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Abstract
Deep learning provides a set of techniques for detecting complex patterns in data. However, when
the causal structure of the data-generating process is underspecified, deep learning models can be
brittle, lacking robustness to shifts in data-generating distributions. In this paper, we turn to loop
polarity analysis as a tool for specifying the causal structure of a data-generating process, in order
to encode a more robust understanding of the relationship between system structure and system
behavior within the deep learning pipeline. We use simulated epidemic data based on an SIR
model to demonstrate how measuring the polarity of the different feedback loops that compose a
system can lead to more robust inferences on the part of neural networks, improving

out-of-distribution performance and infusing a system-dynamics-inspired approach into the deep
learning pipeline.

Introduction

The term “deep learning” refers to a set of algorithms and computational architectures for
estimating unknown functions from data. These algorithms and architectures have powered significant
advances in artificial intelligence, enabling Al applications that display human-level abilities in tasks
ranging from image recognition (Le et al., 2013) to predicting the next word in a natural language
sentence (Brown et al., 2020). While deep learning encompasses a wide variety of different techniques, at
their core, deep learning aims to use training data to estimate a vector of weights, which are then used to
parameterize a function that approximates a data-generating process. In other words, deep learning aims
to use data to make inferences about the structural features of reality that generate those data.

Despite their success in many domains, applications of deep learning are also notoriously brittle.
When deployed in a setting that is sufficiently different from the setting in which their training data were
generated, the accuracy of deep learning algorithms can severely, if not completely, deteriorate
(Goodfellow et al., 2016; Hendrycks and Dietterich, 2019; Barbu et al., 2019). D’Amour et al. (2020)

argue convincingly that this brittleness is especially liable to occur in cases where a deep learning pipeline



is underspecified. By a “deep learning pipeline,” we mean a sequence of human decisions that lead a
real-world problem to be understood, articulated, and putatively solved using the techniques of deep
learning. An underspecified deep learning pipeline is one in which the problem that is formulated and
solved is one with multiple solutions. As D’Amour et al. put it:

In general, the solution to a problem is underspecified if there are many distinct solutions that

solve the problem equivalently. For example, the solution to an underdetermined system of linear

equations (i.e., more unknowns than linearly independent equations) is underspecified, with an
equivalence class of solutions given by a linear subspace. In the context of ML [‘machine
learning,” which we take here to be synonymous with ‘deep learning’], we say an ML pipeline is
underspecified if there are many distinct ways for the pipeline to produce a predictor that satisfies

the pipeline’s validation criterion equivalently, even if the specification of the pipeline (e.g.,

model specification, training data) is held constant (2020, p. 3).

When the deep learning pipeline yields a problem that lacks a unique solution, deep learning algorithms
will typically only identify one of these solutions. This, in turn, renders those algorithms liable to generate
a putative model of the data-generating structure that is not isomorphic to or representative of the “ground
truth” data-generating structure. When such a model is deployed in a setting beyond the training data, its
predictions are liable to be inaccurate or misguided, because the model ultimately lacks fidelity to the true
data-generating process.

The field of system dynamics has developed its own vocabulary and techniques for understanding
and representing data-generating structure. Here, we focus specifically on causal loop diagrams. Causal
loop diagrams are composed of three basic elements: nodes, connections, and feedback loops
(Barbrook-Johnson and Penn 2017, p. 48). Nodes represent variables within the data-generating structure
(i.e., any quantity in the structure that can be described as going up or down over time). Connections
represent asymmetric relations of causal influence from one node to another, and can be either positive or
negative depending on whether increases in the variable at the tail of the arrow (i.e., the cause) lead to
decreases in the variable at the head of the arrow (i.e., the effect). Finally, feedback loops are collections
of nodes and connections such that one can use the connections to trace a directed path from any node in

the loop back to itself. Feedback loops can be either balancing or reinforcing, depending on whether

increases in the value of the variable represented by a node in a feedback loop lead to a dampening down
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Fig. 1: Causal loop diagram from Sterman (2000, p. 14) showing a toy example of
feedback loops.

in the rate of growth in the value of that variable (balancing loop) or an increase in the rate of growth in
the value of that variable (reinforcing loop). The valence of a feedback loop (i.e., whether it is balancing
or reinforcing) is sometimes called the polarity of that feedback loop. Balancing feedback loops have
negative polarity, while reinforcing feedback loops have positive polarity. In what follows, we will
provide a more formal definition of loop polarity.

To illustrate, consider the classic toy example of a system composed of two causal feedback loops
given by Sterman (2000, p. 14), and shown in Fig. 1. In this example, the nodes ‘Eggs’ and ‘Chickens,’
and the connections between these nodes, form a positive-polarity feedback loop: as more eggs are laid,
more chickens are born, which leads to a growth in the rate of increase in eggs being laid, which leads to
a growth in the rate of chickens being born, and so on. By contrast, the nodes ‘Chickens’ and ‘Road
Crossings,” and the connections between these nodes, form a negative-polarity feedback loop: as more
chickens are born, more chickens cross the road, where some are hit by cars, leading to a decrease in the
rate at which chickens are born, and so on.

A core tenet of contemporary system dynamics is that, depending on the structure of the

data-generating process, certain loops in a causal loop diagram will be dominant, in the sense that their



having a positive or negative polarity is a key driver of overall system behavior (Schoenberg et al. 2020,
p- 159). This yields an overall account of system understanding in which one understands a system when
and because one understands how the feedback loops that compose the system drive overall system
behavior. In this paper, we leverage causal loop diagrams - and the account of system understanding that
they engender - to address the underspecification problem in deep learning. In particular, we will show
how integrating a causal loop diagram of the data-generating process into the deep learning pipeline,
while also selecting and preparing training data in a way that tracks the polarities of the loops that
compose a system, can result in deep learning pipelines that are more robust to shifts in the underlying
data-generating distributions (i.e., they are less brittle). Since brittleness is understood to be a byproduct
of underspecification in the deep learning pipeline, we take our results to be indicative of the capacity for
systems thinking through causal loop diagrams to reduce underspecification.

The remainder of this paper proceeds as follows: in the next section, we provide more technical
details on the problem of underspecification in the deep learning pipeline. After that, we introduce a case
study involving an attempt to use deep learning to classify the polarity of the feedback loop that controls
the overall level of infections in an epidemic. Using a fairly simple version of the SIR (Susceptible,
Infected, Recovered) model of epidemic dynamics, we can build a causal loop diagram and measure loop
polarities in a way that improves the performance of a deep learning model on this classification task, as
opposed to a more naive approach. We then discuss the significance of these results for the broader
relationship between deep learning, system dynamics, and artificial intelligence.

Underspecification in the Deep Learning Pipeline

We will use the term “deep learning” to refer to any algorithmic process for using a set of training

data points to approximate a function from features to outputs. To be more precise, consider a set of

training data points {(xl, yl), . (xN, yN) }, where each X, is a vector in an n-dimensional real vector

space and each Y, is a real number. We assume that each Y, is computed from each X, by finding the value

of a data-generating function f (xi), perhaps with some irreducible stochasticity or noise affecting the
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Fig. 2: A schematic representation of the deep learning pipeline.

computation. Deep learning aims to approximate this data-generating function by using training data to

learn a vector of parameters 8, which defines a function f 0 that can be used to compute outputs from

features. Many different architectures and algorithms exist for taking in training data and then using those

data to learn weights that define a function f 0 that is a close approximation of the unknown
data-generating function f, in the sense that for any pair (xi, yi) in the training data, the value of f e(xi) is

sufficiently close to y= f (xi). The details of these different algorithms (e.g., neural network training with

gradient descent) need not detain us here. Since f 0 is an approximate representation of the true

N

data-generating function f, it is sometimes referred to as a “model” of the data-generating function.

What will concern us are the human choices that are made throughout the deep learning pipeline
described in the previous paragraph. Indeed, before training data are even collected, researchers must first
identify the problem that they are even trying to solve via deep learning, by identifying an unknown
data-generating function (also called a “data generating process”) that they are trying to estimate and by
leveraging domain expertise and background knowledge to better understand that problem domain. This
gives rise to a qualitative, conceptual understanding of the problem that they are trying to solve. From
there, the problem can be formulated in terms that are tractable in the context of deep learning; that is,

researchers state the problem that they are trying to solve in terms of the outputs that they are trying to



predict from a specific set of possible features that a system might instantiate. Next, researchers select and
prepare training data that are collected from the system, before feeding that data into any number of
learning algorithms to train and evaluate a model of the data-generating process. Finally, once this model
is sufficiently trained and evaluated (and found to have high accuracy), we end up with a model of the
data generating process that is capable of inferring outcomes from novel features (i.e., features not
included in the training data set). See Fig. 2 for a schematic representation of this deep learning pipeline.

As a toy example of the deep learning pipeline, suppose that we want to understand the problem
of how a person’s physiology affects their ability to exercise vigorously. We first gain an understanding of
the problem by adopting a simple operationalization of a person’s physiology in terms of their height in
centimeters and their weight in kilograms. Thus, each person can be represented as a two-dimensional
vector, with one component representing their height and the other representing their weight. We
operationalize a person’s ability to engage in vigorous exercise using their VO2 max, or the maximum
rate at which they can consume oxygen during physical activity. Now we are in a position to formulate the
problem of understanding the relationship between physiology and exercise ability as a problem for deep
learning: can we use deep learning to approximate the true data-generating function that takes as input a
vector representing a person’s height and weight and outputs a real number representing their VO2 max.
To attempt to solve this problem, we might select and prepare training data by taking some sample of a
population and measuring their height, weight and VO2 max, before using a deep learning algorithm to
train and evaluate a model that eventually produces an accurate function (in the sense that it has high
accuracy when evaluated on the training data) mapping height-weight vectors to VO2 max values.

The problem with this application of the deep learning pipeline (and, indeed, with many
applications of this pipeline) is that the problem being solved is very likely to be underspecified. That is,
for any given choice of algorithm and architecture for finding a vector of weights to parameterize a
function that approximates the true data-generating process relating physiology to exercise ability, there
are likely many different weight vectors that will parameterize this function equally well, in the sense that

each weight vector will yield a function that is highly accurate within the context of the training data.



There are many reasons why such underspecification can occur. To begin with, given the rich diversity of
ways in which physiology (even when measured as crudely as just considering height and weight) can
affect VO2 max, the training data may not be representative enough to include instances of all of these
interactions. Thus, it may be that multiple weight vectors parameterize a function to fit the training data
equally well, but if more (and more diverse) data were collected, then the solution space for the
approximation problem would be narrowed. In the absence of such a narrower solution space, the
approximation problem being solved (and thus, the deep learning pipeline) remains underspecified. In
addition, only two variables (height and weight) are measured, meaning that any choice of parameters
will not be sensitive to other physiological variables that affect VO2 max; were more variables measured,
it might be difficult to find multiple distinct parameter vectors that capture all of the interactions between
these variables and their effects on VO2 max. This would also narrow the solution space and reduce
underspecification.

As described in the introduction, our aim in this paper is to use techniques from system dynamics
to reduce the threat of underspecification in the deep learning pipeline. We do this using an example in
which we aim to classify the behavior of an epidemic based on the underlying data generated by that
epidemic. There are three specific techniques from the system dynamics literature that we deploy. First, at
the stage of the pipeline where a problem is specifically formulated in terms amenable to deep learning,
we will also use terms with a well-defined meaning in the system dynamics literature. Specifically, we
will use the language of the polarity of feedback loops during this problem-definition phase. Second,
during the training data selection and preparation phase of the pipeline, we will use simulation techniques
from system dynamics in order to generate synthetic training data according to an a priori causal theory
of the data-generating process (an SIR model of an epidemic), where this causal theory is representable as
a causal loop diagram. Finally, and also during the training data selection and preparation phase, we will
manually engineer the feature vectors of our training data to measure the polarity of different feedback
loops in our causal model of the data-generating process. The result is a novel instance of the deep

learning pipeline that is thoroughly imbued with the vocabulary and techniques of systems dynamics.



Most importantly, we show that this reformulation of the deep learning pipeline is effective, significantly
outperforming a naive approach to the same problem. We begin this demonstration in the next section, by
introducing the details of our case study.
Case Study: Understanding an Epidemic

Suppose that a non-fatal epidemic is occurring within a given population. At every time step ¢, we
have access to the number (S) of susceptible individuals in the population (i.e., those who have not yet
been infected), the number (/) of currently infected individuals in the population, and the number (R) of
recovered individuals in the population. Over any given interval of time, we are interested in a crucial,
system-level behavior of the epidemic: is the rate of the overall level of infected individuals behaving as
though it is part of a balancing or reinforcing feedback loop? In other words, as the total number of
infected individuals in a population goes up (down) during a given temporal interval, does the rate of
change in the level of infections also increase (decrease) during the same interval? Assuming that we
know the level of infections /(?) at any time step ¢, we can help ourselves to a simple calculation of this

polarity value over the three-step time interval [¢ : #+2]:

(I(t+2)—I(t+1)—(I(t+1)—1(t))
I(t+2)—1(t) )

Polarity(I[t : t + 2]) = sgn (

where the function sgn(x) returns the value 1 if x>0, -1 if x<0, and 0 otherwise. In the toy example that
follows, we will set up our simulations so that the polarity of the overall level of infections is easily
calculated using the equation given above. However, in real-world cases, these polarities may not be as
easily calculated, and are of considerable epidemiological importance (Centers for Disease Control and
Prevention, 2021). Thus, we are interested in the ability of a deep learning algorithm to classify the level
of infections in an epidemic as being of positive or negative polarity from measurable data.

Moreover, even if quantities like the polarity of the level of infections in an epidemic over time
are easily calculable by humans, we remain interested in whether deep learning models can learn to
perform the same calculations. That is, given only training data consisting of micro-level observations of

an epidemic system over some time interval and macro-level observations of the same system over a
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period of time, can a deep learning architecture learn the relationship between micro-level components of
a system and macro-level system behavior? If so, then the deep learning model could be said to instantiate
a systems-thinking-style understanding (i.e., understanding how component parts of a system drive
overall system behavior) of the data-generating process behind an epidemic. As we will see below, it turns
out that on a naive approach to the selection and preparation of training data, the deep learning models we
study here have, at best, a limited ability to instantiate this kind of systems-thinking approach to
understanding an epidemic. In what follows, we illustrate these limitations of a naive approach, before
showing how an approach that takes more seriously how the insights gleaned from a causal loop diagram
can inform our selection of training data and reduce underspecification in the deep learning pipeline.
Using Deep Learning to Understand an Epidemic: The Naive Approach

As per the diagram in Fig. 2, the first step in the machine learning pipeline is to understand the
problem to be solved. In our case study, this is straightforward: we want to use more fine-grained features
of an epidemic that are observed over a given time interval to determine the overall polarity of the level of
infections over the same time interval. Following the arrows of the diagram in Fig. 2, the next step is to
formulate this more precisely as a problem for deep learning. One natural rephrasing of our problem
statement for deep learning, which we will adopt here, is the following: can we train a neural network to
predict, based on more fine-grained observations of an epidemic system across a time-step interval, the
polarity of the level of infections across the same three-time-step interval?

Next, we enter the crucial phase of selecting and preparing training data. Following the naive
approach, we will assume that our training data consist of pairs in which the first element represents the
observed numbers of susceptible, infected, and recovered people in the population across three time steps,
and the second element consists of a single number representing the polarity of the level of infections
over the same time step interval. To actually generate this data, we first assume that numbers of

susceptible, infected, and recovered people in the population are generated by the following set of

differential equations, where A(1) is the birth rate in the population at time ¢, 11(t) is the death rate in the
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population at time ¢ (note that because the epidemic is assumed to be non-fatal, this death rate is the same
across the populations of susceptible, infected, and recovered people), V(1) is the recovery rate in the

population at time ¢, B(t) is the average number of interactions between susceptible and infected people

at time ¢z, and NV is the total size of the population:

R(t) = ~(6)I(t) + u(t)R(t)

We assume further that at each time step the birth rate, death rate, recovery rate, and average number of

interactions are generated by sampling from the following probability distributions:

2 —.0002

A(t) ~ Beta(2.
(8) ~ Beta(2, —5a07

) (i.e., a Beta distribution with a mean of .0001)

2 —.0002

t) ~ Beta(2
p(t) ~ Beta(2, 0001

) (i.e., a Beta distribution with a mean of .0001)

2—.2
v(t) ~ Beta(2, —1) (i.e., a Beta distribution with a mean of .1)

B(t) ~ Poisson(5) (i.e., a Poisson distribution with a mean of 5)

Equipped with these equations, we use the ODEInt Python package to simulate 100 epidemics, each with
100 time steps. All simulations assume a population size N of one million people, and are initialized at
N-1 susceptible people, one infected person, and zero recovered people. At each time step, we record the
number of susceptible, infected, and recovered people in the population, and for each three-time step
interval, we record the polarity of the level of infections in the population. This yields 9,800 pairs in
which the first element is a nine-component vector representing the numbers of susceptible, infected, and
recovered people in the population at each of the three time steps in an interval and the second element is

a single number representing the polarity of the level of infections over that same interval. Note that while
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we use simulated data here, if one had access to real-world SIR data from an epidemic, one could use that
data to prepare a similar training set.

Moving to the next phase of the deep learning pipeline, we trained a multi-layer perceptron (a
common type of neural network) with one hidden layer on all 9,800 of our synthetically-generated
training data points.! The training accuracy was 69%, suggesting that the neural network model learns to
predict the overall polarity of the level of infections from more fine-grained SIR data at a rate
significantly above chance, at least when confined to the context in which training data is generated (in
the training data, the polarity of the rate of infections is positive 46.67% of the time and negative 53.33%
of the time). Note that because the training accuracy is also far below 100%, we can also conclude that
the neural network has not learned the mathematical formula for calculating the overall polarity of the
level of infections from SIR data, but has instead learned a (relatively) reliable statistical pattern linking
combinations of values of SIR data to the polarity of the level of infections, which it then exploits to
classify the overall polarity of the system.

Finally, we move to the evaluation phase of the deep learning pipeline. Here, we seek to evaluate
the performance of the model trained on our training data when it is given inputs generated by a
structurally similar but distributionally distinct data-generating process. That is, we generate simulated
data using the same differential equations as above, but with the birth rate, death rate, recovery rate, and

average number of interactions sampled from the following new distributions:

92— 02
A ~ Beta(2, 2— 2
eta(2, —q;

)

2—.02

~ Beta(2,
po~ Beta(2, —

)

v ~ Beta(2, 25?2)

B~ Poisson(15)

' Code and results for all computation experiments can be viewed in an open repository at:
https://osf.io/zb27c/?view_only=3b57e60d514a43fe9117697f334a8be8.
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We simulate twenty of these out-of-distribution epidemics, and test the performance of our neural network
that was trained on the in-distribution data when it comes to using out-of-distribution data to classify the
polarity of the epidemic over a given interval. The average accuracy across the twenty epidemics is
51.86%, which is not significantly above chance. We take this as evidence that the deep learning pipeline
described here, which uses a naive approach to the selection and representation of training data, is
underspecified. Despite finding a weight vector that allows it to achieve some degree of accuracy on
in-distribution data, the accuracy of a model parameterized by those weights evaporates when we move to
an out-of-distribution setting. This suggests that whatever patterns the model was exploiting in order to
classify the overall polarity of the level of infections based on more fine-grained SIR data, those patterns
were specific to the distributions used to generate the parameters of the model, rather than to the
underlying structure of the data-generating process captured by the differential equations. In what follows,
we explore how an approach inspired by system dynamics allows us to achieve significantly better
performance on the same fundamental problem.
Using Deep Learning to Understand an Epidemic: The Component Loop Approach

We now re-run the deep learning pipeline in a manner designed to specifically integrate a
system-dynamics-inspired approach, in which a key part of understanding a system is understanding how
the polarities of the system’s various component loops constrain overall loop behavior. The first two
stages of the pipeline are unchanged from the naive approach: the fundamental problem to be solved is
still to use more fine-grained features of an epidemic that are observed over a given time interval to
determine the overall polarity of the level of infections over the same time interval, and the formulation of
that problem for machine learning is still to train a neural network to predict, based on more fine-grained
observations of an epidemic system across a time-step interval, the polarity of the level of infections
across the same three-time-step interval.

However, once we reach the stage where we select and prepare training data, we begin to
incorporate novel insights from system dynamics. At a high level, our goal is to use both our knowledge

of the structure of the differential equations from the SIR model and a loop-polarity based approach to



improve the robustness of our pipeline. To do this, we run the same simulations as before, only now we
save both the SIR data (i.e., the numbers of susceptible, infected and recovered people at each time step),
and the parameters of the differential equations (i.e., the birth rate, death rate, recovery rate, and average

number of interactions at each time step). Using these data, we calculate the accumulations in each of the
six unique summands on the LHS of each of the differential equations at a given time-step, using the

following equations:

t
Ai(t) = / A(#" YNt (the birth rate)
0
t
As(t) := / w(t)S(t)dt" (the number of susceptible people who die)
0

dt’ (infected-susceptible interactions over N)

) = [ LIS

t
Ay(t) := / () I(¢')dt" (the number of infected people who recover)
0
t
As(t) := / w(t)I(t')dt' (the number of infected people who die)
0

¢
Ag(t) := / p(t)R(t")dt" (the number of recovered people who die)
0

Looking at a causal loop diagram of the epidemic system defined by our SIR model (Fig. 3), one can find
a correspondence between these accumulations and the six main loops that compose the epidemic system
being simulated. Beginning with Loop 1/Accumulation 1, we can see that as the number of susceptible
people changes, so too does the accumulation of the multiple of the birthrate and the population, which in
turn affects the number of susceptible people. In the case of Loop 2/Accumulation 2, we note that as the

number of susceptible people increases, so too does the accumulation of the total number of people who
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Fig. 3: Causal loop diagram representation of the SIR model used for our computational
experiments.

have died during the epidemic, which in turn affects the number of susceptible people. One could give
analogous reasoning for all six loops/accumulations, to demonstrate the correspondence between these
loops and the accumulations in our model.

Having calculated these accumulations, we next calculate the polarity of each accumulation over

the same three-time-step interval using the formula:

(At +2) = At +1)) = (At + 1) — Ai(t))>
Ai(t+2) — Ai(t)

Polarity(A;[t : t+2]) = sgn (

This, in turn, enables us to compile our training data. Each training datum is a pair whose first element is
a six-component vector representing the polarity of each of the accumulations listed above over a
three-time-step interval (which we calculate for each interval) and whose second element is a single
number representing the polarity of the overall level of infections across the same three-time-step interval.
Note that our calculations of the loop polarities for each component loop of the system are what, in the
machine learning literature, are called “manually engineered” features, since they are calculated by human
researchers from the data, rather than merely being read off of the raw data (Verdonck et al., 2024). Our

goal is for a neural network to learn the systematic relationship between the polarities of these component
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Fig. 4. Comparison of the mean accuracy of both the naive, raw-data-input approach and our
loop-polarity-based approach across twenty simulated pandemics in an out-of-distribution regime. Error bars
show a 95% confidence interval for the mean.

loops of the epidemic system and the overall polarity of the level of infections. If such learning is
possible, then it will show that the model is capable of inferring macro-level behavior from the behavior
of a system’s component parts, provided that those components are appropriately represented in the
training data.

Having prepared our training data in this way, we again train a multi-layer perceptron with one
hidden layer on this new training data set. The training accuracy on this data is much improved from the
naive approach, reaching 98.86%. Most importantly, when we move to the evaluation phase of the deep
learning pipeline and generate twenty out-of-distribution epidemics, we find that the average accuracy of
our newly-trained model when it comes to predicting the polarity of the level of infections for a given
three-time-step-interval is 74.41%. This constitutes a highly significant difference in OOD accuracy
between the model trained on loop polarity data and the model trained via the more naive methodology.
See Fig. 4 for a comparison of the accuracy of the two approaches when applied to OOD data. Thus, we
produce evidence showing that, by manually engineering our training data using a perspective rooted in

causal loop dynamics, and in particular the relationship between the component loops of a system and



overall system behavior, we can significantly reduce the brittleness of our models, suggesting a similarly
significant reduction in the degree to which our model-production pipeline is underspecified.
Discussion

Our findings from this computational experiment have broader implications for the optimal
functioning of the machine learning development pipeline. As discussed throughout this paper, at a high
level of abstraction, a typical workflow in developing deep learning applications involves: 1) observing
data from a system, 2) devising a mathematical representation of that data, 3) training a neural network
model on that data, and 4) using that data to make OOD classifications. Our results demonstrate the
importance of data representation in the success of this pipeline. Choices that we make about how data is
represented as it is measured and collected influence the training of neural network classifiers, which in
turn influence the success of these models in OOD testing scenarios. Importantly, implementing the
polarity scheme for representing data requires domain knowledge of the kind that is emphasized in the
practice of system dynamics. Namely, one must know the summands of the ODEs that represent the
dynamics of a system, recognize their accumulations as corresponding to the feedback loops that compose
the overall data-generating system, and know that measuring their polarity is key to inferring the overall
polarity of the number of infected people. This is a perspective on the data that requires some background
in epidemiology and the modeling of dynamical systems; unlike the raw data representation, it cannot be
measured from an entirely naive perspective on the nature of the data-generating process.

The perspective on the nature of dynamical systems that recommends decomposing those systems
into feedback loops and measuring the polarity of those loops is not one that is well-represented in
existing deep learning practice. The results here indicate that in at least some contexts, this perspective
should be represented, as it can enable data representations that allow for more accurate classification of
OOD data. To this end, we recommend that, throughout the development of the deep learning pipeline and
the development of artificial intelligence applications more broadly, developers should draw on the
literature in system dynamics. They should also receive input - in the form of causal theories - from

system dynamics practitioners, problem domain experts, and stakeholders. This is especially true in the



data representation stage of the pipeline, where the emphasis is not on designing optimal architectures for
function approximation, but is instead on how to interpret and optimally represent the outputs of a
data-generating process. It is at this earlier (but still deeply important) stage that domain-specific causal
theories with reduced epistemic uncertainty about the nature of the data-generating can be leveraged to
enable better OOD performance.
Conclusion

There are several avenues for future work that build on our findings here. First, we note that the
polarity framework is just one example of the many ways that experts in system dynamics have
formalized the concept of understanding system behavior. In future work, we aim to explore whether
other SD-inspired methods can show similar fecundity in reducing underspecification in deep learning.
Second, we plan to extend our results beyond the synthetic setting, demonstrating similar performance for
the results presented here on real-world data sets. Finally, while we have demonstrated the feasibility of
our approach in a specific case study, we hope in the near future to both extend our approach to other
dynamical systems beyond the SIR model, and to provide a theoretical guarantee or closed-form proof of
the general ability of the polarity framework to improve out-of-distribution classification of system

behavior.



References

Barbrook-Johnson, P., & Penn, A. S. (2022). Causal loop diagrams. In Systems Mapping: How to build and use
causal models of systems (pp. 47-59). Cham: Springer International Publishing.

Barbu, A., Mayo, D., Alverio, J., Luo, W., Wang, C., Gutfreund, D., ... & Katz, B. (2019). Objectnet: A large-scale
bias-controlled dataset for pushing the limits of object recognition models. Advances in neural information
processing systems, 32.

Bengio, Y., Goodfellow, 1., & Courville, A. (2016). Deep learning (Vol. 1). Cambridge, MA, USA: MIT press.

Centers for Disease Control and Prevention. (2021, Mar) Why Look for Feedback? URL:
https://www.cdc.gov/policy/polaris/tis/feedback/index.html.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020, December).
Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems (pp. 1877-1901).

D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., ... & Sculley, D. (2022).
Underspecification presents challenges for credibility in modern machine learning. Journal of Machine Learning
Research, 23(226), 1-61.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and
perturbations. In International Conference on Learning Representations, 2019.

Le, Q. V. (2013, May). Building high-level features using large scale unsupervised learning. In 2013 IEEE
international conference on acoustics, speech and signal processing (pp. 8595-8598). IEEE.

Schoenberg, W., Davidsen, P., & Eberlein, R. (2020). Understanding model behavior using the Loops that Matter
method. System Dynamics Review, 36(2), 158-190.

Sterman, J. (2000). Business dynamics. Irwin/McGraw-Hill.

Verdonck, T., Baesens, B., Oskarsdottir, M., & vanden Broucke, S. (2024). Special issue on feature engineering
editorial. Machine learning, 113(7), 3917-3928.


https://www.cdc.gov/policy/polaris/tis/feedback/index.html

