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Abstract 
 

The field of system dynamics operates fundamentally within the realm of causality. However, ambiguity 
surrounding the colloquial definition of "causal" can make concluding causality from experiments difficult to 
interpret and a point of contention. When exactly is causal inference justified, and what role does correlation 
play? We examine this problem using principles of causal experimental design from the physical sciences 
while acknowledging the inherent indeterminacy in the social sciences that makes these experiments distinct. 
Jay Forrester provided insight into the role of integrals in specifying causal direction over time with the quote, 
"Nature only integrates." Building on this understanding, we offer a framework for social scientists to determine 
when causal inference is justified and provide a mathematical representation of Causality. 

 

Introduction 
 

“The epistemology of causation, and of the scientific method more generally, is at present in a productive state 
of near chaos”(Cook and Campbell, 1979). In 2024, the situation has not noticeably improved. The causal 
inference problem is illustrated by the following passage in the general public-facing Wikipedia, 2024, listed 
under the heading of Causal Inference:  

 

“Despite the advancements in the development of methodologies used to determine causality, significant 
weaknesses in determining causality remain. These weaknesses can be attributed both to the inherent 
difficulty of determining causal relations in complex systems but also to cases of scientific malpractice.  
 

Separate from the difficulties of causal inference, the perception that large numbers of scholars in the social 
sciences engage in non-scientific methodology exists among some large groups of social scientists. Criticism 
of economists and social scientists as passing off descriptive studies as causal studies are rife within those 
fields.”  
 

Objective  
 

A fundamental problem in defining and determining causality still exists, as Granger (1989: 144) stated, “there 
is some disagreement about the use of the word cause,” This paper aims to develop and present a standard 
reference for drawing conclusions on causal inference in the social sciences. 

 

This discussion will demonstrate why certain classical arguments concerning causal inference are invalid and 
misleading. A solution will be developed and presented in an attempt to substantially improve our ability to 
draw valid causal inferences from empirical research. This should facilitate greater clarification and integration 
of previous and future empirical work, resulting from an improved understanding of research limitations, and as 
a consequence, draw stronger causal conclusions.  

 

Premises of Causal Inference in the Social Sciences 
 

We present six fundamental premises in determining causal inference in an experiment:  



 

Premise 1: Knowledge advances through the scientific method;.knowledge from causal inference progresses 
through continuous approximations and experiments(Lenzen, 1954; Feynman, 1963). 
 

Premise 2: System structure is a functional relation between variables which characterize phenomena 
(Lenzen, 1954). 
 

Premise 3: Causal description requires specifying a system structure that moves through temporal system 
states, where discrete events drive the transition from an initial state to a successor state. (Lenzen, 1954) 
 

Premise 4: For causal inference, functional relations within system structure must specify time and the 
direction of causality (Forrester, 1988). 
 

Premise 5: Causal inferences can be falsified, but not definitively proven true (Popper, 1959). 

 

Premise 6: All causal inferences have inherent indeterminacy, preventing complete control over threats to 
validity (Stanford, 2021; Guillen, 1983)  
 

The premises above constitute an axiomatic basis for deducing a solution to the problem of determining when 
causation can be inferred. This creates an improved basis for arguing the contribution of empirical results 
incorporating correlation and/or causation, reducing their associated uncertainties. 

 

In this paper we first discuss the ideas behind each of these premises, then from these premises we define 
Tiers of Causal Inference that are associated with different experimental designs, and finally we draw 
conclusions on the contribution of different experimental designs in terms of their contribution to advancing 
knowledge. 

 

Premise Descriptions 
 

Premise 1: Knowledge advances through the scientific method;.knowledge from causal inference progresses 
through continuous approximations and experiments. 

 

“We look for a new law by the following process. First, we guess it. Then we compute the  consequences of the 
guess to see what would be implied if this law that we guessed is right. Then we compare the result of the 
computation to nature, with experiment or experience, and compare it directly with observation to see if it 
works. If it disagrees with the experiment, it is wrong. In that simple statement is the key to science” (Feynman, 
1965; p156).  
 

Premise 2: Causality exists within a system structure, where system structure is a functional relation between 
variables which characterize phenomena (Lenzen, 1954; p13).  

 

A criterion of causality is the capacity of a functional relation to serve for the production of results of experience 
(Schlick, 1931; Lenzen, 1954). That functional relations are reproducible in nature or by experimentation is the 
basis of the value of the principle of causality (Lenzen, 1954; p19, Feynman, 1963). 

 

The demarcation between cause and effect: the continuity problem. The continuity problem is one of identifying 
the point of demarcation between cause and effect. Russell (1953: 389) argued that this problem is 
insurmountable based on the following: 



 

 “…if the cause is a process involving change within itself, we shall require (if causality is universal) causal 
relations between its earlier and later parts; moreover it would seem that only the later parts can be relevant to 
the effect, since the earlier parts are not contiguous to the effect, and therefore (by definition) cannot influence 
the effect. Thus, we shall be led to diminish the duration of the cause without limit, and however much we may 
diminish it, there will still remain an earlier part which might be altered without altering the effect, so that the 
true cause, as defined, will not have been reached, for it will be observed that the definition excludes plurality 
of cases.” “This dilemma, therefore, is fatal to the view that cause and effect can be contiguous in time; if there 
are causes and effects, they must be separated by a finite time-interval.” 

 

The finite time interval referred to in this argument is countered by the time-partition measurement argument in 
integral calculus, a pragmatic solution used in the System Dynamics methodology (Forrester, 1961). “In the 
mathematical description of motion we may describe the causal process by an integral law which expresses 
velocity or distance as a function of time”(Lenzen 1954; p8).That is, integrals contain the sum of “earlier parts” 
over time (memory) and this means the cause can be partitioned into accumulating, discrete steps which 
provide the basis for a demarcation of the effect in calculations. 

 

Premise 3: Causal description of a phenomenon requires specification of states of a system and expression of 
a functional relation between them. Discrete events occur between initial states that lead to succeeding states. 
From an initial state of the system one can infer the properties of a succeeding state (Lenzen, 1954; p66). 

 

Knowledge from causal inference advances in an unending series of successive approximations. Popper 
viewed progress as a matter of finding corroborated theories exhibiting increasing explanatory and predictive 
power. Scientific progress can be accounted for in terms of the increasing approximation to the truth of our 
theories (Popper, 1963).  
 

It is possible progressively to isolate systems and processes. The control of conditions under which a causal 
law is exemplified proceeds by successive approximation. In preliminary experiments one must presuppose 
that the conditions are constant and thereby obtained in approximate law. With the aid of approximate laws 
one can then define conditions of an experiment more precisely, or correct for disturbing the influences, and 
thus determine a law to a higher order of approximation (Lenzen, 1938: p 41). 
 

The status of a law may change in the development of science. A law which originates as a  generalization 
from experience may be transformed into a convention that expresses an implicit  
definition of the concepts it involves (Lenzen, 1938: p 44). 
 

Premise 4: Causal description of a phenomenon requires specification of states of a system and expression of 
a functional relation between them. Discrete events occur between initial states that lead to succeeding states. 
From an initial state of the system one can infer the properties of a succeeding state (Lenzen, 1954; p66). The 
functional relation must specify time and the direction of causality (Forrester, 1988). 

 

Events. Causal inference requires temporal dynamics in the data; a system with entirely stationary variables is 
not causal. Causal inference requires dynamics (events); variance over time in variables comprising functional 
relation, between states. 

 

Russell’s mathematical function logic: the causal-symmetry problem. Perhaps the most significant obstacle to 
valid causal inference is Bertrand Russell’s argument that “causality” is a meaningless, or erroneous, term. 
Mathematical equations may be arranged such that any variable in a given function can be expressed in terms 
of the other variables in the function, and as a consequence, assuming one causal order would contradict the 



fundamental mathematical function-order symmetry premise. Accordingly, Russell (1953) stated, “No doubt the 
reason why the old ‘law of causality’ has so long continued to pervade the books of philosophers is simply that 
the function is unfamiliar to most of them, and therefore they seek an unduly simplified statement.” 

 

Forrester’s Nature Only Accumulates: specifying the direction of causality.Jay Forrester (1988) argues that the 
solution to the causal symmetry problem is in understanding that causal inference, and the direction of 
causality, is determined by integral functions, not differential equations, in specifying functional relations. 
Forrester (1988) explains: 

 

“We focus on systems in the context of integrations, not in the context of differential equations, or 
differentiation. And this, I think, is very fundamental. Differentiation, I suggest to you, is a figment of the 
mathematician's imagination. It's been very hard to explain to students. And the reason that it's hard to explain 
is it doesn't exist. I defy you to find anywhere in nature where nature differentiates. Nature only integrates. 
Nature only accumulates. There are no processes of differentiation in the natural or social world. And you see 
this immediately when someone tries to solve differential equations. Going back to Vannevar Bush's differential 
analyzer-- it wasn't a differential analyzer. It was built out of six integrators. If you want to put differential 
equations on a digital computer, you always reshape them into integrations. This is important. It's not just a 
side issue. Because focusing on real life through differential equations and differentiation has an insidious 
effect on many students. It causes them to get an ambiguous, or even a reversed sense of causality. They do 
not see what is actually happening in the system or what the direction of causality is. I've had students argue 
that there is no difference between saying that the water out of the faucet is filling the glass as against saying 
the rising water in the glass is forcing the water to flow. Now, I gave you a diagram before where there is a 
control system and the rising water controls the flow rate. But if you just look at a steady flow rate, you don't 
properly look at it as something where it is the rising water that causes the flow. It is the flow, I suggest, that 
causes the rising water. Unless you get that direction of causality firmly in mind, and so firmly that you can see 
it in all sorts of physical world and social world situations, then there is a great deal of opportunity for getting 
things backward.”  

 

A causal axiom states that stationary variables are not causal (MacIver, 1942; Nagel, 1951; Feigl, 1953; 
Russel, 1953; Lenzen, 1954). Accordingly, when variables in a given equation are stationary, the function is 
structural (for example, in the sense of static equilibrium), as opposed to causal. That is, the mathematical 
function describes the relative positions, or states, of the variables when the system is in equilibrium. Because 
change is absent, one variable does not cause another, so the order of representation in the equation is a 
matter of convenience, as long as the relationships are preserved. However, when one of the variables is 
changing, the relationships are causal and dictated by the temporal order of the changes, the variable that 
changes dictates the value that the other variable must assume in order to maintain the functional structure. 
Lenzen (1954: p13) states, “We have concluded that causality is uniformity of sequence of phenomena; in 
more precise terms, causality is the functional relation between variables which characterize phenomena.” 
Accordingly, knowledge of the static structure is important as it allows prediction of the future state of 
equilibrium. Thus, a distinction is recognized such that functional structure represents variables at rest, or at a 
single point in time, and causal structure represents only variables in motion over time. Thus, correlations 
capture the statistical relations between variables in a single point in time; correlations map the structure of the 
system. When data is drawn from a single point in time (common with nomothetic research designs), there 
exist no temporal dynamics in the measurement by definition and thus there exists no basis for causal 
inference. This holds for all types of single observation over time data collection; for example, data reported as 
an average of three years of performance is still a single point in time measurement. Many discrete events and 
corresponding dynamics may be occurring within a single data point in time, however the lack of subsequent 
data observed over time precludes the prediction and observation of a future state, denying causal inference. 

 



Premise 5:We cannot prove causal inference to be true, however we can prove it to be false (see Premise 1); 
the asymmetry between confirmation and falsification (Popper, 1959). 

 

In the social sciences it is not possible to control for all possible threats to valid causal inference. All of our 
theories are wrong, but many are useful. Causal inference can exist with a high degree of confidence but is 
never 100%. 

 

Premise 6: Indeterminacy is inherent in all causal inference; we can never achieve a complete causal 
explanation and control for all threats to validity. 

 

However, causal inference can have various degrees of validity in use, if not in precision.(reference) “We must 
never forget that the truths of political economy are truths only in the rough: they have the certainty, but not the 
precision, of exact science (Mill, 1871; 428).” 

 

Indeterminacy - Heisenberg uncertainty.The indeterminacy problem concerns the extent to which causal 
knowledge is possible, or feasible. Two fundamental theories of indeterminacy will be emphasized here; 
Heisenberg indeterminacy and Riemann manifolds. Heisenberg indeterminacy, also referred to as the 
uncertainty principle, argues that human knowledge of causality is ultimately limited, absolutely, by our ability 
to measure in quantum physics experiments (Feynman, 1963; Popper, 1982a; 1982b). The argument stems 
from theoretical physics research on the structure of the atom, specifically, from attempts to predict the path of 
an electron. Heisenberg noted that to conduct an experiment, two fundamental, simultaneous measurements 
are necessary to “observe” the electron to discover its causal path; measurement of the position and the 
momentum. He concluded that both measurements could not be made simultaneously, with arbitrarily high 
accuracy. At the level of the electron, the act of measuring either position or momentum interferes with the 
simultaneous measurement of the other (Heisenberg, 1953, 1976). The sole test of the validity of any idea is 
experiment(Feynman, 1963). Thus, by experiment, the most knowledge that can be achieved is only a 
probability estimate of the electron’s simultaneous position and momentum (Heisenberg, 1953; Feynman, 
1963). Here we accept this idea as an axiom, in a most simple form, to conclude that causal knowledge is 
always limited by the type and accuracy of measurement in the experiment. Of course, in science it was 
known, well before Heisenberg, that measurement is a limiting factor in causal inference but Heisenberg’s 
indeterminacy argument indicates that this limit can never be reduced or eliminated by improvements in 
experimental designs on electrons; this limit to knowledge is absolute (Feynman, 1963). Thus, we credit 
Heisenberg here for defining the ultimate, limiting case. 

 

Indeterminacy - The Riemann manifold problem.The manifold problem concerns the intractable nature of 
determining “absolutely” the causal structure of any open system in the social sciences. The problem is well 
presented by Guillen (1983; 85), “According to Riemann, mathematical dimension need not refer only to 
sensible space; it could just as logically refer to purely conceptual spaces, which he named manifolds.” 
“Thought of in this way, a human is a manifold of an extraordinary number of dimensions – some might even 
say an infinite number.” “So pity the social scientists. One of the reasons their track record looks so miserable 
compared to that of the physical scientists is simply because their job is much more difficult, and perhaps even 
impossible.” The implication is that an infinite number of measures would be necessary to “observe” each 
dimension and determine the causal structure. Here we accept the premise of the manifold problem and argue 
the resolution is found in incorporating economy in sciencearguments of Mach (1919), Pareto (1898), Poincare 
(1905), Popper (1959; 1983; 1989), and Forrester (1961); we measure the fewest variables possible to explain 
the phenomenon in a manner that is incomplete, but useful to the actual decision maker solving the problem. 

 

Indeterminacy - Action at a distance: the contemporaneous causality problem. The contemporaneous causality 
problem concerns the assumption that causes and effects may occur simultaneously (Hicks, 1979). Einstein 
argues that contemporaneous causality violates the special theory of relativity by implying “action at a 



distance” (Popper, 1982b); given that a variable which changes dictates the values of the other variables must 
assume in order to maintain a given functional structure, the adaptation cannot take place at a speed greater 
than the speed of light. Thus, some interval of time is necessary to allow the causal chain of events to take 
place. The problem of contemporaneous causality is nullified in the social sciences, however, by making 
explicit the time interval represented in each data point measurement over time. This makes explicit the 
uncertainty inherent in the structure of the data that limits, absolutely, any causal knowledge that can be 
inferred (Heisenberg, 1958). For example, data measured annually does not allow the causal inference of 
effects that resolve in weeks or months. 

 

Indeterminacy - Feyerabend’s Against Method. Given the extent of indeterminacy in science, Feyerabend 
argued for intellectual, methodological anarchy. The argument is that what science actually needs is pluralism 
and unrestrained creativity. That is, rules of science can become obstructive dogma, harmful; too narrow and 
too stifling of differing perspectives that are (perhaps) needed to achieve a breakthrough understanding of a 
phenomenon given the deep underlying complexity of the system (Feyerabend, 1987, 1993). Hence, from 
Premise 1 we include, knowledge from causal inference progresses through continuous approximations and 
experiments(Lenzen, 1954).  

  



Tiers of Causal Inference  
Tiers of causal inference efficacy include Premises 1-4.  

 

Tier 0 1 2 3 4 

Causality Level No causal inference Quasi causal 
inference 

Foundational causal 
inference 

Sequential causal 
inference 

Complex causal 
inference 

Experimental 
Designs 

Cross-Sectional 
Studies 
(Single Observation) 

Quasi-experimental 
design; one-shot 
case study 

Experimental design 
with required 
minimum structure; 
pretest:posttest 
design 

Bivariate longitudinal 
studies and time 
series analysis 

Multivariate 
longitudinal studies 
and time series 
analysis 
 

Experimental 
Design Diagram* 

O X O O X O O O O X O O O O O O X O O O  

Temporal 
Relationship 

Observations are 
from a single point 
in time. No 
temporal dynamics 

Single dynamic 
event occurs prior 
to observation 

Single dynamic 
event occurs 
between 2 
observed time 
points 

One or more 
dynamic event(s) 
occur over multiple 
observed time 
points 

One or more 
dynamic event(s) 
occurs over 
multiple observed 
time points, 
encompassing 
integrals 

Short vs Long-
Term Effects 

No No No Yes Yes 

Delays No No No Yes Yes 

Feedback No No No No Yes 

Insight 

Correlational 
mapping of non 
temporal functional 
relations of system 
structure 

 
Event-outcome 
connection with no 
temporal dynamics 

Causal outcome 
specification of 
temporal system 
structure without 
causal process 
mechanics 

Causal outcome 
specification of 
temporal system 
structure with delay 
causal process 
mechanics 

Causal outcome 
specification of 
temporal system 
structure with delay 
and feedback causal 
process mechanics 

Example Method 
Regression analysis, 
Correlational analysis Natural experiments 

True experiment 
when adding 
randomized selection 
and a control group. 

Granger causality 
System dynamics, 
Agent-based 
modeling 

 

*O = Observation, X = Event 
  



The Mathematical Essence of Causality 
 
A system is comprised of state variables (stocks in System Dynamics) and control variables (auxiliary 
variables). State variables are quantities that represent the current state of a dynamic system at any given time 
and only state variables hold their temporal value across time. Therefore, direct causality, at its most 
fundamental level, can only occur between state variables. 
 
Consider the system of differential equations: 
 

𝑑𝑥

𝑑𝑡
 =  𝑓(𝑥, 𝑢, 𝑡) 

𝑑𝑦

𝑑𝑡
 =  𝑔(𝑥, 𝑦, 𝑣, 𝑡) 

 
where 𝑢 and 𝑣 are sets of control (auxiliary) variables. 
 
Taking the integral of both sides, we get: 

𝑋(𝑡)  = ∫ 𝑓(𝑥, 𝑢, 𝑡)𝑑𝑡 

𝑌(𝑡)  = ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡 

where 𝑋(𝑡) and  𝑌(𝑡)  represent state variables. 
 
In a system, all control (auxiliary) variables seek to define the functional relationships between two or more 
state variables, and therefore can be classified as ancillary causal. In the natural world, it may be impossible to 
create a fully complete system of only state and ancillary variables. Therefore, we use single time point static 
approximations or static snapshots as substitutes for state variables. These approximations are incorporated 
into our functional relationships to simplify complex systems, making them human-understandable and limiting 
the scope of our system models. Without these simplifications, most system models would indefinitely increase 
in scope until they attempt to represent a complete physical model of nature. 
 
Causality is defined within these functional relationships as:  

𝑋  causes  𝑌  ⇒  𝑋(𝑡) = ∫ 𝑓(𝑦, 𝑢, 𝑡)𝑑𝑡
𝑡2

𝑡1
  causes  𝑌(𝑡) = ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡

𝑡2

𝑡1
 

by ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡, the functional relationship that connects 𝑋(𝑡) and 𝑌(𝑡)  

 
 The directionality of causality is ingrained in the functional relationships between 𝑡1 and 𝑡2 as time progresses 
forward. 
 

Important Notes: 
 

1. Time Granularity Consistency: Causality can only occur between state variables with the same time 
granularity 𝛥𝑡. Additionally, this means 𝛥𝑡‘s in the same differential equation must represent the same 
time interval. 
 

2. State Variable Order Consistency: Causality can only occur between state variables with either the 
same order, or a matched order through the functional relationship. 

 
3. Self-Causality and Self-variation: A single state variable cannot be self-causal, but can vary over time 

with respect to itself if no other state variables are involved. 
 



Self causality implies 𝑋(𝑡) is a function of 𝑋(𝑡), rewritten as 
𝑑𝑥

𝑑𝑡
 =  𝑓(𝑥, 𝑢, 𝑡) 

This describes the internal behavior of 𝑋 over time rather than a causal relationship between interacting 
state variables. 

 
4. Bi-Causality: 2 state variables can cause each other if: 

𝑋(𝑡)  =  ∫ 𝑓(𝑥, 𝑦, 𝑢, 𝑡)𝑑𝑡 

𝑌(𝑡)  =  ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡 

In this case: 

𝑋  causes  𝑌  ⇒  𝑋(𝑡) = ∫ 𝑓(𝑥, 𝑦, 𝑢, 𝑡)𝑑𝑡
𝑡2

𝑡1
  causes  𝑌(𝑡) = ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡

𝑡2

𝑡1
  by ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡 

and 

𝑌  causes  𝑋  ⇒  𝑌(𝑡) = ∫ 𝑔(𝑥, 𝑦, 𝑣, 𝑡)𝑑𝑡
𝑡2

𝑡1
  causes  𝑋(𝑡) = ∫ 𝑓(𝑥, 𝑦, 𝑢, 𝑡)𝑑𝑡

𝑡2

𝑡1
  by ∫ 𝑓(𝑥, 𝑦, 𝑢, 𝑡)𝑑𝑡 

 
5. Multi-Causality or Component-Causality: Multiple state variables can all be causes if: 

 𝑋(𝑡)  = ∫  𝑓(𝑥, 𝑢, 𝑡)𝑑𝑡 

 𝑌(𝑡)  =  ∫ 𝑔(𝑦, 𝑣, 𝑡)𝑑𝑡 

 … 

𝑍(𝑡)  =  ∫ ℎ(𝑧, 𝑤, 𝑡)𝑑𝑡 

and 

𝐴(𝑡)  =  ∫ 𝑗(𝑎, 𝑥, 𝑦, . . . , 𝑧, 𝑡)𝑑𝑡 

In this case: 
 𝑋, 𝑌, …, 𝑍  cause 𝐴  ⇒   

𝑋(𝑡) = ∫ 𝑓(𝑥, 𝑢, 𝑡)𝑑𝑡
𝑡2

𝑡1
,  𝑌(𝑡)  =  ∫ 𝑔(𝑦, 𝑣, 𝑡)𝑑𝑡

𝑡2

𝑡1
, …, 𝑍(𝑡)  =  ∫ ℎ(𝑧, 𝑤, 𝑡)𝑑𝑡  

𝑡2

𝑡1
cause   

𝐴(𝑡)  =  ∫ 𝑗(𝑎, 𝑥, 𝑦, . . . , 𝑧, 𝑡)𝑑𝑡
𝑡2

𝑡1
  by  ∫ 𝑗(𝑎, 𝑥, 𝑦, . . . , 𝑧, 𝑡)𝑑𝑡 

 
6. Time Intervals: The above causality statements can be modified for time interval bounds if necessary, 

eg. Step Functions or Switching Functions.  
 

between 𝑡1 and 𝑡2 
 

7. Systems of Causality: Since most systems are complex, causality can run between many state 
variables all at once. These causality statements can be expressed as combinations of the above. 
(refer to the definitions above) 

 

Conclusions 
 

Correlation is not causation. Correlations, independent of experimental design, never allow causal inference. 
Causal inference requires an experimental design that meets the Premises (above). It is the experimental 
design that gives meaning to correlations; without knowledge of the experimental design, the correlation does 
not allow inference. “Good experimental design is separable from the use of statistical tests of significance.” 
(Campbell & Stanley, 1963). Thus, the statement “correlation is not causation” communicates a 
misunderstanding of the role of statistics in causal inference. 

 



Correlation is not required for causal inference. As described in Premise 2; Causal description of a 
phenomenon requires specification of states of a system and expression of a functional relation between them. 
Discrete events occur between initial states that lead to succeeding states. The functional relation must specify 
time and the direction of causality (Forrester, 1988). Thus, we can define an experimental design that meets 
the absolute minimum requirements as follows:  

 

Observation, followed by an event, followed by another observation. This design may be diagrammed as 
(Campbell & Stanley, 1963):  

 

O X O 

 

If the future state is observed to conform to the prediction of specified functional relation (hypothesis), having 
an event that altered the system from the initial state, then the experiment meets the minimum criteria for 
causal inference. Thus, statistics are not required for casual inference. An example is the test of Einstein’s 
Theory of General Relativity. Einstein argued that, as a test, we should be able to see a slight alteration in the 
position of stars lined up on either side of the sun during a solar eclipse; event = the deflection of light by the 
Sun. In 1919 Arthur Stanley Eddington, an English astronomer and mathematician, and The Astronomer Royal 
of England, Frank Watson Dyson conducted an experiment by observing the positions of stars before and then 
during a total solar eclipse, predicting that when the Moon blocks the Sun’s light it might be possible to 
photograph the eclipse and record the positions of stars whose light passes near the Sun. Measurements 
(observations) were recorded using photographs, to determine to what extent the stars were out of position, 
and whether it accorded with Newtonian theory, or with Einstein, or neither. The results were consistent with 
Einstein’s argument from General Relativity. This experimental design allowed causal inference, and this 
experiment did not use statistics. Adding a control group comparison helps minimize threats to internal validity, 
especially in the social sciences, but is not required for causal inference. 

 

In general, in terms of threats to internal and external validity of casual inference, Premise 7 is required; 
successive experiment replications will reveal weaknesses in validity. The social sciences do not currently 
have a strong record of publishing replications. Rather, authors are expected to build immediate confidence in 
their projects by conducting their experiments on a large number of organization/individuals and use statistics 
on that sample size to justify confidence in the results. This approach has the benefit of speed in building 
confidence, but at the expense of rigor; testing by non-affiliated authors in independent settings and contexts. 
So, we conclude that improving publishing opportunities for causal inference experiment replications would be 
strategic in strengthening these scientific conclusions and overcoming the public outcry for rigorous and 
reliable results as mentioned in our introduction. 

 

Any experimental designs that meet the requirements of Premise 2 allow causal inference. For example:  

 

O1O2O3O4 X O5O6O7O8 (Time series experimental designs meet the criteria for causal inference) 

 

In contrast, any experimental design that does not meet the requirements of Premise 2 do not allow causal 
inference. This is true regardless of any statistical or mathematical methodology applied in the experiment. For 
example, the following quasi-experimental design example described in Campbell & Stanley, 1963 does not 
allow causal inference: 

 
X O (Pre-Experimental Designs are missing an observation of the initial state)  
 



In the case above, for example, it becomes clear why causal inference is not allowed; with only one point in 
time measured, the hypothesis is prevented from specifying a functional relation between the initial state and 
the subsequent state. 

 

    X O  (Pre-Experimental Designs are missing an observation of the initial state)  

—-—-  

O  (adding a proxy for observing the initial state; perhaps a group of similar firms)  

 

Quasi-Causal Inference. In the case of Pre-Experimental designs, even with experimental design modifications 
such as adding a proxy for observing the initial state (see above), the design fails to meet the criteria for causal 
inference, however, the outcomes of this approach may provide strong indicators of causality. Accordingly, we 
follow the example of Campbell and Stanley (1963) and Cook and Campbell (1979) and conclude that these 
designs are designated “Quasi-Causal Inference.”  

 

Contribution to social science in causal inference occurs when: 

1. The model (the expression of the functional relation between states) replicates real behavior with 
enough precision to be useful in solving the problem. 

2. The model provides deeper (or different) insight, than previously published models, in understanding 
the system’s behavior, or models, but with a significantly less complex model. 

3. The model provides a similar level of insight, or even less insight, as compared to previously published. 

 

Finally, we present the following definitions to help clarify these arguments and discussions:  

 

Definitions  
 

Causality: Causal description of a phenomenon requires specification of states of a system and expression of 
a functional relation between them (Lenzen, 1954; p66). In the case of causality, the functional relationship 
must be event based with respect to time. 

 

System State: The set of observations for all variables in the system at a specific point in time. 

 

System Structure: The set of all functional relationships between the variables that define the system. 

 

Static System Structure: System structure in which the functional relationships are time-independent and do 
not contain temporal dynamics. 

 

Temporal System Structure: System structure in which the functional relationships are time-dependent, 
contain directional temporal dynamics. 

 

Temporal Dynamics: A set of System States can only exhibit temporal dynamics if it possesses a temporal 
system structure and progresses through time according to that structure. 

 

Specification of States: From an initial state of the system one can infer the properties of a succeeding state 
(Lenzen, 1954; p66). 

 

Expression of a functional relation between states. System structure is a functional relation between 
variables which characterize phenomena (Lenzen, 1954; p13, Mach, 1919). A criterion of causality is the 
capacity of a functional relation to serve for the production of results of experience (Schlick, 1931; Lenzen, 



1954). That functional relations are reproducible in nature or by experimentation is the basis of the value of the 
principle of causality (Lenzen, 1954; p19, Feynman, 1963). Direct Functional Equivalency: Causality cannot be 
determined by defining a direct equivalency function between 2 states without an event. Weight in lbs is a 
conversion of weight in kg, so lbs cannot cause kg. 

 

Temporal Dynamics: Causal inference requires dynamics; variance over time in variables comprising 
functional relation, between states. 

 

Discrete Events: Discrete events are happenings in time. Discrete events occur between initial states that 
lead to succeeding states. An event is a shock to the system of relatively short duration, the shortness 
depending on the precision with which one intends to describe the phenomena (Lenzen, 1938). 

 

Statistical Causality: The causal connection of system states where the probability of connection exhibits 
statistical regularity. There is a finite probability that a result will be observed which is characteristic of one 
component state, and a finite probability that the result will be characteristic of another component state. If the 
system is initially in one of the component states, the result of an observation is predictable with certainty 
(Lenzen, 1938: p57). 

 

Cross-Sectional Correlation: A statistical description of the structure of a system state; an expression of 
structural relation between variables that exhibit statistical regularity. 
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