composting_cost	
+household_incineration_and_landfill_cost	
household_reduction_benefit =	£/Year
household_waste_reduction*household_purchasing_cost_per_tonne_of_food	

have a hald madvetter as at -	
household_reduction_cost =	£/Year
household_reduction_benefit*household_cost_benefit_ratio	
household_reduction_cost_for_government =	£/Year
REDUCTION_COST_FOR_GOVERNMENT_FRACTION*household_reduction	
_cost	
household_reduction_cost_for_manufacture =	£/Year
REDUCTION_COST_FOR_MANUFACTURE_FRACTION*household_reductio	
n_cost	
household_reduction_cost_for_retail =	£/Year
REDUCTION_COST_FOR_RETAIL_FRACTION*household_reduction_cost	
household_reduction_net_cost = household_reduction_cost-	£/Year
household_reduction_benefit	
household_cost_benefit_ratio =	dmnl
INITIAL_HOUSEHOLD_COST_BENEFIT_RATIO/(1-	
RAMP(HOUSEHOLD_REDUCTION_FRACTION/100)/HOUSEHOLD_EDIBLE	
_FRACTION)	
incineration_gate_fees_charged_to_LA =	£/Year
household_to_incineration*ENERGY_FROM_WASTE_GATE_FEES	
incineration_output_from_household =	£/Year
household_to_incineration*ENERGY_FROM_WASTE_GATE_FEES	
Landfill_output_from_business =	£/Year
commercial_food_waste_to_landfill*(COMMERCIAL_WASTE_TO_LANDFILL_	
TRANSFER_COST-LANDFILL_TAX)	
total_landfill_output_at_basic_price =	£/Year
Landfill output from household+Landfill output from business+electricity ou	
tput_of_landfill	
landfill operating cost =	£/Year
OPERATING COST OF LANDFILL*total food waste to landfill	
landfill GVA = total landfill output at basic price-landfill operating cost	£/Year
hafs cost per tonne of food =	£/Tonne
UK HAFS INTERIM CONSUMPTION/TOTAL UK HAFS FOOD	
HaFS food waste treatment cost =	£/Year
HaFS to AD cost+HaFS composting cost+HaFS to incineration cost+HaF	
S to landfill cost	
hafs turnover per tonne of output =	£/Tonne
UK HAFS TURNOVER/UK HAFS CONSUMPTION	

	0.04
urban_HaFS_turnover =	£/Year
HaFS_consumption*hafs_turnover_per_tonne_of_output	
hafs_reduction_benefit =	£/Year
hafs_turnover_per_tonne_of_output*HaFS_waste_reduction	
hafs_reduction_cost = hafs_reduction_benefit*hafs_cost_benefit_ratio	£/Year
hafs_reduction_net_cost = hafs_reduction_cost-hafs_reduction_benefit	£/Year
HaFS_interim_cost =	£/Year
hafs_cost_per_tonne_of_food*HaFS_consumption+hafs_reduction_net_cost+	
HaFS_food_waste_treatment_cost	
HaFS_GVA = urban_HaFS_turnover-HaFS_interim_cost	£/Year
hafs_cost_benefit_ratio = INITIAL_HAFS_COST_BENEFIT_RATIO/(1-	dmnl
MIN(RAMP(HAFS_REDUCTION_FRACTION/100),	
HAFS_EDIBLE_FRACTION*.99)/HAFS_EDIBLE_FRACTION)	
HaFS composting cost =	£/year
(COMMERCIAL WASTE COLLECTION COST+COMMERCIAL FOOD WA	·
STE_TRANSFER_COST)*(HaFS_to_compost-INIT(HaFS_to_compost))	
HaFS to AD cost =	£/year
 (COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_FOOD_WA	,
STE_TRANSFER_COST)*(HaFS_to_AD-INIT(HaFS_to_AD))	
HaFS to incineration cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	j
INCINERATION TRANSFER COST)*(HaFS to incineration-	
INIT(HaFS to incineration))	
HaFS to landfill cost =	£/year
(COMMERCIAL WASTE COLLECTION COST+COMMERCIAL WASTE TO	2/ y 001
LANDFILL TRANSFER COST)*(HaFS to landfill-INIT(HaFS to landfill))	
retail cost per tonne of food =	£/tonne
TOTAL UK FOOD RETAIL INTERIM CONSUMPTION/TOTAL UK RETAIL	LIUIIIE
_FOOD	04
retail_food_waste_treatment_cost =	£/year
retail_to_AD_cost+retail_composting_cost+retail_to_incineration_cost+retail_to	
_landfill_cost	0.11
retail_turnover_per_tonne_of_food =	£/tonne
UK_RETAIL_TURNOVER/TOTAL_UK_RETAIL_FOOD	
urban_retail_turnover = retail_to_consumer*retail_turnover_per_tonne_of_food	£/year

retail_reduction_benefit = retail_turnover_per_tonne_of_food*retail_waste_reduction	£/year
retail_reduction_cost = retail_reduction_benefit*retail_cost_benefit_ratio	£/year
retail reduction net cost = retail reduction cost-retail reduction benefit	£/year
retail interim cost =	£/year
retail cost per tonne of food*retail to consumer+retail reduction net cost+	j
retail_food_waste_treatment_cost+household_reduction_cost_for_retail	
retail_GVA = urban_retail_turnover-retail_interim_cost	£/year
retail_cost_benefit_ratio = INITIAL_RETAIL_COST_BENEFIT_RATIO/(1-	dmnl
MIN(RAMP(RETAIL_REDUCTION_FRACTION/100),	
RETAIL_EDIBLE_FRACTION*.99)/RETAIL_EDIBLE_FRACTION)	
retail_composting_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_FOOD_WA	
STE_TRANSFER_COST)*(retail_to_compost-INIT(retail_to_compost))	
retail_to_AD_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_FOOD_WA	
STE_TRANSFER_COST)*(retail_to_AD-INIT(retail_to_AD))	
retail_to_incineration_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_INCINERATION_TRANSFER_COST)*(retail_to_incineration-	
INIT(retail_to_incineration))	
retail_to_landfill_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_LANDFILL_TRANSFER_COST)*(retail_to_landfill-INIT(retail_to_landfill))	
wholesale_GVA = retail_GVA*WHOLESALE_TO_RETAIL_GVA_RATIO	£/year
manufacture_cost_per_tonne_of_food =	£/Tonne
TOTAL_UK_MANUFACTURE_INTERIM_CONSUMPTION/TOTAL_UK_MANU	
FACTURE_FOOD	
manufacture_turnover_per_tonne_of_food =	£/Tonne
UK_MANUFACTURE_TURNOVER/TOTAL_UK_MANUFACTURE_FOOD	
manufacture_food_waste_treatment_cost =	£/year
manufacture_to_AD_cost+manufacture_composting_cost+manufacture_to_inci	
neration_cost+manufacture_to_landfill_cost	
urban_manufacture_turnover =	£/year
manufacture_to_retail*manufacture_turnover_per_tonne_of_food	

manufacture_reduction_benefit =	£/year
manufacture_turnover_per_tonne_of_food*manufacture_waste_reduction	
manufacture_reduction_cost =	£/year
manufacture_cost_benefit_ratio*manufacture_reduction_benefit	
manufacture_reduction_net_cost = manufacture_reduction_cost-	£/year
manufacture_reduction_benefit	
manufacture_interim_cost =	£/year
manufacture_cost_per_tonne_of_food*manufacture_to_retail+manufacture_re	
duction_net_cost+manufacture_food_waste_treatment_cost+household_reduc	
tion_cost_for_manufacture	
manufacture_GVA = urban_manufacture_turnover-manufacture_interim_cost	£/year
manufacture_composting_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_FOOD_WA	
STE_TRANSFER_COST)*(manufacture_to_compost-	
INIT(manufacture_to_compost))	
c manufacture_to_AD_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_FOOD_WA	
STE_TRANSFER_COST)*(manufacture_to_AD-INIT(manufacture_to_AD))	
manufacture_to_incineration_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_INCINERATION_TRANSFER_COST)*(manufacture_to_incineration-	
INIT(manufacture_to_incineration))	
manufacture_to_landfill_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_LANDFILL_TRANSFER_COST)*(manufacture_to_landfill-	
INIT(manufacture_to_landfill))	
manufacture_cost_benefit_ratio =	dmnl
INITIAL_MANUFACTURE_COST_BENEFIT_RATIO/(1-	
MIN(RAMP(MANUFACTURE_REDUCTION_FRACTION/100),	
MANUFACTURE_EDIBLE_FRACTION*.99)/MANUFACTURE_EDIBLE_FRAC	
TION)	
primary_production_turnover =	£/year
agriculture_turnover_per_tonne_of_food*production_to_manufacture	
production_food_waste_treatment_cost =	£/year
production_to_AD_cost+production_composting_cost+production_to_incinerati	
on_cost+production_to_landfill_cost	

production_reduction_benefit =	£/year
agriculture_turnover_per_tonne_of_food*production_waste_reduction	
production_reduction_cost =	£/year
production_cost_benefit_ratio*production_reduction_benefit	
production_reduction_net_cost = production_reduction_cost-	£/year
production_reduction_benefit	
production_interim_cost =	£/year
agriculture_cost_per_tonne_of_food*production_to_manufacture+production_r	
eduction_net_cost+production_food_waste_treatment_cost	
production_GVA = primary_production_turnover-production_interim_cost	£/year
production_cost_benefit_ratio =	dmnl
INITIAL_PRODUCTION_COST_BENEFIT_RATIO/(1-	
MIN(RAMP(PRODUCTION_REDUCTION_FRACTION/100),	
PRODUCTION_EDIBLE_FRACTION*.99)/PRODUCTION_EDIBLE_FRACTIO	
N)	
agriculture_cost_per_tonne_of_food =	£/tonne
TOTAL_UK_AGRICULTURE_INTERIM_CONSUMPTION/TOTAL_UK_PRIMA	
RY_PRODUCTION	
agriculture_turnover_per_tonne_of_food =	£/tonne
TOTAL_UK_AGRICULTURE_OUTPUT	
/TOTAL_UK_PRIMARY_PRODUCTION	
production_composting_cost = (production_to_compost-	£/year
INIT(production_to_compost))*(OPERATING_COST_OF_COMPOSTING+CA	
PITAL_COST_OF_COMPOSTING-	
COMPOST_PRICE_PER_TONNE_OF_FOOD_WASTE)	
production_to_AD_cost =	£/year
(COMMERCIAL_FOOD_WASTE_TRANSFER_COST+COMMERCIAL_WAST	
E_COLLECTION_COST)*(production_to_AD-INIT(production_to_AD))	
production_to_incineration_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_INCINERATION_TRANSFER_COST)*(production_to_incineration-	
INIT(production_to_incineration))	
production_to_landfill_cost =	£/year
(COMMERCIAL_WASTE_COLLECTION_COST+COMMERCIAL_WASTE_TO	
_LANDFILL_TRANSFER_COST)*(production_to_landfill-	
INIT(production_to_landfill))	

replaced_animal_feed_benefit =	£/year
total_surplus_to_pig_feed*PIG_FEED_REPLACEMENT_BENEFIT	
animal_feed_operating_cost =	£/year
OPERATING_COST_OF_PIG_FEED*total_surplus_to_pig_feed	
animal_feed_GVA = replaced_animal_feed_benefit-	£/year
animal_feed_operating_cost	
incineration_output_from_business =	£/year
commercial_food_waste_to_incineration*COMMERCIAL_WASTE_TO_INCINE	
RATION_TRANSFER_COST	
total_incineration_output_at_basic_price =	£/year
incineration_output_from_household+incineration_output_from_business+elect	
ricity_output_of_incineration	
incineration_operating_cost =	£/year
OPERATING_COST_OF_INCINERATION*total_food_waste_to_incineration	
incineration_GVA = total_incineration_output_at_basic_price-	£/year
incineration_operating_cost	
Landfill_output_from_household =	£/year
household_to_landfill*(LANDFILL_GATE_FEES-LANDFILL_TAX)	
AD_gate_fees_charged_to_LA = household_to_AD*AD_GATE_FEES	£/year
landfill gate fees charged to LA =	£/year
household_to_landfill*LANDFILL_GATE_FEES	,, ,
AD output from household = household to AD*AD GATE FEES	£/year
AD output from business =	£/year
commercial_food_waste_to_AD*COMMERCIAL_FOOD_WASTE_TRANSFER	,, ,
_COST	
sales_revenue_of_AD =	£/year
FEED_IN_TARIFF_GENERATION_AND_EXPORT_PRICE*-	
net_energy_footprint_of_AD[Electricity]	
net_energy_footprint_of_AD[Electricity] =	MWh/ye
total_food_waste_to_AD*(NET_ELECTRICITY_PER_TONNE_OF_AD+NET_E	ar
NERGY_PER_TONNE_OF_REPLACED_FERTILISER[Electricity])	
total_AD_output_at_basic_price =	£/year
AD_output_from_household+AD_output_from_business+sales_revenue_of_A	
D	
AD_operating_cost = OPERATING_COST_OF_AD*total_food_waste_to_AD	£/year

	•		
AD_GVA = total_AD_output_at_basic_price-AD_operating_cost	£/year		
sales_revenue_of_composting =	£/year		
COMPOST_PRICE_PER_TONNE_OF_FOOD_WASTE*collected_food_waste			
_for_in_vessel_composting			
in_vessel_composting_output =	£/year		
COMMERCIAL_FOOD_WASTE_TRANSFER_COST*collected_food_waste_fo			
r_in_vessel_composting			
total_composting_output_at_basic_price =	£/year		
sales_revenue_of_composting+in_vessel_composting_output			
composting_operating_cost =	£/year		
OPERATING_COST_OF_COMPOSTING*collected_food_waste_for_in_vessel			
_composting			
composting_GVA = total_composting_output_at_basic_price-	£/year		
composting_operating_cost			
electricity_output_of_incineration = WHOLESALE_ELECTRICITY_PRICE*-	£/year		
net_energy_footprint_of_incineration			
net_energy_footprint_of_incineration =			
NET_ENERGY_PER_TONNE_OF_INCINERATION*total_food_waste_to_incin			
eration			
electricity_output_of_landfill = WHOLESALE_ELECTRICITY_PRICE*-	£/year		
net_energy_footprint_of_landfill			
net_energy_footprint_of_landfill =	MWh/ye		
total_food_waste_to_landfill*NET_ENERGY_PER_TONNE_OF_LANDFILL	ar		
total_AD_cost =	£/year		
(OPERATING_COST_OF_AD+CAPITAL_COST_OF_AD)*total_food_waste_t			
o_AD			
total_animal_feed_cost =	£/year		
(OPERATING_COST_OF_PIG_FEED+CAPITAL_COST_OF_PIG_FEED)*tota			
I_surplus_to_pig_feed			
total_composting_cost =	£/year		
(OPERATING_COST_OF_COMPOSTING+CAPITAL_COST_OF_COMPOSTI			
NG)*collected_food_waste_for_in_vessel_composting			
total_incineration_cost =	£/year		
(OPERATING_COST_OF_INCINERATION+CAPITAL_COST_OF_INCINERA			
TION)*total_food_waste_to_incineration			

total_landfill_cost =	£/year
(OPERATING_COST_OF_LANDFILL+CAPITAL_COST_OF_LANDFILL)*total	
_food_waste_to_landfill	
GOVERNMENT_COST = AD_gate_fees_charged_to_LA +	£/year
household_reduction_cost + incineration_gate_fees_charged_to_LA +	
landfill_gate_fees_charged_to_LA + redistribution_cost	
total_GVA = AD_GVA + animal_feed_GVA + composting_GVA +	£/year
incineration_GVA + landfill_GVA + redistribution_GVA +	
replaced_animal_feed_benefit + HaFS_GVA + manufacture_GVA +	
production_GVA + retail_GVA + wholesale_GVA	
total_household_cost = household_energy_cost +	£/year
household_food_purchase_cost + household_food_waste_treatment_cost +	
household_water_cost	
	£/year

Table A1.12. Food (Waste) Parameters, Values and Data Sources

PARAMETER	VALUE	UNIT	DOCUMENT
PRODUCTION_INITIAL_	51	Tonne/	7000 tonnes of surplus at primary
REDISTRIBUTION		Year	production sector are redistributed
			(WRAP, 2020). This is equal 0.14% of
			50,500,000 tonne primary production in
			the UK (Bajzelj et al., 2019). By
			multiplying it by the 371,200 tonne
			modelled primary production food for
			Bristol, it can be estimated that each
			year around 51 tonne is redistributed.
PRODUCTION_INITIAL_	16299	Tonne/	Primary production surplus accounts for
TO_ANIMAL_FEED		Year	4% of harvested food, majority of which
			is fed to animals (Bajzelj et al., 2019).
			Hence, we subtracted the primary
			production redistribution fraction from
			the 4% surplus fraction and multiplied

			the rest (which is assumed to be used as animal feed) with the modelled 371,200 tonne primary production for Bristol.
PRODUCTION_TO_AD_ FRACTION	0.15	Per Year	Assumption
PRODUCTION_TO_CO MPOST FRACTION	0.7	Per Year	Assumption
PRODUCTION_TO_INCI NERATION_FRACTION	0.15	Per Year	Assumption
PRODUCTION_TO_LAN	0	Per	Assumption
DFILL_FRACTION PRODUCTION_WASTE	0.032	Year Per	(Bajzelj et al., 2019)
	0.52	Year	
MANUFACTURE_EDIBL E_SURPLUS_FRACTIO N	0.53	Dimens ionless	800,000 of 1,500,000 tonne (53.3%) wasted food in the UK manufacture sector is estimated to be edible (WRAP, 2020).
MANUFACTURE_INITIA	137	Tonne/	23,000 tonne of the UK manufacture
L_REDISTRIBUTION		Year	surplus is redistributed (WRAP, 2020). Dividing this by 1,500,000 tonne of food waste in the sector, the ratio of redistribution to wasted food is around 1.53%. Multiplying this by 8,900 tonne of simulated manufacture food waste, the initial amount of redistributed manufacture surplus is estimated to be around 137 tonne per year.
MANUFACTURE_INITIA L_TO_ANIMAL_FEED	3776	Tonne/ Year	635,000 tonne of manufacture surplus is fed to animals (WRAP, 2020). Dividing this by 1,500,000 tonne of food waste in the sector, the ratio of animal feed to wasted food is around 42.3%. Multiplying this by 8,900 tonne of simulated manufacture food waste, the

			initial amount of manufacture surplus which is used as animal feed is estimated to be 3,776 tonne per year.
MANUFACTURE_TO_A D_FRACTION	0.293	Per Year	440,000 of 1,500,000 tonne manufacture food waste is sent to AD or composted (WRAP, 2020). Assuming that all goes to AD, the AD fraction of manufacture food waste is 29.33%.
MANUFACTURE_TO_C	0	Per	Assumption
OMPOST_FRACTION		Year	
MANUFACTURE_TO_IN CINERATION_FRACTIO N	0.706	Per Year	1,100,000 of 1,500,000 tonne (73.3%) manufacture food waste is incinerated (WRAP, 2020). However, as the sum of individual treatment options in the source document exceeds 1,500,000 tonne, we assume the incineration fraction is 70.6%.
MANUFACTURE_TO_L ANDFILL_FRACTION	0.001	Per Year	2000 of 1,500,000 tonne (0.13%) manufacture food waste is landfilled (WRAP, 2020).
MANUFACTURE_WAST E_FRACTION	0.026	Per Year	Less than 3% of the food in the manufacture sector is wasted (Parfitt et al., 2016). The 2.6% value is estimated by dividing 1,500,000 tonne manufacture food waste (WRAP, 2020) by 58,000,000 tonne UK manufactured food (Parfitt et al., 2016).
RETAIL_EDIBLE_SURP LUS_FRACTION	1	Dimens ionless	From 300,000 tonne of wasted food in UK retail sector, all is edible (WRAP, 2020).

RETAIL INITIAL REDIS	135	Tonne/	17,500 tonne of retail surplus is
	100	Year	redistributed (WRAP, 2020). Dividing
THE OTHER		rour	this by 300,000 tonne of food waste in
			the sector, the ratio of redistribution to
			wasted food is 5.83%. Multiplying this by
			2,300 tonne of simulated retail food
			waste in Bristol, the initial amount of
			redistributed retail surplus is estimated
			to be 135 tonnes per year.
RETAIL_INITIAL_TO_A	208	Tonne/	27000 tonne of retail surplus is fed to
NIMAL_FEED		Year	livestock (WRAP, 2020). Dividing this by
			300,000 tonne of food waste in the
			sector, the ratio of animal feed to wasted
			food is 9%. Multiplying this by 2,300
			tonne of simulated retail food waste in
			Bristol, the initial amount of retail surplus
			which is fed to animals is estimated to
			be 208 tonnes per year.
RETAIL_TO_AD_FRAC	0.5	Per	150,000 of 300,000 tonne food waste in
TION		Year	retail sector is sent to AD or composted
			(WRAP, 2020). Assuming that all goes
			to AD, the AD fraction of retail food
			waste is 50%.
RETAIL TO COMPOST	0	Per	Assumption
FRACTION		Year	
- RETAIL TO INCINERA	0.5	Per	150,000 of 300,000 tonne food waste in
TION FRACTION		Year	retail sector is sent to AD or composted
			while the other 150,000 tonne (50%) is
			incinerated (WRAP, 2020).
RETAIL TO LANDFILL	0	Per	Based on WRAP (2020), the amount of
FRACTION	Ŭ	Year	landfilled retail food waste is unknown
			and while it has not added up to the total
			of retail food waste, we assume its value
			is 0.

RETAIL_WASTE_FRAC TION	0.007	Per Year	(Parfitt et al., 2016)
AVERAGE_PURCHASE _PER_BUSINESS[Resta urants]	30.4	Tonne/ Outlet/ Year	This is estimated by dividing the average food waste per outlet (WRAP, 2013) by 16% food waste fraction of the sector.
AVERAGE_PURCHASE _PER_BUSINESS[Pubs]	24		
AVERAGE_PURCHASE _PER_BUSINESS[Educ ation]	22.1		
AVERAGE_PURCHASE _PER_BUSINESS[Healt hcare]	39.3		
AVERAGE_PURCHASE _PER_BUSINESS[Hotel s]	10.8		
AVERAGE_PURCHASE _PER_BUSINESS[Quick _Service]	15.1		
AVERAGE_PURCHASE _PER_BUSINESS[Servi ces]	209.5		
AVERAGE_PURCHASE _PER_BUSINESS[Leisur e]	40.5		
AVERAGE_PURCHASE _PER_BUSINESS[Other s]	24.4		
AVERAGE_CONSUMPT ION_PER_BUSINESS[R estaurants]	25.5	Tonne/ Outlet/ Year	This is estimated by reducing the 16% HaFS food waste from the 'average purchase per business' parameter
AVERAGE_CONSUMPT ION_PER_BUSINESS[P ubs]	20.2		values.

AVERAGE_CONSUMPT ION_PER_BUSINESS[E ducation]	18.6		
AVERAGE_CONSUMPT ION_PER_BUSINESS[H ealthcare]	33	-	
AVERAGE_CONSUMPT ION_PER_BUSINESS[H otels]	9.1		
AVERAGE_CONSUMPT ION_PER_BUSINESS[Q uick_Service]	12.7	-	
AVERAGE_CONSUMPT ION_PER_BUSINESS[S ervices]	176		
AVERAGE_CONSUMPT ION_PER_BUSINESS[L eisure]	34		
AVERAGE_CONSUMPT ION_PER_BUSINESS[O thers]	20.5		
HAFS_EDIBLE_SURPL US_FRACTION	0.73	Dimens ionless	800,000 of 1,100,000 tonne (72.7%) of wasted food in the UK HaFS sector is edible (WRAP, 2020).
HAFS_GROWTH_FRAC	1.5	Per Year	Estimated based on (Parry et al., 2020)
HAFS_INITIAL_REDIST RIBUTION	10.8	Tonne/ Year	1,000 tonne of the UK food surplus is redistributed (WRAP, 2020). The proportion of HaFS redistributed food to 1,100,000 tonne of wasted food is around 0.1%. Assuming the same proportion applies to the Bristol HaFS sector, around 10.8 tonnes of HaFS food surplus is redistributed.

HAFS TO AD FRACTI	0.04	Per	40,000 of 1,100,000 tonne (roughly 4%)
ON		Year	of HaFS food waste is sent to AD or
			composted (WRAP, 2020). We assume
			all of this goes to AD plant and non is
			composted.
HAFS TO COMPOST	0	Per	Assumption
FRACTION	0		Assumption
	0.70	Year	
HAFS_TO_INCINERATI	0.76	Per	840,000 of 1,100,000 tonne (around
ON_FRACTION		Year	76%) of HaFS food waste is incinerated
			(WRAP, 2020).
HAFS_TO_LANDFILL_F	0.2	Per	220,000 of 1,100,000 tonne (20%) of
RACTION		Year	HaFS food waste is landfilled (WRAP,
			2020).
HAFS_WASTE_FRACTI	0.16	Per	Estimated based on (WRAP, 2020,
ON		Year	2013)
HAFS_EDIBLE_FRACTI	0.73	Per	Estimated based on (WRAP, 2020,
ON		Year	2013)
HOME_COMPOSTING_	0.07	Per	520,000 of 7,100,000 tonne (or 7.3%) of
FRACTION		Year	household food waste in 2015 was
			composted at homes (Gillick and
			Quested, 2018).
HOUSEHOLD EDIBLE	0.68	Dimens	4,500,000 of 6,600,000 tonne food
FRACTION		ionless	waste by the UK household is edible
			(WRAP, 2020).
HOUSEHOLD INITIAL	2100	Tonne/	300,000 tonne of household food
TO PET FEED	2100	Year	surplus is fed to pets (WRAP, 2020).
		rear	Hence, the ratio of feeding food leftover
			to the pets to the 6,600,000 tonnes
			household food waste is 4.5%.
			Multiplying it by 100 kg per person
			annual food waste of households (Parry
			et al., 2020) means that on average 4.5
			kg of food surplus per person is fed to
			pets. This for Bristol population is
			estimated to be 2100 tonne per year.

HOUSEHOLD_PER_CA PITA_FOOD_PURCHAS E PER CAPITA NUTRIEN	0.543	Tonne/ Person Tonne/	It is estimated by summing up the weight of different types of food from household food purchase survey (DEFRA, 2020). It is estimated by subtracting the 0.1
T_CONSUMPTION		Person/ Year	tonne per capita household food waste from the 0.543 tonne per capita food purchase.
HOUSEHOLD_TO_AD_ FRACTION	0.3	Per Year	Based on Open Data Bristol (2020) and DEFRA (2021), Around 14,000 tonne of Bristol food waste is sent for AD treatment (DEFRA, 2021a; Open Data Bristol, 2020). This accounts for 30% of the simulated household food waste rate in this study.
HOUSEHOLD_TO_INCI NERATION_FRACTION	0.25	Per Year	In total, 60% of household food waste is collected for AD treatment, sent to sewer, or composted at home. This implies that the remaining 40% is collected as general waste. Based on the municipal data, 56,676 tonnes (or 62%) of Bristol general waste is incinerated while the remaining 34,088 tonnes (or 38%) is landfilled (DEFRA, 2021a). This means that of the total household food waste, around 25% (40%*62%) is incinerated and 15% (40%*38%) is sent to landfill.
HOUSEHOLD_TO_LAN DFILL_FRACTION	0.15	Per Year	see the description in HOUSEHOLD_TO_INCINERATION_FR ACTION
HOUSEHOLD_TO_SEW ER_FRACTION	0.23	Per Year	1,500,000 of 6,600,000 tonne of household food waste (i.e., 22.7%) goes down to the sewer (WRAP, 2020).

HOUSEHOLD_WASTE_	0.184	Per	It's estimated by dividing 100 kg per
FRACTION		Year	capita average household food waste
			(Parry et al., 2020) by 0.543 tonne per
			person food purchase (DEFRA, 2020).
POPULATION_GROWT	0.62	Per	The population of the city was 463,405
H_FRACTION		Year	in 2018 and is projected to reach
			532,716 persons in 2030 (ONS, 2020).
			This shows an annual growth rate of
			around 0.62%.
STOCK_ADJUSTMENT	1	Year	Assumption
_TIME			
ENERGY_CONSUMPTI	0.000691	MWh/	(BEIS, 2020a)
ON_OF_AVERAGE_CA	31	km	
R			
ENERGY_CONSUMPTI	2682200	MWh/	This is the sum of household energy
ON_OF_UK_HOUSEHO	0	Year	consumption for cooking, refrigeration,
LD_FOOD[Electricity]			and dishwashing in (BEIS, 2020d). We
ENERGY_CONSUMPTI	7385050		use this data source for household
ON_OF_UK_HOUSEHO			electricity consumption as it provides
LD_FOOD[Natural_Gas]			more detailed and comprehensive data
ENERGY_CONSUMPTI	0		for domestic cooking, refrigeration, and
ON_OF_UK_HOUSEHO			dishwashing items. The data for
LD_FOOD[Oil]			household gas consumption is extracted
ENERGY_CONSUMPTI	0		from (BEIS, 2020c).
ON_OF_UK_HOUSEHO			
LD_FOOD[Solid_Fuels]			

NET_ELECTRICITY_PE	-0.362	MWh/	It's estimated that the Avonmouth AD
R_TONNE_OF_AD		Tonne	plant generates 0.608 MWh electricity
			per tonne of food waste (Geneco, 2020).
			With an estimated Energy Return on
			Investment (EROI) of 2.48, the electricity
			consumption fraction is around 0.246
			MWh/tonne. Hence, net electricity
			fraction of AD is estimated to be -0.362
			MWh/tonne. It is important to
			acknowledge that most of generated
			biogas at Geneco is not converted to
			electricity (directly fed to gas grid). This
			means even a higher efficiency per
			tonne of food waste. To compare with
			other electricity generating treatment
			options (i.e., incineration and landfill),
			however, we assume all of the biogas is
			used for electricity generation.
net_energy_footprint_of_	0	MWh/	Assumption
AD[Natural_Gas]		Year	
NET_ENERGY_PER_T	-0.519	MWh/	Jeswani and Azapagic (2016) and Tolvik
ONNE_OF_INCINERATI		Tonne	(2020) provide slightly different
ON			estimates: 519 kWh and 531 kWh per
			tonne of waste, respectively. We use the
			first for consistency with landfill data.
			The latter source is used for incineration
			and landfill emission data.
NET_ENERGY_PER_T	-0.056	MWh/	(Jeswani and Azapagic, 2016)
ONNE_OF_LANDFILL		Tonne	
NET_ENERGY_PER_T	-0.006	MWh/	(Salemdeeb et al., 2017; Slorach et al.,
ONNE_OF_REPLACED		Tonne	2019)
_FERTILISER[Electricity]			
NET_ENERGY_PER_T	0		
ONNE_OF_REPLACED			
_FERTILISER[Natural_G			

NET_ENERGY_PER_T	-0.041		
ONNE_OF_REPLACED			
_FERTILISER[Oil]			
NET_ENERGY_PER_T	0		
ONNE_OF_REPLACED			
_FERTILISER[Solid_Fue			
ls]			
TOTAL_UK_HAFS_FOO	6875000	Tonne/	It is estimated by dividing 1.1 million
D		Year	tonne HaFS food waste by 16% HaFS
			food waste fraction (WRAP, 2020).
TOTAL_UK_HOUSEHO	3640000	Tonne/	It is estimated by multiplying the 0.543
LD_FOOD	0	Year	tonne per person per year food
			purchase by 67,000,000 UK population.
TOTAL_UK_MANUFAC	5800000	Tonne/	(Parfitt et al., 2016)
TURE_FOOD	0	Year	
TOTAL_UK_PRIMARY_	5050100	Tonne/	(Bajzelj et al., 2019)
PRODUCTION	0	Year	
TOTAL_UK_RETAIL_FO	4327500	Tonne/	This is the sum of household and HaFS
OD	0	Year	food purchase in the UK (see
			TOTAL_UK_HOUSEHOLD_FOOD and
			TOTAL_UK_HAFS_FOOD)
WASTE_TO_AD_&_CO	0.659	Dimens	We assume that one tonne of food
MPOST_CONVERSION		ionless	waste can generate 659 kg AD digestate
_FACTOR			or equal amount of compost (Salemdeeb
			et al., 2017).
TOTAL_UK_PRIMARY_	6695540	Tonne/	(Audsley et al., 2009; Hess et al., 2015)
FOOD_CONSUMPTION	0	Year	
WATER_USE_PER_TO	13.3	m³/	Average water consumption via kitchen
NNE_OF_HOUSEHOLD		Tonne	tap in the UK is around 19.8 litre per
			capita per day or 7.227 m ³ per capita per
			year (Richter and Stamminger, 2012).
			Dividing this by 0.543 tonne per capita
			per year food purchase suggests that
			the water consumption of UK household
			in kitchen is 13.31 m ³ /tonne of food.

Table A1.13. Energy, Water and Climate Parameters, Values and Data Sources

PARAMETER	VALUE	UNIT	DOCUMENT
AVERAGE_COLLECTIO	20	km	Assumption which is also compatible
N_DISTANCE			with (Slorach et al., 2019).
AVERAGE_TRANSPOR	0.00042	MWh/	Based on average laden heavy goods
T_ENERGY_PER_TON		Tonne	vehicles (BEIS, 2020a).
NE_KM		/ km	
ENERGY_CONSUMPTI	4205332	MWh/	(BEIS, 2020d)
ON_OF_UK_AGRICULT		Year	
URE[Electricity]			
ENERGY_CONSUMPTI	1077757		
ON_OF_UK_AGRICULT			
URE[Natural_Gas]			
ENERGY_CONSUMPTI	10634954		
ON_OF_UK_AGRICULT			
URE[Oil]			
ENERGY_CONSUMPTI	1541598		
ON_OF_UK_AGRICULT			
URE[Solid_Fuels]			
ENERGY_CONSUMPTI	11336535	MWh/	Sum of 'manufacture of food products'
ON_OF_UK_FOOD_MA		Year	and 'manufacture of beverages' in
NUFACTURE[Electricity]			(BEIS, 2020c)
ENERGY_CONSUMPTI	20150283		
ON_OF_UK_FOOD_MA			
NUFACTURE[Natural_G			
as]			
ENERGY_CONSUMPTI	1192196		
ON_OF_UK_FOOD_MA			
NUFACTURE[Oil]			
ENERGY_CONSUMPTI	467113		
ON_OF_UK_FOOD_MA			
NUFACTURE[Solid_Fuel			
s]			

ENERGY CONSUMPTI	8650000	MWh/	Sum of catering energy across all
ON OF UK HAFS[Elect		Year	sectors in (BEIS, 2020c)
ricity]			(,)
ENERGY_CONSUMPTI	6900000		
ON OF UK HAFS[Natu			
ral Gas]			
ENERGY_CONSUMPTI	9488000		
ON_OF_UK_HAFS[Oil]	0100000		
ENERGY CONSUMPTI	5775113		
ON OF UK HAFS[Solid	0110110		
_Fuels]			
ENERGY_CONSUMPTI	10365700	MWh/	Energy use in the retail sector is
ON_OF_UK_RETAIL[Ele		Year	extracted from (BEIS, 2020c) and
ctricity]			multiplied by an average 40% share of
ENERGY_CONSUMPTI	3576900		food commodity from the UK retail sale
ON_OF_UK_RETAIL[Na			(ONS, 2023). To avoid double counting,
tural_Gas]			the energy use for catering in retail
ENERGY_CONSUMPTI	749300		sector is subtracted from the total value.
ON_OF_UK_RETAIL[Oil]			
ENERGY_CONSUMPTI	640100		
ON_OF_UK_RETAIL[Sol			
id_Fuels]			
ENERGY_INTENSITY_	0.00065	MWh/	(Majid et al., 2020)
OF_WATER_USE		m ³	
ENERGY_USE_PER_T	0.033	MWh/	Carbon emission of electricity and oil
ONNE_OF_REDISTRIB		Tonne	used by Fareshare for redistributing
UTION[Electricity]			6,699 tonne food surplus in 2019-20 was
ENERGY_USE_PER_T	0		51.63 and 1108.76 Tonne CO_{2e} ,
ONNE_OF_REDISTRIB			respectively (Byrne et al., 2021).
UTION[Natural_Gas]			Dividing these by 0.23314 and 0.28484
ENERGY_USE_PER_T	0.58		Tonne CO _{2e} / MWh UK electricity and
ONNE_OF_REDISTRIB			diesel emission factors (BEIS, 2020a), it
UTION[Oil]			is estimated that the organisation used
ENERGY_USE_PER_T	0		221.5 MWh electricity and 3,892.57
ONNE_OF_REDISTRIB			MWh oil in total or 0.033 MWh electricity
UTION[Solid_Fuels]			

			and 0.58 MWh oil per tonne of redistributed food surplus.
FOOD_PRODUCTS_RO AD_TRANSPORT	49424000 000	Tonne *km/ Year	This is the sum of UK annual road transport for "products of agriculture, hunting, and forestry, fish, and other fishing products", and "food products, beverages and tobacco" product groups in 2019 (online data code: ROAD_GO_NA_TGTT) (Eurostat, 2022).
FOOD_SHOPPING_DIS TANCE_PER_PERSON	640	km/ Perso n/ Year	On average, it takes 4.7 trip per week for each household to purchase the household food (DEFRA, 2023a). This means almost 2 trip per person per week (4.7 / 2.4 person/household = 1.96) or 102 trip per person per year. Multiplying it by the average trip length of 3.9 miles or 6.28 km (excluding short walks) (ONS, 2023) suggests that each person in the UK travel around 640 km per year for food shopping.
NET_ELECTRICITY_PE R_TONNE_OF_SEWER _TREATMENT	-0.022	MWh/ Tonne	It's estimated that the Avonmouth AD plant generates 0.036 MWh electricity per tonne of sewer sludge (Geneco, 2020). With an estimated Energy Return on Investment (EROI) of 2.48, the electricity consumption fraction is around 0.0146 MWh/tonne. Hence, the net electricity fraction of AD treatment of sewer is estimated to be -0.0216 MWh/tonne.

NET_ENERGY_PER_T	-0.13	MWh/	The pig feed composition in the UK is
ONNE OF REPLACED		Tonne	composed of Barley (28.4%), Wheat
_PIG_FEED			(15.8%), Soya (7%), rapeseed meal
			(14%), wheat feed (27.5%) and rest
			(7.3%) (De Menna et al., 2019). Energy
			use per tonne of each crop (extracted
			from GFLI (2021)) is then multiplied to
			the above proportions. The sum is 0.929
			MWh per tonne of pig feed. Since one
			tonne of food waste can replace 130 kg
			dry or 430 kg animal feed (on average
			140 kg) (Salemdeeb et al., 2017), the
			above energy use per tonne of pig feed
			is multiplied by -0.14 tonne of food
			waste/ tonne of animal feed.
PET_FEED_AVOIDED_	-2.19	MWh/	(FEDIAF, 2018) estimated the energy
ENERGY		Tonne	consumption of producing average dog
			and cat food as following: wet dog food:
			4.14 kWh/day; dry dog food: 1.04
			kWh/day; wet cat food: 1.31 kWh/day;
			dry cat food: 0.32 kWh/day. It assumes
			the average dog eats 1048 g wet or 233
			g dry food, and average cat eats 316 g
			wet or 70 g dry food per day. To
			estimate energy consumption per unit of
			feed, corresponding energy
			consumption rates are divided by
			average feed consumption rates. After
			converting the units from kWh/g to
			MWh/tonne, energy consumption per
			tonne of feed is estimated as 3.95
			MWh/tonne wet dog feed, 4.46 MWh/
			tonne dry dog feed, 4.14 MWh/tonne wet
			cat feed, and 4.56 MWh/tonne dry cat
			feed. Averaging these by proportion of
			UK dry-wet feed consumption (ibid), the

			energy footprint of pet feed is estimated to 4.38 MWh/tonne. Finally, assuming that one tonne of wasted food can replace 0.5 tonne of wet and dry feed on average, the above estimate is multiplied by 0.5; hence, the pet feed avoided energy value is 2.19 MWh/tonne food waste.
BLUE_WATER_FOOTP	35200000	m³/	(Hess et al., 2015)
RINT_OF_UK_PRIMAR	00	Year	
Y_PRODUCTION			
FRESHWATER_ABSTR	0.64	m³/	It is estimated by dividing 198,000,000
ACTION_PER_MWh_EL		MWh	m ³ freshwater (including surface and
ECTRICITY			groundwater) abstraction by 309.4 TWh
			UK thermoelectricity generation in 2010
			(Byers et al., 2014).
NET_WATER_PER_TO	0.2	m³/	Assumption based on Geneco (2020)
NNE_OF_AD		Tonne	
NET_WATER_PER_TO	0	m³/	No value is reported in relevant LCA
NNE_OF_COMPOST		Tonne	literature, most likely due to its
			insignificance. Hence, we assume the
			value is zero.
NET_WATER_PER_TO	0.2	m³/	(Tolvik, 2020)
NNE_OF_INCINERATIO		Tonne	
Ν			
NET_WATER_PER_TO	0.2	m³/	Assumption
NNE_OF_LANDFILL		Tonne	
NET_WATER_PER_TO	0.016	m³/	Assumption based on Geneco (2020)
NNE_OF_SEWER		Tonne	

PET_FEED_AVOIDED_	-6.5	1111/	FEDIAE (2010). The same source for the -
WATER		m³/ Tonne	FEDIAF (2018), the same source for the energy and carbon footprint of pet food, suggests an unrealistically high value for water use per tonne of pet food (i.e., 4,053 m ³ /tonne). The report itself even warns about the reliability of this estimate. Since there was not any other
			national and regional estimate, we use a more realistic estimate from a case study of water consumption in canned tuna (pet food) plant in Thailand (Uttamangkabovorn et al., 2005). The 13 m ³ /tonne estimate of pet food water usage is then halved as we assumed that one tonne of food surplus can replace 0.5 tonne of dry and wet pet feed.
PIG_FEED_AVOIDED_ WATER	-3.76	m ³ / Tonne	The pig feed composition in the UK is composed of Barley (28.4%), Wheat (15.8%), Soya (7%), rapeseed meal (14%), wheat feed (27.5%) and rest (7.3%) (De Menna et al., 2019). Water Consumption per tonne of each crop (extracted from GFLI (2021)) is then multiplied to the above proportions. The sum is 26.83 m ³ per tonne of pig feed. Since one tonne of food waste can replace 130 kg dry or 430 kg animal feed (on average 140 kg) (Salemdeeb et al., 2017), the above energy use per tonne of pig feed is multiplied by -0.14 tonne of food waste/ tonne of animal feed.
WATER_USE_PER_TO NNE_OF_HAFS	22.73	m³/ Tonne	It is estimated by dividing 156,300,000 m ³ water use in HaFS sector (Environment Agency, 2013) by the

			estimated 6,875,000 tonne UK HaFS food.
WATER_USE_PER_TO NNE_OF_MANUFACTU RE	3.276	m³/ Tonne	It is estimated by dividing 190,000,000 m ³ UK food and drink manufacturing water use (Environment Agency, 2013) by 58,000,000 tonne UK manufactured food (Parfitt et al., 2016).
WATER_USE_PER_TO NNE_OF_RETAIL	0.229	m³/ Tonne	It is estimated by dividing 9,900,000 m ³ water use in retail and wholesale sector (Environment Agency, 2013) by the estimated 43,275,000 tonne retailed food in the UK.
EMISSION_PER_TONN E_OF_REDISTRIBUTIO N	0.186	Tonne CO _{2e} / Tonne	It is estimated by dividing 1,246.87 Tonne CO_{2e} operational emission of Fareshare by 6,699 tonne of food surplus redistributed in 2019-20 (Byrne et al., 2021).
FUELS_EMISSION_FAC TOR[Electricity] FUELS_EMISSION_FAC TOR[Natural_Gas] FUELS_EMISSION_FAC TOR[Oil] FUELS_EMISSION_FAC TOR[Solid_Fuels]	0.234 0.20374 0.28484 0.33726	Tonne CO _{2e} / MWh	The UK conversion factors (BEIS, 2020a) is the main data source for fuel emissions in this study. For electricity, however, we use (BEIS, 2021a), since it provides projection of the emission factor up to 2100. Although there is a discrepancy between two sources, we use the emission factor of 0.234 CO _{2e} / MWh based on 2018 value of grid average industrial electricity which is identical to the electricity emission factor of the first source.
INCINERATION_NET_E MISSION_FRACTION	0.343	Tonne CO _{2e} / Tonne	(Tolvik, 2020)
LANDFILL_NET_EMISSI ON_FRACTION	0.375	Tonne CO _{2e} / Tonne	(Tolvik, 2020)

NET_EMISSION_PER_T ONNE_OF_REPLACED _FERTILISER	-0.021	Tonne CO _{2e} / Tonne	(Slorach et al., 2019)
PET_FEED_AVOIDED_ EMISSION	-0.76	Tonne CO _{2e} / Tonne	FEDIAF (2018) estimated the CO_{2e} emission of producing average dog and cat food as following: wet dog food: 1.27 kg CO_{2e} /day; dry dog food: 0.382 kg CO_{2e} /day; wet cat food: 0.117 kg CO_{2e} /day; dry cat food: 0.117 kg CO_{2e} /day. It assumes the average dog eats 1,048 g wet or 233 g dry food, and average cat eats 316 g wet or 70 g dry food per day. To estimate the emission per unit of feed, corresponding emission rates are divided by average feed consumption rates. After converting the units from kg CO_{2e} /g to Tonne CO_{2e} /tonne, carbon emission per tonne of feed is estimated as 1.21 Tonne CO_{2e} /tonne wet dog feed, 1.64 Tonne CO_{2e} /tonne wet cat feed, and 1.67 Tonne CO_{2e} /tonne dry cat feed. Averaging these by proportion of UK dry-wet feed consumption (ibid), the carbon emission of pet feed is estimated to 1.527 Tonne CO_{2e} /tonne. Finally, assuming that 1 tonne of wasted food can replace 0.5 tonne of wet and dry feed on average, the above estimate is multiplied by 0.5; hence, the pet feed avoided emission value is 0.7635 Tonne CO_{2e} /tonne food waste.

PIG_FEED_AVOIDED_E	-0.12	Tonne	The pig feed composition in the UK is
MISSION		CO _{2e} /	composed of Barley (28.4%), Wheat
		Tonne	(15.8%), Soya (7%), rapeseed meal
			(14%), wheat feed (27.5%) and rest
			(7.3%) (De Menna et al., 2019). Carbon
			emission per tonne of each crop
			(extracted from GFLI (2021)) is then
			multiplied to the above proportions. The
			sum is 0.8463 Tonne CO_{2e} per tonne of
			pig feed. Since one tonne of food waste
			can replace 130 kg dry or 430 kg animal
			feed (on average 140 kg) (Salemdeeb et
			al., 2017), the above energy use per
			tonne of pig feed is multiplied by -0.14
			tonne of food waste/ tonne of animal
			feed.
UK_AGRICULTURE_TE	62200000	Tonne	Sum of agriculture and croplands
RRITORIAL_EMISSION		CO _{2e} /	emission in (BEIS, 2021b)
S		Year	

Table A1.14. Socio-Economic Parameters, Values and Data Sources

PARAMETER	VALUE	UNIT	DOCUMENT
COMMERCIAL_WASTE	150	£/	Estimated based on Binns and Neil
_COLLECTION_COST		Year	(2023) and Business Waste Company (2023)
COMMERCIAL_FOOD_	76	£/	Estimated based on Binns and Neil
WASTE_TRANSFER_C		Year	(2023) and Business Waste Company
OST			(2023)
COMMERCIAL_WASTE	156	£/	Estimated based on Binns and Neil
_TO_INCINERATION_T		Year	(2023) and Business Waste Company
RANSFER_COST			(2023)

COMMERCIAL WASTE	256	£/	Estimated based on Binns and Neil
TO LANDFILL TRANS		Year	(2023) and Business Waste Company
FER_COST			(2023)
OPERATING_COST_OF	14	£/	(Slorach et al., 2019)
_COMPOSTING		Year	
CAPITAL_COST_OF_C	4	£/	(Slorach et al., 2019)
OMPOSTING		Year	
COMPOST_PRICE_PE	2.58	£/	Current sale price of compost is Eur 10
R_TONNE_OF_FOOD_		Year	(~£8.6) (Gilbert and Siebert, 2022). It is
WASTE			then multiplied by the food waste to
			Compost conversion factor of 0.3 based
			on Slorach et al. (2019). The latter
			source, however, estimated a much
			smaller value (i.e., 0.23£/tonne of food
			waste)
AD_GATE_FEES	34	£/	(Boulding and Barker, 2021; WRAP,
		Year	2021)
OPERATING_COST_OF	8	£/	Based on (Slorach et al., 2019).
_AD		Year	Although (Simpson and Scholes, 2020)
			estimate a cost of 37 £/tonne AD food
			waste processing it does not provide
			data for other treatment options. To be
			consistent, hence, we use the first
			source.
CAPITAL_COST_OF_A	7	£/	Based on (Slorach et al., 2019).
D		Year	Although (Simpson and Scholes, 2020)
			estimate a cost of 37 £/tonne AD food
			waste processing it does not provide
			data for other treatment options. To be
			consistent, hence, we use the first
			source.
OPERATING_COST_OF	8	£/	NO DATA. We assume it is equal to AD
_PIG_FEED		Year	operating cost in (Slorach et al., 2019)
CAPITAL_COST_OF_PI	7	£/	NO DATA. We assume it is equal to AD
G_FEED		Year	capital cost in (Slorach et al., 2019)

TOTAL_UK_AGRICULT	28,690,00	£/	Mean value of 5 years from 2017 to
URE_OUTPUT	0,000	Year	2021 in (DEFRA, 2022a)
PIG_FEED_REPLACEM	35.84	£/	Average pig feed prices from 2017 to
ENT_BENEFIT		Year	2021 (£256) from (DEFRA, 2023b)
			which is then multiplied by 0.14 food
			surplus to pig feed conversion factor
			based on (Salemdeeb et al., 2017)Click
			or tap here to enter text
CAPITAL_COST_OF_IN	28	£/	(Slorach et al., 2019)
CINERATION		Year	
CAPITAL_COST_OF_LA	12		(Slorach et al., 2019)
NDFILL			
CHARGE_PER_CUBIC_	1.4	£ / m3	(Wessex Water, 2023)
METER			
ENERGY_FROM_WAST	93	£/	(Boulding and Barker, 2021)
E_GATE_FEES		Year	
FEED_IN_TARIFF_GEN	135.3	£/	(Simpson and Scholes, 2020)
ERATION_AND_EXPOR		MWh	
T_PRICE			
UK_HAFS_INTERIM_C	28,076,00	£/	Mean of deflated values for five years
ONSUMPTION	0,000	Year	minus an estimated 24% alcoholic drinks
			share of the sector (ONS, 2022)
UK_HAFS_TURNOVER	55,411,00	£/	Mean of deflated values for five years
	0,000	Year	minus an estimated 24% alcoholic drinks
			share of the sector (ONS, 2022)
HOME_COMPOSTING_	-19.35	£/	Current sale price of compost for home
NET_COST		Year	gardens is Eur 75 (~£65.4) (Gilbert and
			Siebert, 2022). It is then multiplied by
			the food waste to Compost conversion
			factor of 0.3 based on Slorach et al.
			(2019).
SEPARATE_COLLECTI	34	£/	(Boulding and Barker, 2021; WRAP,
ON_AND_DISPOSAL_C		Year	2021)
OST			

HOUSEHOLD_ENERGY _COST_PER_MWH[Elec tricity]	160	£ / MWh	Average of five years household electricity bills (~£577) divided by fixed consumption levels of 3.6 MWh per year (Department for Energy Security and Net Zero, 2023a)
HOUSEHOLD_ENERGY _COST_PER_MWH[Nat ural_Gas]	36.6	£ / MWh	Average of five years household gas bills (~£498) divided by fixed consumption levels of 13.6 MWh per year (Department for Energy Security and Net Zero, 2023b)
HOUSEHOLD_ENERGY _COST_PER_MWH[Oil]	116.5	£ / MWh	Five years average diesel price is 1.27 £/Liter (Department for Energy Security and Net Zero, 2023c) which is then divided by 0.0109 MWh/Liter diesel conversion factor (AEA, 2012).
HOUSEHOLD_ENERGY _COST_PER_MWH[Soli d_Fuels]	0	£ / MWh	NA
HOUSEHOLD_PER_CA PITA_FOOD_COST	1420	£ / Perso n	(DEFRA, 2022b)
PET_FEED_NET_COST	-1300	£ / tonne	Estimated based on (Statista, 2022, 2020) while assuming 1 tonne of food leftover can replace 0.5 tonne of pet feed.
RESIDUAL_COLLECTIO N_AND_DISPOSAL_CO ST	214	£/tonn e	(Boulding and Barker, 2021; WRAP, 2021)
	26	£/	(Slorach et al., 2019)
_INCINERATION LANDFILL_GATE_FEES	116	tonne £ / tonne	(Boulding and Barker, 2021)
LANDFILL_TAX	91.35	£ / tonne	(Binns and Neil, 2023; Boulding and Barker, 2021)

OPERATING_COST_OF	5	£/	(Slorach et al., 2019)
_LANDFILL		tonne	
TOTAL_UK_MANUFAC	72,516,00	£/	Mean of deflated five recent years
TURE_INTERIM_CONS	0,000	Year	values based on (ONS 2022)
UMPTION			
UK_MANUFACTURE_T	103,953,0	£/	Mean of deflated five recent years
URNOVER	00,000	Year	values based on (ONS 2022)
REDISTRIBUTION_COS	590	£/	Estimated based on Fareshare (2023);
T_PER_TONNE_OF_FO		Tonne	and WRAP (2022)
OD			
REDISTRIBUTION_GVA	434	£/	Estimated based on GVA equation from
_PER_TONNE_OF_SU		Tonne	NCVO (2022) and data from Fareshare
RPLUS			(2021).
TOTAL_UK_FOOD_RET	93,506,00	£/	Mean of deflated five recent years
AIL_INTERIM_CONSUM	0,000	Year	values based on (ONS 2022) multiplied
PTION			by an estimated 64% share of food and
			non-alcoholic drink from total retail
			sales.
UK_RETAIL_TURNOVE	113,164,0	£/	Mean of deflated five recent years
R	00,000	Year	values based on (ONS 2022) multiplied
			by an estimated 64% share of food and
			non-alcoholic drink from total retail
			sales.
WHOLESALE_ELECTRI	37	£/	(Simpson and Scholes, 2020)
CITY_PRICE		MWh	
REDUCTION_COST_FO	0.5	dmnl	Estimated based on Hanson and
R_GOVERNMENT_FRA			Mitchell (2017)
CTION			
REDUCTION_COST_FO	0.25	dmnl	Estimated based on Hanson and
R_MANUFACTURE_FR			Mitchell (2017)
ACTION			
REDUCTION_COST_FO	0.25	dmnl	Estimated based on Hanson and
R_RETAIL_FRACTION			Mitchell (2017)
INITIAL PRODUCTION	0.769	dmnl	(Hanson and Mitchell, 2017)
	0.700	GIIIII	

INITIAL_RETAIL_COST	0.196	dmnl	(Hanson and Mitchell, 2017)
_BENEFIT_RATIO			
INITIAL_MANUFACTUR	0.263	dmnl	(Hanson and Mitchell, 2017)
E_COST_BENEFIT_RA			
TIO			
INITIAL_HOUSEHOLD	0.004	dmnl	(Hanson and Mitchell, 2017
_COST_BENEFIT_RATI			
0			
INITIAL_HAFS_COST_B	0.0588	dmnl	(Hanson and Mitchell, 2017)
ENEFIT_RATIO			
WHOLESALE_TO_RET	0.64	dmnl	Contrary to our model, UK agri-food
AIL_GVA_RATIO			economic reports classify the wholesale
			as a separate sector to the retail
			(DEFRA, 2021b). Hence, to include the
			impact of food waste management on
			the agri-food economy, we estimated a
			wholesale to retail GVA ratio based on
			ONS (2022) and multiply it to the retail
			GVA to estimate wholesale food GVA.
MEASUREMENT_PERI	1	Year	Assumption
OD		_	
VERY_LOW_FOOD_SE	GRAPH(TI	Per	Graphical values for each simulation
CURITY_FRACTION	ME)	Year	year estimated based on (Armstrong et
			al., 2023b, 2023a, 2022b, 2022a, 2021a,
			2021b) as following: (0, 0.08), (1, 0.08),
			(2, 0.07), (3, 0.1), (4, 0.12), (5, 0.11), (6,
			0.1), (7, 0.09), (8, 0.08), (9, 0.08), (10,
		_	0.07), (11, 0.07), (12, 0.07)
LOW_FOOD_SECURIT	GRAPH(TI	Per	Graphical values for each simulation
Y_FRACTION	ME)	Year	year estimated based on (Armstrong et
			al., 2023b, 2023a, 2022b, 2022a, 2021a,
			2021b) as following:
			(0.00, 0.09), (1.00, 0.09), (2.00, 0.08),
			(3.00, 0.1), (4.00, 0.12), (5.00, 0.11),
			(6.00, 0.1), (7.00, 0.09), (8.00, 0.09),

(9.00, 0.09), (10.00, 0.08), (11.00, 0.08),
(12.00, 0.08)

Table A1.15. Stock Initial Values

STOCK	VALUE	UNIT	DESCRIPTION
INIT	376090	Tonne	Due to the dominance of goal seeking
Primary_Production			loops, the stock balances at this value.
INIT Production_Waste	11960		Assuming the system in equilibrium, this
INIT	345150		is set as the initial value.
Manufacture_Inventory			
INIT	8920		
Manufacture_Waste			
INIT Retail_Inventory	329450		
INIT Retail_Waste	2290		
INIT HaFS_Food	72820		
INIT HaFS_Waste	11500		
INIT Household_Food	250130		
INIT Household_Waste	45800		
INIT Urban_Population	463405	Person	(ONS, 2020)
INIT	46340	Person	Initial Bristol population multiplied by 10%
Low_Food_Secure_Po			UK low food security fraction based on
pulation			Armstrong et al. (2021)
INIT	32438	Person	Initial Bristol population multiplied by 7%
Very_Low_Food_Secur			UK very low food security fraction based
e_Population =			on Armstrong et al. (2021)
INIT	1130	Outlet	WRAP (2013) identifies 9 subsectors for
Urban_HaFS_Business			the HaFS sector including restaurants,
es[Restaurants]			pubs, education, healthcare, hotels, quick
INIT	53		service restaurants, services, leisure, and
Urban_HaFS_Business			staff catering. It also accounts for around
es[Pubs]			14% food waste generated from the

INIT	258
Urban_HaFS_Business	
es[Education]	
INIT	222
Urban_HaFS_Business	
es[Healthcare]	
INIT	195
Urban_HaFS_Business	
es[Hotels]	
INIT	364
Urban_HaFS_Business	
es[Quick_Service]	
INIT	20
Urban_HaFS_Business	
es[Services]	
INIT	93
Urban_HaFS_Business	
es[Leisure]	
INIT	340
Urban_HaFS_Business	
es[Others]	

preparation of ready to serve food items and meals for the HaFS sector at food manufacturing sites. Since 'staff catering' is the smallest subsector and there is no data around it, we integrate it with the manufacturing sites estimated data and label it as 'others'. The data for the number of restaurants, pubs, hotels, and quick service restaurants (total 1,547 businesses) is sourced from Tripadvisor website (Tripadvisor, n.d.), while the data for education and healthcare subsectors is extracted from Bristol Food Hygiene Ratings dataset (Food Standards Agency, 2022). Since there is no data available for the services and leisure outlets, we assume 1% of the estimated outlets in the UK by WRAP (2013) is located in Bristol. This method is consistent with WRAP (2013) methodology for estimating HaFS food surplus and waste. However, the available data on quantity of Bristol HaFS businesses in 2022 indicates that the amount of food demand and generated waste in the Bristol HaFS sector is around 70% higher than the UK average estimated in the report. This is most likely due to the growth in the sector since 2013 on one hand, and the concentration of HaFS businesses in big cities such as Bristol on the other hand. Given that, it is worth emphasising that to the best of our knowledge, there is no evidence-based data with high level of certainty around HaFS food demand, or surplus and waste in municipal, regional, or national levels.

Table A1.16. Parameters for Scenario Specification

PARAMETER	VALUE	UNIT	DESCRIPTION
PRODUCTION_REDUCTION_CHANGE_FRAC	0	Per Year	These variables
TION			are used for
PRODUCTION_REDISTRIBUTION_CHANGE_	0	Per Year	scenario
FRACTION			specification in
PRODUCTION_TO_ANIMAL_FEED_CHANGE	0	Per Year	primary
_FRACTION			production
PRODUCTION_TO_AD_CHANGE_FRACTION	0	Per Year	sector.
PRODUCTION_TO_COMPOST_CHANGE_FR	0	Per Year	
ACTION			
PRODUCTION_TO_INCINERATION_CHANGE	0	Per Year	-
_FRACTION			
PRODUCTION_TO_LANDFILL_CHANGE_FRA	0	Per Year	
CTION			
MANUFACTURE_REDUCTION_FRACTION	0	Per Year	These variables
MANUFACTURE_TO_REDISTRIBUTION_CHA	0	Per Year	are used for
NGE_FRACTION			scenario
MANUFACTURE_TO_ANIMAL_FEED_CHANG	0	Per Year	specification in
E_FRACTION			manufacture
MANUFACTURE_TO_AD_CHANGE_FRACTIO	0	Per Year	sector.
Ν			
MANUFACTURE_TO_COMPOST_CHANGE_F	0	Per Year	-
RACTION			
MANUFACTURE_TO_INCINERATION_CHANG	0	Per Year	
E_FRACTION			
MANUFACTURE_TO_LANDFILL_CHANGE_F	0	Per Year	-
RACTION			
RETAIL_REDUCTION_FRACTION	0	Per Year	These variables
RETAIL_TO_REDISTRIBUTION_CHANGE_FR	0	Per Year	are used for
ACTION			scenario
RETAIL_TO_ANIMAL_FEED_CHANGE_FRAC	0	Per Year	specification in
TION			retail sector.
RETAIL_TO_AD_CHANGE_FRACTION	0	Per Year	

RETAIL_TO_COMPOST_CHANGE_FRACTIO	0	Per Year	
Ν			
RETAIL_TO_INCINERATION_CHANGE_FRAC	0	Per Year	
TION			
RETAIL_TO_LANDFILL_CHANGE_FRACTION	0	Per Year	
HAFS_REDUCTION_FRACTION	0	Per Year	These variables
HAFS_TO_REDISTRIBUTION_CHANGE_FRA	0	Per Year	are used for
CTION			scenario
HAFS_TO_AD_CHANGE_FRACTION	0	Per Year	specification in
HAFS_TO_COMPOST_CHANGE_FRACTION	0	Per Year	HaFS sector.
HAFS_TO_INCINERATION_CHANGE_FRACTI	0	Per Year	
ON			
HAFS_TO_LANDFILL_CHANGE_FRACTION	0	Per Year	
URBAN_FARMING_TO_HAFS_CHANGE_FRA	0	Per Year	
CTION			
HOUSEHOLD_REDUCTION_FRACTION	0	Per Year	These variables
HOUSEHOLD_TO_ANIMAL_FEED_CHANGE_	0	Per Year	are used for
FRACTION			scenario
HOUSEHOLD_TO_AD_CHANGE_FRACTION	0	Per Year	specification in
HOUSEHOLD_COMPOSTING_CHANGE_FRA	0	Per Year	household
CTION			sector.
HOUSEHOLD_TO_INCINERATION_CHANGE_	0	Per Year	
FRACTION			
HOUSEHOLD_TO_LANDFILL_CHANGE_FRA	0	Per Year	
CTION			
URBAN_FARMING_TO_HH_CHANGE_FRACT	0	Per Year	
ION			
HAFS_GROWTH_INACTIVATION	0	Dimension	These are
		less	inactivation
			keys for
POPULATION_GROWTH_INACTIVATION	0	Dimension	specifying
		less	scenarios with
			(if 1) and
			without (if 0)
			growth.
			~

Appendix 2. Costs and Benefits of Food Waste Management

Measure	Impact on	Cost	Benefit	Net
Reduction	household	-	40.4 million less food	~ 44
			purchase	million
			+2.2 million less energy	
			and water use	
			+ 1.3 million less waste	
			collection and treatment	
	agri-food	11.6 million loss in	5.8 million re-spending	~ -6
	economy	wholesale and retail	of savings in wholesale	millior
		GVA	and retail	
		+9.1 million loss in	+9.1 million more	
		manufacture GVA	export/ less import	
		+3.4 million loss in	manufacture	
		primary production	+3.4 million more	
		GVA	export/ less import in	
		+0.7 million loss in	primary production	
		waste management	+0.7 million less gate	
		sector GVA	fees charged to local	
		+0.2 million cost of	authority	
		government and		
		non-government		
		initiatives		
Animal Feed	household	-	21.4 million less pet	~ 21.4
			feed purchase	millior
	agri-food	0.7 million loss in	0.7 million less gate fees	~ 0
	economy	waste management	charged to local	
		sector GVA	authority	
		+? Loss in feed		
		sector GVA (out of		
		scope of study)		

Table A2.1. Costs and benefits of food waste management in Bristol

Anaerobic	household	-	0.8 million less waste	~ 0.8
Digestion			collection and treatment	million
	agri-food	-	0.2 million less gate fees	~ 0.7
	economy		charged to local	million
	-		authority	
			+0.5 million added value	
			of food waste treatment	
Compost	household	-	1.6 million less compost	~ 1.6
			purchase	million
	agri-food	0.7 million loss in	0.7 million less gate fees	~ 0
	economy	waste management	charged to local	
		sector GVA	authority	
Incineration	household	2 million more waste	-	~ -2
		collection and		million
		treatment		
	agri-food	0.7 million more	0.7 million added value	~ 0
	economy	gate fees charged to	of food waste treatment	
		local authority		
Landfill	household	2 million more waste	-	~ -2
		collection and		million
		treatment		
	agri-food	1.1 million more	-	~ -1.4
	economy	gate fees for local		million
		authority		
		+0.3 million loss in		
		waste management		
		sector GVA		
Costs and ben	efits of treating	5000 tonnes of Hosp	itality and Food Service (I	HaFS)
food waste (un	it: £)			
Measure	Impact on	Cost	Benefit	Net
Reduction	HaFS	7.2 million cost of	50 million more revenue	~ 44.3
1				
		food waste reduction	+1.5 million less waste	million
		food waste reduction initiatives	+1.5 million less waste collection and treatment	million
	agri-food		-	million ~ 41.8
		initiatives	collection and treatment	

		+2.9 million loss in	+10 million to chanding	
			+1.9 million re-spending	
		manufacture GVA	of savings in wholesale	
		+1.1 million loss in	and retail	
		primary production	+2.9 million more	
		GVA	export/ less import in	
		+0.7 million loss in	manufacture	
		waste management	+1.1 million more	
		sector GVA	export/ less import in	
			primary production	
Redistribution	HaFS	-	1.5 million less waste	~ 1.5
			collection and treatment	million
	agri-food	3 million cost of	2.2 million added value	~ 11.3
	economy	redistribution	of redistribution charities	million
		charities	+13.2 million retail value	
		+3.7 million loss in	of redistributed food to	
		wholesale and retail	households	
		GVA	+1.9 million re-spending	
		+2.9 million loss in	of savings in wholesale	
		manufacture GVA	and retail	
		+1.1 million loss in	+2.9 million more	
		primary production	export/ less import in	
		GVA	manufacture	
		+0.7 million loss in	+1.1 million more	
		waste management	export/ less import in	
		sector GVA	primary production	
			+1.5 million added value	
			in HaFS due to less	
			waste collection and	
			treatment	
Anaerobic	HaFS	-	0.35 million less waste	~ 0.4
Digestion			collection and treatment	million
	agri-food	-	0.25 million added value	~ 0.3
	economy		of food waste treatment	million
Compost	HaFS	-	0.35 million less waste	~ 0.4
			collection and treatment	million
		I		I

	agri-food	17 thousand loss in	-	~ 0		
	economy	total waste				
		management				
Incineration	HaFS	50 thousand more	-	~ -0.1		
		waste collection and		million		
		treatment				
	agri-food	-	6 thousand added value	~ 0		
	economy		of food waste treatment			
Landfill	HaFS	0.55 million more	-	~ -0.6		
		waste collection and		million		
		treatment				
	agri-food	0.4 million loss in	-	~ -0.4		
	economy	total waste		million		
		management				
Costs and benefits of treating 1000 tonnes of retail food waste (unit: £)						
Measure	Impact on	Cost	Benefit	Net		
Reduction	retail	0.9 million cost of	2.6 million more revenue	~ 1.9		
		food waste reduction	+0.24 million less waste	million		
		initiatives	collection and treatment			
	agri-food	0.5 million loss in	1.9 million added value	~ 1.8		
	economy	manufacture GVA	to the retail sector	million		
		+0.2 million loss in	+0.5 million more			
		primary production	export/ less import in			
		GVA	manufacture			
		+0.1 million loss in	+0.2 million more			
		waste management	export/ less import in			
		sector GVA	primary production			
Redistribution	retail		0.24 million less waste	~ 0.2		
	retail	-	0.24 million less waste	0.2		
	retail	-	collection and treatment	million		
	agri-food	0.6 million cost of				
		0.6 million cost of redistribution	collection and treatment	million		
	agri-food		collection and treatment 0.4 million added value	million ~ 2.3		
	agri-food	redistribution	collection and treatment 0.4 million added value of redistribution charities	million ~ 2.3		
	agri-food	redistribution charities	collection and treatment 0.4 million added value of redistribution charities +2.6 million retail value	million ~ 2.3		

		+0.5 million loss in	+0.3 million re-spending	
		+0.5 million loss in manufacture GVA	of savings in wholesale	
		+0.2 million loss in	and retail	
		primary production	+0.5 million more	
		GVA	export/ less import	
		+0.1 million loss in	manufacture	
		waste management	+0.2 million more	
		sector GVA	export/ less import in	
			primary production	
			+0.24 million added	
			value in retail due to	
			less waste collection	
			and treatment	
Animal Feed	retail	-	0.24 million less waste	~ 0.2
			collection and treatment	million
	agri-food	-	0.34 million added value	~ 0.3
	economy		of food waste treatment	million
Anaerobic	retail	-	18 thousand less waste	~ 0
Digestion			collection and treatment	
	agri-food	-	25 thousand added	~ 0
	economy		value of food waste	
			treatment	
Compost	retail	-	18 thousand less waste	~ 0
			collection and treatment	
	agri-food	28 thousand loss in	-	~ 0
	economy	total waste		
		management		
Incineration	retail	62 thousand more	-	~ -0.1
		waste collection and		million
		treatment		
	agri-food	75 thousand loss in	-	~ -0.1
	economy	total waste		million
		management		
Landfill	retail	0.16 million more	-	~ -0.2
		waste collection and		million
		treatment		

agri-food	0.23 million loss in	-	~ -0.2				
economy	total waste		million				
	management						
efits of treating	3900 tonnes of manu	facture food waste (unit:	£)				
-			~ -1.9				
manulaciure			million				
			minon				
ogri food			~ -2.4				
U			~ -2.4 million				
economy		· · · ·	million				
		production					
	-						
	_						
	sector GVA						
manufacture	-	1 million less waste	~ 1				
		collection and treatment	million				
agri-food	2.3 million cost of	1.7 million added value	~ 8.6				
economy	redistribution	of redistribution charities	million				
	charities	+10.1 million retail value					
	+2.9 million loss in	of redistributed food to					
	wholesale and retail	households					
	GVA	+1.5 million re-spending					
	+2.3 million loss in	of savings in wholesale					
	manufacture GVA	and retail					
	+0.9 million loss in	+2.3 million more					
	primary production	export/ less import					
	GVA	manufacture					
	+0.5 million loss in	+0.9 million more					
	waste management	export/ less import in					
	sector GVA	primary production					
		+1 million added value					
		in manufacture due to					
	economy efits of treating Impact on manufacture agri-food economy manufacture agri-food	economy total waste management afits of treating 3900 tonnes of manua impact on Cost manufacture 9.9 million cost of food waste reduction initiatives agri-food 1.9 million loss in economy manufacture GVA +0.7 million loss in primary production GVA +0.5 million loss in waste management sector GVA manufacture agri-food 2.3 million cost of economy redistribution charities +2.9 million loss in wholesale and retail GVA +2.3 million loss in manufacture GVA +0.5 million loss in manufacture GVA for a manufacture GVA for a manufacture GVA holesale and retail GVA +0.9 million loss in manufacture GVA holesale and retail GVA +0.9 million loss in manufacture GVA holesale and retail GVA holesale and retail Holesale holesale and retail Holesale holesa	economytotal waste managementeffects of treating 3900 tonnes of manufacture3900 tonnes of manufacture food waste (unit:Impact onCostBenefitmanufacture9.9 million cost of food waste reduction initiatives6.9 million more revenue +1 million less waste collection and treatmentagri-food1.9 million loss in manufacture GVA +0.7 million loss in primary production GVA +0.5 million loss in waste management sector GVA0.7 million less waste collection and treatmentagri-food2.3 million cost of redistribution cost of collection and treatment1 million less waste collectionagri-food2.3 million cost of redistribution charities1.7 million less waste collection and treatmentagri-food2.3 million cost of redistribution charities1.7 million retail value of redistribution charities charities40.9 million loss in wholesale and retail +2.9 million loss in manufacture GVAof redistributed food to wholesale and retail +0.9 million loss in manufacture GVA40.9 million loss in manufacture GVAof savings in wholesale and retail +0.9 million loss in primary production GVAof savings in wholesale and retail +0.9 million loss in waste management secor GVA				

			less waste collection	
			and treatment	
Animal Feed	manufacture	-	1 million less waste	~ 1
			collection and treatment	million
	agri-food	-	0.75 million added value	~ 0.8
	economy		of food waste treatment	million
Anaerobic	manufacture	-	0.13 million less waste	~ 0.1
Digestion			collection and treatment	million
	agri-food	-	87 thousand added	~ 0.1
	economy		value of food waste	million
			treatment	
Compost	manufacture	-	0.13 million less waste	~ 0.1
			collection and treatment	million
	agri-food	-0.12 million loss in	-	~ -0.1
	economy	total waste		million
		management		
Incineration	manufacture	0.18 million more	-	~ -0.2
		waste collection and		million
		treatment		
	agri-food	0.1 million loss in	-	~ -0.1
	economy	total waste		million
		management		
Landfill	manufacture	0.57 million more	-	~ -0.6
		waste collection and		million
		treatment		
	agri-food	0.44 million loss in	-	~ -0.4
	economy	total waste		million
		management		
Costs and ben	efits of treating	5200 tonnes of prima	ary production food waste	e (unit:
£)				
Measure	Impact on	Cost	Benefit	Net
Reduction	primary	5.9 million cost of	2.9 million more revenue	~ -2.6
	production	food waste reduction	+0.4 million less waste	million
		initiatives	collection and treatment	

Redistribution primary production - 0.4 million less waste collection and treatment ~1 Redistribution primary production - 0.4 million less waste collection and treatment ~1 agri-food 3.1 million cost of redistribution charities 2.3 million added value of redistribution charities +13.6 million retail value of redistributed food to households ~11 Amimal Feed primary production - 0.4 million less waste collection and treatment ~11 Animal Feed primary production - 0.4 million less waste collection and treatment ~0.4 Anaerobic primary production - 0.4 million less waste collection and treatment ~0.4 Anaerobic primary production - 0.43 million less waste collection and treatment ~0.4 Anaerobic primary production - 0.57 million added value in primary production ~0.4		agri-food	2.6 million loss in	-	~ -2.8
Redistribution primary production - 0.4 million less waste collection and treatment ~ 11 agri-food 3.1 million cost of redistribution 2.3 million added value of redistribution charities +13.6 million retail value ~ 11 agri-food 3.1 million cost of redistribution 2.3 million added value of redistribution charities +13.6 million retail value ~ 11 agri-food 3.1 million cost of redistribution 2.3 million added value of redistributed food to households ~ 11 +3.9 million loss in wholesale and retail GVA +1.1 million loss in primary production GVA +1.1 million more export/ less import manufacture GVA +1.1 million more export/ less import in primary production due to less waste collection and treatment Animal Feed Digestion primary production - 0.43 million less waste collection and treatment Anaerobic Digestion primary production 0.74 million more of food waste treatment ~ 0.7 million		economy	primary production		million
Redistribution primary production - 0.4 million less waste collection and treatment ~ 1 million collection and treatment agri-food 3.1 million cost of economy 2.3 million added value redistribution ~ 11 of redistribution charities +13.6 million retail value +3.9 million loss in wholesale and retail ~ 11 households GVA +2 million re-spending of +3 million loss in manufacture GVA households ~ GVA +2 million more export/ primary production less import manufacture +1.1 million more export/ primary production +3 million more export/ less import manufacture +0.2 million loss in waste management sector GVA +1 million more export/less import in primary production due to less waste collection and treatment Animal Feed primary production - 0.43 million less waste collection and treatment ~ 0.6 million million direatment Anaerobic primary production 0.74 million more waste collection and treatment - -			GVA		
Redistribution primary production - 0.4 million less waste collection and treatment ~ 1 millio agri-food 3.1 million cost of economy 3.1 million cost of redistribution 2.3 million added value of redistribution charities +13.6 million retail value +3.9 million loss in wholesale and retail ~ 11 GVA +2 million retail value +3.9 million loss in manufacture GVA +12 million respending of +3 million loss in manufacture GVA +2 million more export/ less import manufacture +0.2 million loss in waste management sector GVA +3 million more export/ less import manufacture +0.4 million added value in primary production due to less waste collection and treatment ~ 0.4 million added value in primary production +0.4 million less waste collection and treatment ~ 0.4 million added value in primary production due to less waste collection and treatment Animal Feed Digestion primary production 0.74 million more waste collection and treatment - 0.6 million context production due to less waste collection and treatment ~ 0.4 million million			+0.2 million loss in		
Redistribution primary production			waste management		
productioncollection and treatmentmillioagri-food3.1 million cost of redistribution charities2.3 million added value of redistribution charities +13.6 million retail value of redistributed food to households +2 million respending of savings in wholesale and retail +3 million loss in manufacture GVA +1.1 million loss in primary production GVAAnimal Feedprimary production agri-food-0.43 million less waste collection and treatment~ 0.4Anaerobicprimary0.74 million more waste collection and treatment-~ 0.57Anaerobicprimary0.74 million more waste collection and treatment-~ 0.57			sector GVA		
Animal Feedprimary production11Animal Feedprimary production3.1 million cost of redistribution2.3 million added value of redistribution charities +13.6 million retail value of redistributed food to households +2 million respending of savings in wholesale and retail +3 million loss in manufacture GVA +1.1 million loss in primary production sector GVA11Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4Anaerobicprimary production0.74 million more waste collection and treatment0.6Anaerobicprimary production0.74 million more collection and treatmentAnaerobicprimary production0.74 million more collection and treatmentAnaerobicprimary production0.74 million more collection and treatmentAnaerobicprimary production0.74 million more waste collection and treatmentDigestionprimary production0.74 million more waste collection and treatment<	Redistribution	primary	-	0.4 million less waste	~ 1
economyredistribution charitiesof redistribution charities +13.6 million retail value of redistributed food to householdsmillio million4.3.9 million loss in wholesale and retail GVAof redistributed food to householdshouseholds +2 million re-spending of savings in wholesale and retail4.1.1 million loss in primary production GVA+1.1 million loss in export/ less import manufacture export/ less import manufacture +0.2 million loss in waste management sector GVA+1.1 million more export/ less import nanufacture in primary production due to less waste collection and treatmentAnimal Feed agri-food economyprimary 0.43 million less waste collection and treatmentAnaerobic Digestionprimary0.74 million more waste collection and treatment-~ 0.0 million		production		collection and treatment	million
Animal Feedprimary production-0.43 million+13.6 million retail value of redistributed food to households +2 million re-spending of savings in wholesale and retail +3 million loss in primary production sector GVA+13.6 million retail value of redistributed food to households +2 million re-spending of savings in wholesale and retail +1.1 million loss in primary production to 2.2 million loss in waste management sector GVA+13.6 million retail value of redistributed food to households +2 million more export/ less import manufacture export/less import in primary production due to less waste collection and treatmentAnimal Feed agri-food economyprimary 0.43 million less waste collection and treatment~ 0.4 millioAnaerobic Digestionprimary production-0.57 million added value million due to less waste treatment~ 0.7 millionAnaerobic Digestionprimary production treatment0.74 million more waste collection and treatment~ 0.0 million		agri-food	3.1 million cost of	2.3 million added value	~ 11.1
+3.9 million loss in wholesale and retail GVAof redistributed food to households +2 million re-spending of savings in wholesale and retail +3 million more export/ less import manufacture GVA+1.1 million loss in primary production GVA+3 million more export/ less import manufacture export/less import in primary production to 2 million loss in sector GVA+1.1 million more export/ less import manufacture export/less import in primary production due to less waste collection and treatmentAnimal Feed agri-food economyprimary 0.74 million more of food waste treatment~ 0.4 million of food waste treatmentAnaerobic Digestionprimary production waste collection and treatment- ~ 0.7 million more		economy	redistribution	of redistribution charities	million
Animal Feedprimary orduction-0.43 million less waste collection and treatmentAnimal Feedprimary-0.43 million less waste collection and treatment~ 0.4 millionAnaerobicprimary-0.57 million added value of food waste treatment~ 0.7 million moreAnaerobicprimary0.74 million more mary-0.67 million added value millionAnaerobicprimary0.74 million more mary-0.67 million added value millionAnaerobicprimary0.74 million more moduction~ 0.7 million moreAnaerobicprimary0.74 million more moduction-Digestionprimary0.74 million more mary-Mater Animal Feedprimary0.74 million more million-Anaerobicprimary0.74 million more million-Mater Animal Feedprimary0.74 million more million-Anaerobicprimary0.74 million more million-Mater Animal Feedprimary0.74 million more million <t< td=""><td></td><td></td><td>charities</td><td>+13.6 million retail value</td><td></td></t<>			charities	+13.6 million retail value	
GVA+2 million re-spending of savings in wholesale and retail+3 million loss in manufacture GVA +1.1 million loss in primary production GVA+3 million more export/ less import manufacture +3 million more export/less import in primary production sector GVAAnimal Feed agri-food economyprimary - - - 0.74 million more waste collection and treatment- -<			+3.9 million loss in	of redistributed food to	
+3 million loss in manufacture GVA +1.1 million loss in primary production GVA +0.2 million loss in vaste management sector GVA +0.2 million loss in vaste management sector GVA +0.4 million added value in primary production due to less waste collection and treatmentAnimal Feed agri-food economyprimary - 0.74 million more waste collection and treatment- - 0.57 million added value of food waste treatmentAnaerobic Digestionprimary production0.74 million more - - vaste collection and treatment- - - - - - - - - - - - -			wholesale and retail	households	
Animal Feedprimary primary-0.43 manufactureAnimal Feedprimary production-0.43 million loss waste collection and treatment~ 0.4 millionAnaerobicprimary0.74 million-0.57 million loss~ 0.6 millionAnaerobicprimary0.74 million0.57 million~ 0.6 millionAnaerobicprimary-0.74 million0.60 millionAnaerobicprimary-0.74 million0.60 millionAnaerobicprimary0.74 million0.60 millionAnaerobicprimary0.74 million<			GVA	+2 million re-spending of	
Animal Feedprimary production+1.1 million loss in primary production+3 million more export/ less import manufacture +1.1 million more export/ less import in primary production +0.2 million loss in waste management sector GVA+3 million more export/ less import manufacture +1.1 million more export/ less import in primary production +0.4 million added value in primary production due to less waste collection and treatmentAnimal Feedprimary production-0.43 million less waste collection and treatment~ 0.4Anaerobicprimary production-0.57 million added value million~ 0.6Anaerobicprimary production0.74 million more waste collection and treatment-~ -0			+3 million loss in	savings in wholesale	
Animal Feed agri-food economyprimary primary production agri-food production-0.43 million primary collection and of food waste treatment of food waste treatment~ 0.4 million million collection and treatmentAnaerobic Digestionprimary production collection-0.74 million more collection and collection and collection and collection collection and treatment~ 0.4 million million			manufacture GVA	and retail	
GVA +1.1 million more +0.2 million loss in export/less import in waste management primary production sector GVA +0.4 million added value in primary production ue to less waste collection and treatment collection and treatment Animal Feed primary production - agri-food - economy 0.74 million more Digestion production waste collection and treatment -			+1.1 million loss in	+3 million more export/	
+0.2 million loss in waste management sector GVAexport/ less import in primary production 			primary production	less import manufacture	
waste management sector GVAprimary production +0.4 million added value in primary production due to less waste collection and treatmentAnimal Feedprimary production-0.43 million less waste collection and treatmentAnimal Feedprimary production-0.43 million less waste collection and treatmentAnimal Feedprimary production-0.57 million added value millionAnaerobicprimary production0.74 million more waste collection and treatment-DigestionproductionmillionMaterobicprimary production0.74 million more treatmentDigestionproductionwaste collection and treatment-			GVA	+1.1 million more	
Animal Feedprimary production-0.43 million added value in primary production due to less waste collection and treatmentAnimal Feedprimary production-0.43 million less waste collection and treatment~ 0.4 millionAnimal Feedprimary production-0.57 million added value of food waste treatment~ 0.6 millionAnaerobicprimary production0.74 million more waste collection and treatment-~ -0.7 million			+0.2 million loss in	export/ less import in	
Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4agri-food economy-0.57 million added value of food waste treatment~ 0.6Anaerobicprimary production0.74 million more waste collection and treatment-~ 0.6			waste management	primary production	
Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4 millionAnimal Feedprimary production-0.43 million less waste collection and treatment~ 0.4 millionagri-food economy-0.57 million added value of food waste treatment~ 0.6 millionAnaerobic Digestionprimary production0.74 million more waste collection and treatment-			sector GVA	+0.4 million added value	
Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4agri-food economy-0.57 million added value of food waste treatment~ 0.6Anaerobic Digestionprimary production0.74 million more waste collection and treatment-~ -0.6				in primary production	
Animal Feedprimary production-0.43 million less waste collection and treatment~ 0.4 millionagri-food economy-0.57 million added value of food waste treatment~ 0.6 millionAnaerobic Digestionprimary production0.74 million more waste collection and treatment-~ 0.6 million				due to less waste	
production collection and treatment million agri-food - 0.57 million added value ~ 0.6 economy of food waste treatment million Anaerobic primary 0.74 million more - ~ -0.6 Digestion production waste collection and million				collection and treatment	
agri-food economy-0.57 million added value of food waste treatment~ 0.6 millionAnaerobic Digestionprimary production0.74 million more waste collection and treatment-~ -0.6 million	Animal Feed	primary	-	0.43 million less waste	~ 0.4
ooof food waste treatmentmillioAnaerobicprimary0.74 million more-~ -0.Digestionproductionwaste collection and treatmentmillio		production		collection and treatment	million
Anaerobicprimary0.74 million more-~ -0.Digestionproductionwaste collection and treatmentmillion		agri-food	-	0.57 million added value	~ 0.6
Digestion production waste collection and treatment millio		economy		of food waste treatment	million
treatment	Anaerobic	primary	0.74 million more	-	~ -0.7
	Digestion	production	waste collection and		million
agri-food 0.32 million loss in			treatment		
		agri-food	0.32 million loss in	-	~ -0.3
economy total waste millio		economy	total waste		million
management			management		

Compost	primary	-	0.35 million less waste	~ 0.4
	production		collection and treatment	million
	agri-food	-	0.16 million added value	~ 0.2
	economy		of food waste treatment	million
Incineration	primary	1.16 million more	-	~ -1.2
	production	waste collection and		million
		treatment		
	agri-food	0.57 million loss in	-	~ -0.6
	economy	total waste		million
		management		
Landfill	primary	1.68 million more	-	~ -1.7
	production	waste collection and		million
		treatment		
	agri-food	1.03 million loss in	-	~ -1
	economy	total waste		million
		management		

Appendix 3. Validation: Building Confidence in Usefulness of the Model

Given that a model is a simplified representation of the reality, assessing how the behaviour of a simulation model is representative of the behaviour of the observed system is an ongoing debate among epistemologists and modellers. Philosophers and scientists alike assert that that models should be assessed based on their fitness or adequacy for their specific purposes (Parker, 2020). Exploring the model validation in system dynamics field, Barlas (1996) argues that model validity cannot be defined in isolation from the model's purpose, hence a model should be assessed based on its 'usefulness with respect to some purpose'.

While there is no method to 'prove' that a model is correct, there are various tests that enable comparing models against empirical evidence and detect potential deficiencies and limitations of the model (Forrester and Senge, 1980). Although as illustrated in Parsa et al. (2023), model testing is formally placed as a step of dynamics modelling between model development and policy analysis, in practice, it is a process which exist in every stage of modelling (Barlas, 1996). This means the confidence accumulates gradually as the model passes different tests in an iterative process (Forrester and Senge, 1980; Sterman, 2000).

In system dynamics literature, there are a wide variety of validation tests to identify the flaws and limitations of a model. To narrow it down to the most important tests, Pruyt (2013, p.89) raises four guiding questions for testing a model: *"(i) Are the boundaries, structures and parameters adequate? (ii) Does the model allow to generate the behaviours it should be able to generate for the right reasons? (iii) Does the model generate plausible behaviours under extreme conditions? (iv) Does the sensitivity of*

70

the model to changes in parameters, functions, boundaries, et cetera correspond to the sensitivity of the real system to corresponding changes?".

For a formal validation of the food waste dynamics model, we provide clarification on boundary adequacy and structure assessment, an extreme conditions test and a sensitivity analysis in the following sections. These correspond to the Pruyt's (2013) first, third, and fourth questions, respectively. The second question which addresses an essential modelling requirement (i.e., a system dynamics model must generate *"the right output behaviour for the right reasons"* (Barlas, 1996)), has been extensively discussed in Results and Discussion section of the main paper and in Parsa et al. (2023). It is important to emphasise that the purpose of these tests is not only to present evidence for validity of the model but to reflect the limitations of the model. In addition to justifying 'why', it is crucial to discuss 'to what extent' one can be confident in the usefulness of the model.

Moreover, it is important to mention that there are plenty of tests (e.g., 17 tests are discussed in Forrester & Senge (1980) and 12 in Sterman (2000)), which often take place in an iterative loop during the model development and application. It is neither intended, nor possible to apply a comprehensive list of tests –as such a list does not exist– to validate the model developed in this study. Most of the validation tests in the food waste dynamics model have been already conducted directly or indirectly during the iterative model building process and addressed 'informally' either in the results or in the documentations. For instance, dimensional consistency asks whether each equation is dimensionally consistent without the use of parameters having no real world meaning (Sterman, 2000). Such a test has been an essential principle during quantitative modelling process and is well-documented in the Appendix 1 of this

Supplementary Materials. The same applies to parameter assessment test. Similarly, integration error test is to ensure that the results are not sensitive to the choice of time step or numerical integration method (Sterman, 2000). Although not formally reported, the integration error test is assumed to be an integral part of the modelling and is conducted thoroughly during the modelling phase of this study. Hence, focusing on some of the most important tests in this section is only towards a 'formal validation' of the model.

Before getting into the validation tests, it is essential to repeat the 'purpose' of the food waste dynamics model in this study. Without a well-defined purpose of the model application, any debate over the merit of model compared to others is often irresolvable (Forrester and Senge, 1980). One useful approach to the purpose of simulation models is to distinguish between three modelling modes: prediction, explanation, and exploration (Desjardins et al., 2020). While predictive modelling aims to determine the future state of a system, and explanatory modelling seeks to investigate why or how the system came to be in known state, exploratory modelling is not interested in a specific final state of the system, but in various future states which are caused by hypothetical changes in the model configurations (Desjardins et al., 2020).

As stated, the purpose of the dynamic modelling in this study is to 'explore' the food waste impacts on environmental, and socio-economic pillars of sustainable development. This means the model is aimed neither at predicting the precise trend and quantity of urban food waste impacts in the future, nor at explaining its root causes in the status quo. In contrast, the model is designed to explore the changes in environmental and socio-economic impacts of food system as a result of changes in

urban food waste management behaviour. Hence, the purpose of the following validation tests is to assess why and to what extent the model is useful to 'explore' the impacts of different food waste management options and policies in urban circular economies.

A3.1. Boundary Adequacy and Structure Assessment

The overall objective of the boundary adequacy test is to make sure if the boundary of the model is large enough to endogenously capture the problem at hand (Pruyt, 2013). The modeller is expected to use literature (e.g., literature review and archival materials) and/or participatory activities (e.g., interviews and workshops) to check the appropriateness of the model boundary, and to clearly define the boundary through different types of diagrams (Sterman, 2000). For the structure assessment test, the modeller should use similar tools and procedures to check whether the structure of the model conform to the real system and laws of nature (Pruyt, 2013; Sterman, 2000). Instead of testing, this section reflects on the process of defining the boundary and structure of the model and its associated limitations.

Setting an inclusive boundary and a conforming structure for the model has been a critical task throughout this research. The model boundary and structure are grounded on a systematic literature review (Parsa et al., 2021) and a multi-stage group model building process (Parsa et al., 2023). To give an example of the process, it is useful to look at the initial workshops during the group model building process, as detailed in Parsa et al. (2023). The workshops with participants from food, energy and water sectors in Bristol were fruitful to identify the key variables in the food, energy, water, and climate (FEWC) system. Initially, the participants identified 99 variables/ topics

which were then clustered under 8 food, 8 energy and 8 water titles. After re-clustering the cards and omitting the duplications, 44 topics under 9 titles were identified relevant to the Bristol food (and food waste) system which are used during the system dynamics model building process (Table A3.1). The topics, although not entirely used in the model, provided grounds for developing a detailed SDM which accounts for food (waste) impacts in the context of FEWC nexus.

No.	Title/ Cluster	Topics/ Variables
1	Governance	Financing/ Investment
		Food Regulation/ Government Policy/ Department Lead
		Lack of Linking-up in Large Organisations
2	Behaviour	Consumers (e.g., Restaurants)/ Knowledge
	Change	Changes in Behaviour to Eat Seasonally
		Food, Energy, Water Waste Reduction/ Reduced Demand in Food
		More Direct Solutions for Reducing CO ₂
		Raising Awareness/ People Make Choices on Food Depending on
		Energy, CO ₂ (e.g., Vegetarian, Local Food)
3	Food	Sustainable Urban Drainage and Food
	Growing	Use of Heat and Gas from Processing Plants
	Inputs	Poor Understanding of Energy for Agriculture & CO2e Emissions
		Water Usage for Food Growing
		Irrigation/ Additional Watering of Food Crops Grown Locally
		Energy to Pump Water
4	Food	Kitchen Operation (i.e., Excess Use of Burners)
	Preparation	Water and Energy Use of Food Preparation from Scratch at
		Household
		Water and Food Waste of Commercial Food Preparation
		Water and Energy Efficiency of Commercial Food Preparation
		Cooling and Cooking Energy for Food Preparation and Storage
		Smart Refrigeration to Flexible Demand to Suit Renewables Output
		Energy Used for Food and Food Waste Transportation
5		Energy for Food Processing
		Energy Recyclable from Packaging

Table A3.1. Interrelations between food, energy, and water sectors in Bristol food (waste) system.

	Food	Water Use by Food and Energy Manufacture
	Processing/	
	Packaging	
6	Food Waste	Food Waste and Sewage Sludge as Source of Biomethane
	and Sewage	Generating Electricity from AD at Times of Peak Demand to Reduce
	to AD	CO ₂ Emissions
		Wastewater from Food Factories Used to Make Biogas
		Energy Used to Treat Wastewater
		Water Use for Food Waste and Sewage Transport
		Sewage Infrastructure to Transport Food Waste
7	Waste to	Gasification and Biodiesel
	Energy	Energy from Waste (Pyrolysis) Plant
		Collection of Used Cooking Oil from Homes and Businesses for
		Production of Biodiesel
8	Nutrient	Treated Sewage Sludge to Farmland (e.g., Fertiliser Replacement)
	Recovery via	Phosphorous Capture from Digester Outputs
	Water	Energy Efficient Phosphate Extraction for Food Growing
		Digestate to Compost
		Healthy Soils
9	Pollution	Water Contamination from Food Chain
	from Food	Water Quality Constraints from Other Sectors
	Sector	Impact of Water Pollution on Restriction on Development and Food
		Production and Inefficient Use of Land
		Impact of Fertilisers and Pesticides in Food Production on Water
		Fish Farm Pollution
		Impact of Food Packaging on Water (e.g., Waste Plastics)

Setting the boundary and structure of the model has been an iterative process informed by the participatory activities and extensive literature review. The resulting model, however, by no means provides a comprehensive representation of the environmental and socio-economic impacts of urban food and food waste. For example, the impact of food production on water pollution and eutrophication or the impact of food packaging on the FEWC nexus are important environmental aspects which are deliberately excluded from the model. Similarly, the boundary for social impacts of the food surplus and waste can be defined much wider than the food insecurity indicator which is addressed in this study.

Aiming for a comprehensive model boundary and structure to represent all the elements and dynamics within the real system is neither possible nor desirable. Given that models are simplified representation of the complexities in the real system, the aim of a system dynamics modeller is to provide useful policy advice by using small models (Pruyt, 2013). As reported in this study, the key policy recommendation of this study is that food waste reduction at consumer sectors and surplus redistribution at supply sectors are the most preferable options for environment, society and economy. Referring to the extensive description and documentation of the model in both studies, it is believed that the policy recommendations of the model will still hold if the boundary further extends.

A3.2. Extreme Conditions Test Applied

A robust model is a model which behaves appropriately in extreme conditions. Testing the model behaviour under extreme conditions can be carried out by direct inspection of the equations and/ or by simulation (Sterman, 2000). The dynamics model in this study has been tested frequently during the model development process. To illustrate one example, the model is tested for an extreme food waste reduction target of 50% per year (Figure A3.1). Although a 50% food waste reduction per year is not possible in real world conditions, the following scenarios are simulated to illustrate the behaviour of the model in such an extreme rate.

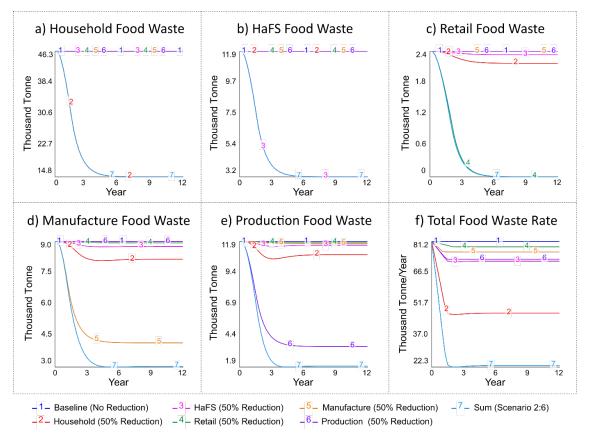


Figure A3.1. Extreme conditions test of the food waste dynamics model to explore the behaviour of stock variables (a, b, c, d, and e) and total food waste rate (f) in response to a 50% annual food waste reduction in agri-food sectors.

The purpose of this test is to illustrate the behaviour of the food waste stocks and flows of the model in extreme scenarios. As Sterman (2000) states, the values of inventories (i.e., food waste stocks in this model) can never drop below zero even if the input is zero and the output has the maximum possible value. The above example examines this aspect of the model and illustrates that food waste stocks/ inventories in the model do not drop below zero in an extreme condition where annually 50% of the food waste is reduced and the remaining food waste is sent for treatment (Figure A3.1a,b,c,d,e). Although the avoidable food waste inflow rate in each scenario reaches zero after two years, the stock acts as a shock-absorber and drops more gradually (Figure A3.1: f vs. a,b,c,d,e). In the retail sector (Figure A3.1c), as it is assumed that all of food waste is avoidable (WRAP, 2020), the food waste stock eventually drops to zero, but does

not fall below the zero. This is one example of the model's realistic behaviour in extreme conditions and an illustration of passing the extreme conditions test.

A3.3. Sensitivity Analysis Applied

Sensitivity analysis is an important test to compute the robustness of a model's conclusions in response to changes in uncertain assumptions including model's parameters and equations (Sterman, 2000). To analyse the sensitivity of the model findings, it is fruitful to explore whether the policy recommendations of this study are sensitive to population and HaFS growth rate parameters. Although the assumed 0.6% population and 1.5% HaFS growth rates in this study are estimated based on reliable sources (BCC, 2020; ONS, 2020; Parry et al., 2020), the forecasts are obviously subject to uncertainty. Moreover, the policy recommendations of this study are aimed at urban CEs (i.e., not only Bristol) with different rates of population and economic growths. Thus, a sensitivity analysis of these parameters can help to examine whether the key findings of the model (i.e., preferability of reduction in consumer sectors and redistribution in supply sectors) are sensitive to the growth rate assumptions.

For this sensitivity analysis (Figure A3.2), three different values are assigned to population and HaFS growth rate parameters each: +0.6%, 0%, and -0.6% growth rate for the population and +1.5%, 0%, and -1.5% growth rate for the HaFS sector. To avoid unnecessary complications, both growth rates are set to change simultaneously from positive (Scenario 1, 2 and 7, 8), to zero (Scenario 3, 4 and 9, 10), and then to negative values (Scenario 5, 6 and 11, 12). The purpose of first sensitivity analysis (Figure A3.2a) is to examine if food waste reduction at consumer sectors is the most preferable option (i.e., environmentally, socially, and economically) regardless of the

population and HaFS growth rates. For this, a 2.8% annual food waste reduction (Scenario 1, 3 and 5) is compared to the same amount increase in AD treatment (Scenario 2, 4 and 6) at household. The second sensitivity analysis (Figure A3.2b) examines if food waste redistribution at supply sectors is the most preferable option for all of the growth scenarios. This second set of scenarios (Figure A3.2b) compares 3.6% increase in redistribution (Scenario 7, 9 and 11) to 3.6% increase in animal feed (Scenario 8, 10 and 12) in primary production sector.

As the results of sensitivity analysis in the household scenarios (Figure A3.2a) show, food waste reduction (Scenario 1) has lower FEWC footprints compared to the AD increase (Scenario 2) if urban population and HaFS grows. This is what reported in detail in Parsa et al. (2023). The reduction scenario (Scenario 1) also decreased the agri-food GVA, and household costs compared to AD (Scenario 2), as discussed in this paper. What this sensitivity analysis reveals is that similar trends can be seen when growth rates are zero or negative. Reduction, when the growth rates are assumed zero (Scenario 3) or negative (Scenario 5) has consistently lower FEWC footprints, GVA, and costs compared to AD scenarios (Scenario 4 and 6), respectively. Moreover, the trend of each pair of scenario lines for positive growth (Scenario 1 and 2), zero growth (Scenario 3 and 4), and negative growth (Scenario 5 and 6) show identical patterns.

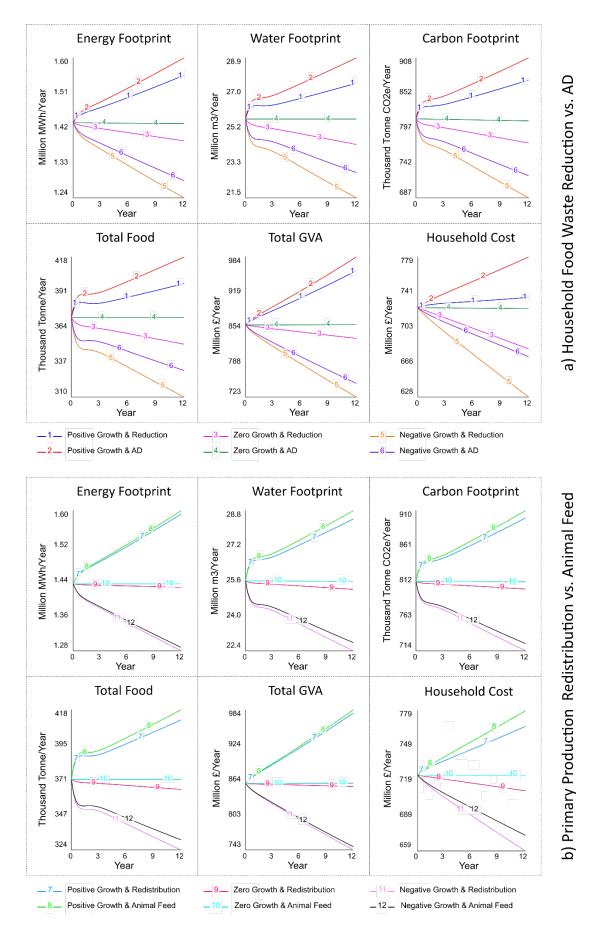


Figure A3.2. sensitivity analysis of key model conclusions.

Figure A3.2b illustrates similar pair of three growth scenarios for increased redistribution versus increased animal feed options in primary production sector. Due to the lower amount of food waste in primary production as well as lower economic and environmental impact of each tonne of food waste at this sector compared to the household, the divergence between each pair of growth scenarios (i.e., Scenario 7 vs. 8; 9 vs. 10; and 11 vs. 12) are not as high as household scenarios. Nevertheless, the scenarios (Scenario 7 to 12) confirm the patterns expressed above and indicate that redistribution is a more preferrable option than animal feed, regardless of the urban population and/ or HaFS growth rate.

A further detailed analysis of the dynamics in Figure A3.2 is out of scope of this sensitivity analysis. The shape and behaviour of the trendlines in each scenario are explained in Parsa et al. (2023) and the main text of the current study. The main text also discusses why reduction and redistribution scenarios are recognised as most favourable economic options when they have a negative impact on the GVA. The purpose of this sensitivity analysis was to test whether these key findings and policy recommendation of this study are applicable to a variety of urban circular economies with different growth rates. As the examples of household and primary production sectors illustrate, the policy recommendations of this study are not sensitive to the growth rate assumptions.

A3.4. Concluding Remarks of Model Validation

As described, the purpose of model validation is to discuss why and to what extent one can trust on the usefulness of the dynamics model presented in this study. Model validation, in this context, is aimed to establish 'legitimacy' (and not 'truth') by testing the model to ensure it does not contain known or detectable flaws.

In addition to the informal tests which were conducted during the modelling process, this validation discussion provided some clarification on the model boundary and structure and reported the results of an extreme conditions test and a sensitivity analysis. Overall, the results of these tests did not identify any flaws in the model that contradict the key findings and policy recommendations of the study. The test results also suggest that the modelling conclusions are applicable to other urban CEs with different food demand rates as illustrated in the sensitivity analysis. This validation discussion also provided the opportunity to reflect on the limitations of the model which are addressed above as well as the limitation section in the main text (Section 4.6).

All in all, it is important to mention that the discussion on model validation and research limitations in this section is not the only effort towards building trust to the model findings. The detailed reporting of modelling process, assumptions, and results in this document is explicitly towards enhancing transparency and facilitating the replicability and reproducibility of the model. As discussed in Parsa et al. (2023), adopting a group model building approach and engaging the FEW experts and stakeholders in the modelling process was also a critical step in building trust in the model among practitioners and policy makers. Thus, this formal validation section was another effort to boost the confidence in the model and showcase its usefulness while acknowledging the limitations of the study.

References for Appendices

AEA, 2012. 2012 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting.

Armstrong, B., King, L., Clifford, R., Jitlal, M., 2021a. Food and You 2: Wave 1 Key Findings.

- Armstrong, B., King, L., Clifford, R., Jitlal, M., 2021b. Food and You 2: Wave 2 Key Findings. https://doi.org/10.46756/SCI.FSA.DWS750
- Armstrong, B., King, L., Clifford, R., Jitlal, M., Ibrahimi Jarchlo, A., Mears, K., 2022a. Food and You 2: Wave 4 Key Findings. https://doi.org/10.46756/SCI.FSA.ZDT530
- Armstrong, B., King, L., Clifford, R., Jitlal, M., Ibrahimi Jarchlo, A., Mears, K., Parnell, C., Mensah, D., 2023a. Food and You 2: Wave 5 Key Findings. https://doi.org/10.46756/sci.fsa.fqq357
- Armstrong, B., King, L., Clifford, R., Jitlal, M., Mears, K., Parnell, C., Mensah, D., 2023b. Food and You 2: Wave 6 Key Findings. https://doi.org/10.46756/SCI.FSA.DJJ797
- Armstrong, B., King, L., Ibrahimi, A., Clifford, R., Jitlal, M., 2022b. Food and You 2: Wave 3 Key Findings. https://doi.org/10.46756/SCI.FSA.EJL793
- Audsley, E., Brander, M., Chatterton, J.C., Murphy-Bokern, D., Webster, C., Williams, A.G., 2009. How low can we go? An assessment of greenhouse gas emissions from the UK food system and the scope reduction by 2050.
- Bajzelj, B., McManus, W., Parry, A., 2019. Food waste in primary production in the UK An estimate for food waste and food surplus in primary production in the UK.
- Barlas, Y., 1996. Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev 12, 183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4
- BCC, 2020. The Population of Bristol. Bristol.
- BEIS, 2021a. Data tables 1 to 19: supporting the toolkit and the guidance. Valuation of energy use and greenhouse gas emissions for appraisal.
- BEIS, 2021b. 2019 UK greenhouse gas emissions: final figures data tables . Final UK greenhouse gas emissions national statistics: 1990 to 2019.
- BEIS, 2020a. Conversion factors 2020: full set [data file]. Greenhouse gas reporting: conversion factors.
- BEIS, 2020b. ECUK 2020: Electrical products data tables [data file]. Energy consumption in the UK.
- BEIS, 2020c. ECUK 2020: End uses data tables [data file]. Energy consumption in the UK.
- BEIS, 2020d. ECUK 2020: Consumption data tables [data file]. Energy consumption in the UK.
- Binns, R., Neil, H., 2023. Commercial Waste Collection Costs UK 2023 Guide [WWW Document]. URL https://www.expertmarket.com/uk/commercial-waste/commercial-waste-collection-costs (accessed 9.7.23).
- Boulding, A., Barker, E., 2021. Gate Fees 2019/20 Report: Comparing the costs of alternative waste treatment options.
- Business Waste Company, 2023. Commercial Waste Collection & Disposal Costs 2023 [WWW Document]. URL https://www.businesswaste.co.uk/commercial-waste-collection-costs-2023/ (accessed 9.7.23).

Byers, E.A., Hall, J.W., Amezaga, J.M., 2014. Electricity generation and cooling water use: UK pathways to 2050. Global Environmental Change 25, 16–30. https://doi.org/10.1016/J.GLOENVCHA.2014.01.005

Byrne, F., Crabbendam, N., Li, T., 2021. FareShare Footprint Methodology Report.

- De Menna, F., Davis, J., Bowman, M., Peralta, L.B., Bygrave, K., Herrero, L.G., Luyckx, K., McManus, W., Vittuari, M., van Zanten, H., Östergren, K., 2019. LCA & LCC of food waste case studies: Assessment of food side flow prevention and valorisation routes in selected supply chains. https://doi.org/10.18174/478622
- DEFRA, 2023a. Food statistics in your pocket.
- DEFRA, 2023b. Average Compound Feed Prices by Main Livestock Categories GB [data file].
- DEFRA, 2022a. Data for Figure 4.7 and Table 4.3 Production and income accounts for the United Kingdom in Real Terms [data file]. Agriculture in the United Kingdom 2021.
- DEFRA, 2022b. UK household purchases [data file]. Family food datasets.
- DEFRA, 2021a. WasteDataFlow Local Authority waste management data.gov.uk.
- DEFRA, 2021b. Agriculture in the United Kingdom 2020.
- DEFRA, 2020. Family Food Survey 2018/19.
- Department for Energy Security and Net Zero, 2023a. Average annual domestic electricity bills by home and non-home supplier [data file]. Energy Prices Domestic Prices.
- Department for Energy Security and Net Zero, 2023b. Average annual domestic gas bills by home and non-home supplier [data file]. Energy Prices Domestic Prices.
- Department for Energy Security and Net Zero, 2023c. Typical retail prices of petroleum products and crude oil price index [data file]. Energy Prices, Road Fuels and Other Petroleum Products.
- Desjardins, E., Van De Wiel, M., Rousseau, Y., 2020. Predicting, explaining and exploring with computer simulations in fluvial geomorphology. Earth Sci Rev 209, 102654. https://doi.org/10.1016/J.EARSCIREV.2018.06.015
- Environment Agency, 2013. Food and drink manufacturing water demand projections to 2050.
- Eurostat, 2022. National annual road transport by group of goods and type of transport.
- Fareshare, 2023. Policy Briefing: Tackling the Cost of Living Crisis Using England's Surplus Food.
- Fareshare, 2021. Fareshare Annual Report 2020/2021.
- FEDIAF, 2018. Product Environmental Footprint Category Rules (PEFCRs): Prepared Pet Food for Cats and Dogs. Brussels.
- Food Standards Agency, 2022. Food Hygiene Ratings Data [WWW Document]. URL https://ratings.food.gov.uk/open-data/en-GB (accessed 4.10.22).
- Forrester, J.W., Senge, P.M., 1980. Tests for building confidence in system dynamic models. TIMS Studies in the Management Sciences.
- Geneco, 2020. Food Waste and Sewer AD Treatment Data [private communication].

GFLI, 2021. Extensive list of environmental impacts [data file].

Gilbert, J., Siebert, S., 2022. ECN DATA REPORT 2022: COMPOST AND DIGESTATE FOR A CIRCULAR BIOECONOMY.

Gillick, S., Quested, T. (WRAP), 2018. Household food waste: restated data for 2007-2015.

- Hanson, C., Mitchell, P., 2017. THE BUSINESS CASE FOR REDUCING FOOD LOSS AND WASTE A report on behalf of Champions 12.3.
- Hess, T., Andersson, U., Mena, C., Williams, A., 2015. The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK. Food Policy 50, 1–10. https://doi.org/10.1016/J.FOODPOL.2014.10.013

isee systems, 2019. Stella Software.

- Jeswani, H.K., Azapagic, A., 2016. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Management 50, 346–363. https://doi.org/10.1016/J.WASMAN.2016.02.010
- Majid, A., Cardenes, I., Zorn, C., Russell, T., Colquhoun, K., Bañares-Alcantara, R., Hall, J.W., 2020. An Analysis of Electricity Consumption Patterns in the Water and Wastewater Sectors in South East England, UK. Water 2020, Vol. 12, Page 225 12, 225. https://doi.org/10.3390/W12010225

NCVO, 2022. UK CIVIL SOCIETY ALMANAC 2022.

ONS, 2023. Retail sales pounds data [data file].

- ONS, 2022. Annual Business Survey on the UK's Non-Financial business economy [data file]. Annual Business Survey (ABS).
- ONS, 2020. Table 2: 2018-based subnational principal population projections for local authorities and higher administrative areas in England.
- Open Data Bristol, 2020. Bristol Waste Monthly [data file].
- Parfitt, J., Woodham, S., Swan, E., Castella, T., Parry, A., 2016. Quantification of food surplus, waste and related materials in the grocery supply chain.
- Parker, W.S., 2020. Model Evaluation: An Adequacy-for-Purpose View. Philos Sci 87, 457–477. https://doi.org/10.1086/708691
- Parry, A., Harris, B., Fisher, K., Forbes, H., 2020. UK progress against Courtauld 2025 targets and UN Sustainable Development Goal 12.3. Banbury.
- Parsa, A., Van De Wiel, M., Schmutz, U., Fried, J., Black, D., Roderick, I., 2023. Challenging the food waste hierarchy. J Environ Manage 344, 118554. https://doi.org/10.1016/J.JENVMAN.2023.118554
- Parsa, A., Van De Wiel, M.J., Schmutz, U., 2021. Intersection, interrelation or interdependence? The relationship between circular economy and nexus approach. J Clean Prod 127794. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127794
- Pruyt, E., 2013. Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Dynamic Complexity.

- Richter, C.P., Stamminger, R., 2012. Water Consumption in the Kitchen A Case Study in Four European Countries. Water Resources Management 26, 1639–1649.
- Salemdeeb, R., zu Ermgassen, E.K.H.J., Kim, M.H., Balmford, A., Al-Tabbaa, A., 2017. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J Clean Prod 140, 871–880. https://doi.org/10.1016/J.JCLEPRO.2016.05.049
- Simpson, B., Scholes, P., 2020. Cost Benefit Analysis Tool for the Food Waste Recycling Industry.
- Slorach, P.C., Jeswani, H.K., Cuéllar-Franca, R., Azapagic, A., 2019. Environmental sustainability of anaerobic digestion of household food waste. J Environ Manage 236, 798–814. https://doi.org/10.1016/J.JENVMAN.2019.02.001
- Statista, 2022. Market value of pet food in the United Kingdom (UK) in 2022, by animal type [WWW Document]. URL https://www.statista.com/statistics/468821/pet-food-market-value-united-kingdom-uk-by-animal-type/ (accessed 9.8.23).
- Statista, 2020. Market volume of pet food in the United Kingdom (UK) in 2018, by animal type [WWW Document]. URL https://www.statista.com/statistics/468809/pet-food-market-volumeunited-kingdom-uk-by-type/ (accessed 9.8.23).
- Sterman, J.D., 2000. Business dynamics: systems thinking and modeling for a complex world. IrwinMcGraw-Hill, New York.
- Tolvik, 2020. UK Energy from Waste Statistics-2019.
- Tripadvisor, n.d. Restaurants in Bristol [WWW Document]. URL https://www.tripadvisor.co.uk/Restaurants-g186220-Bristol_England.html (accessed 11.7.22).
- Uttamangkabovorn, M., Prasertsan, P., Kittikun, A.H., 2005. Water conservation in canned tuna (pet food) plant in Thailand. J Clean Prod 13, 547–555. https://doi.org/10.1016/J.JCLEPRO.2003.12.003
- Wessex Water, 2023. About your bill Your charges explained.
- WRAP, 2022. Resource Action Fund Food Grants.
- WRAP, 2021. Kerbside Costing Tool.
- WRAP, 2020. Food surplus and waste in the UK-key facts.
- WRAP, 2013. Overview of Waste in the UK Hospitality and Food Service Sector An overview of waste in the UK hospitality and food service sector.