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 Abstract 

 Deep  learning  provides  a  set  of  techniques  for  detecting  complex  patterns  in  data.  However,  when 
 the  causal  structure  of  the  data-generating  process  is  underspecified,  deep  learning  models  can  be 
 brittle,  lacking  robustness  to  shifts  in  data-generating  distributions.  In  this  paper,  we  turn  to  loop 
 polarity  analysis  as  a  tool  for  specifying  the  causal  structure  of  a  data-generating  process,  in  order 
 to  encode  a  more  robust  understanding  of  the  relationship  between  system  structure  and  system 
 behavior  within  the  deep  learning  pipeline.  We  use  simulated  epidemic  data  based  on  an  SIR 
 model  to  demonstrate  how  measuring  the  polarity  of  the  different  feedback  loops  that  compose  a 
 system  can  lead  to  more  robust  inferences  on  the  part  of  neural  networks,  improving 
 out-of-distribution  performance  and  infusing  a  system-dynamics-inspired  approach  into  the  deep 
 learning pipeline. 

 Introduction 

 The  term  “deep  learning”  refers  to  a  set  of  algorithms  and  computational  architectures  for 

 estimating  unknown  functions  from  data.  These  algorithms  and  architectures  have  powered  significant 

 advances  in  artificial  intelligence,  enabling  AI  applications  that  display  human-level  abilities  in  tasks 

 ranging  from  image  recognition  (Le  et  al.,  2013)  to  predicting  the  next  word  in  a  natural  language 

 sentence  (Brown  et  al.,  2020).  While  deep  learning  encompasses  a  wide  variety  of  different  techniques,  at 

 their  core,  deep  learning  aims  to  use  training  data  to  estimate  a  vector  of  weights,  which  are  then  used  to 

 parameterize  a  function  that  approximates  a  data-generating  process.  In  other  words,  deep  learning  aims 

 to use data to make inferences about the  structural  features of reality that generate those data. 

 Despite  their  success  in  many  domains,  applications  of  deep  learning  are  also  notoriously  brittle  . 

 When  deployed  in  a  setting  that  is  sufficiently  different  from  the  setting  in  which  their  training  data  were 

 generated,  the  accuracy  of  deep  learning  algorithms  can  severely,  if  not  completely,  deteriorate 

 (Goodfellow  et  al.,  2016;  Hendrycks  and  Dietterich,  2019;  Barbu  et  al.,  2019).  D’Amour  et  al.  (2020) 

 argue  convincingly  that  this  brittleness  is  especially  liable  to  occur  in  cases  where  a  deep  learning  pipeline 



 is  underspecified  .  By  a  “deep  learning  pipeline,”  we  mean  a  sequence  of  human  decisions  that  lead  a 

 real-world  problem  to  be  understood,  articulated,  and  putatively  solved  using  the  techniques  of  deep 

 learning.  An  underspecified  deep  learning  pipeline  is  one  in  which  the  problem  that  is  formulated  and 

 solved is one with multiple solutions. As D’Amour et al. put it: 

 In  general,  the  solution  to  a  problem  is  underspecified  if  there  are  many  distinct  solutions  that 
 solve  the  problem  equivalently.  For  example,  the  solution  to  an  underdetermined  system  of  linear 
 equations  (i.e.,  more  unknowns  than  linearly  independent  equations)  is  underspecified,  with  an 
 equivalence  class  of  solutions  given  by  a  linear  subspace.  In  the  context  of  ML  [‘machine 
 learning,’  which  we  take  here  to  be  synonymous  with  ‘deep  learning’],  we  say  an  ML  pipeline  is 
 underspecified  if  there  are  many  distinct  ways  for  the  pipeline  to  produce  a  predictor  that  satisfies 
 the  pipeline’s  validation  criterion  equivalently,  even  if  the  specification  of  the  pipeline  (e.g., 
 model specification, training data) is held constant (2020, p. 3). 

 When  the  deep  learning  pipeline  yields  a  problem  that  lacks  a  unique  solution,  deep  learning  algorithms 

 will  typically  only  identify  one  of  these  solutions.  This,  in  turn,  renders  those  algorithms  liable  to  generate 

 a  putative  model  of  the  data-generating  structure  that  is  not  isomorphic  to  or  representative  of  the  “ground 

 truth”  data-generating  structure.  When  such  a  model  is  deployed  in  a  setting  beyond  the  training  data,  its 

 predictions  are  liable  to  be  inaccurate  or  misguided,  because  the  model  ultimately  lacks  fidelity  to  the  true 

 data-generating process. 

 The  field  of  system  dynamics  has  developed  its  own  vocabulary  and  techniques  for  understanding 

 and  representing  data-generating  structure.  Here,  we  focus  specifically  on  causal  loop  diagrams  .  Causal 

 loop  diagrams  are  composed  of  three  basic  elements:  nodes,  connections,  and  feedback  loops 

 (Barbrook-Johnson  and  Penn  2017,  p.  48).  Nodes  represent  variables  within  the  data-generating  structure 

 (i.e.,  any  quantity  in  the  structure  that  can  be  described  as  going  up  or  down  over  time).  Connections 

 represent  asymmetric  relations  of  causal  influence  from  one  node  to  another,  and  can  be  either  positive  or 

 negative  depending  on  whether  increases  in  the  variable  at  the  tail  of  the  arrow  (i.e.,  the  cause)  lead  to 

 decreases  in  the  variable  at  the  head  of  the  arrow  (i.e.,  the  effect).  Finally,  feedback  loops  are  collections 

 of  nodes  and  connections  such  that  one  can  use  the  connections  to  trace  a  directed  path  from  any  node  in 

 the  loop  back  to  itself.  Feedback  loops  can  be  either  balancing  or  reinforcing  ,  depending  on  whether 

 increases  in  the  value  of  the  variable  represented  by  a  node  in  a  feedback  loop  lead  to  a  dampening  down 



 in  the  rate  of  growth  in  the  value  of  that  variable  (balancing  loop)  or  an  increase  in  the  rate  of  growth  in 

 the  value  of  that  variable  (reinforcing  loop).  The  valence  of  a  feedback  loop  (i.e.,  whether  it  is  balancing 

 or  reinforcing)  is  sometimes  called  the  polarity  of  that  feedback  loop.  Balancing  feedback  loops  have 

 negative  polarity,  while  reinforcing  feedback  loops  have  positive  polarity.  In  what  follows,  we  will 

 provide a more formal definition of loop polarity. 

 To  illustrate,  consider  the  classic  toy  example  of  a  system  composed  of  two  causal  feedback  loops 

 given  by  Sterman  (2000,  p.  14),  and  shown  in  Fig.  1.  In  this  example,  the  nodes  ‘Eggs’  and  ‘Chickens,’ 

 and  the  connections  between  these  nodes,  form  a  positive-polarity  feedback  loop:  as  more  eggs  are  laid, 

 more  chickens  are  born,  which  leads  to  a  growth  in  the  rate  of  increase  in  eggs  being  laid,  which  leads  to 

 a  growth  in  the  rate  of  chickens  being  born,  and  so  on.  By  contrast,  the  nodes  ‘Chickens’  and  ‘Road 

 Crossings,’  and  the  connections  between  these  nodes,  form  a  negative-polarity  feedback  loop:  as  more 

 chickens  are  born,  more  chickens  cross  the  road,  where  some  are  hit  by  cars,  leading  to  a  decrease  in  the 

 rate at which chickens are born, and so on. 

 A  core  tenet  of  contemporary  system  dynamics  is  that,  depending  on  the  structure  of  the 

 data-generating  process,  certain  loops  in  a  causal  loop  diagram  will  be  dominant  ,  in  the  sense  that  their 



 having  a  positive  or  negative  polarity  is  a  key  driver  of  overall  system  behavior  (Schoenberg  et  al.  2020, 

 p.  159).  This  yields  an  overall  account  of  system  understanding  in  which  one  understands  a  system  when 

 and  because  one  understands  how  the  feedback  loops  that  compose  the  system  drive  overall  system 

 behavior  .  In  this  paper,  we  leverage  causal  loop  diagrams  -  and  the  account  of  system  understanding  that 

 they  engender  -  to  address  the  underspecification  problem  in  deep  learning.  In  particular,  we  will  show 

 how  integrating  a  causal  loop  diagram  of  the  data-generating  process  into  the  deep  learning  pipeline, 

 while  also  selecting  and  preparing  training  data  in  a  way  that  tracks  the  polarities  of  the  loops  that 

 compose  a  system,  can  result  in  deep  learning  pipelines  that  are  more  robust  to  shifts  in  the  underlying 

 data-generating  distributions  (i.e.,  they  are  less  brittle).  Since  brittleness  is  understood  to  be  a  byproduct 

 of  underspecification  in  the  deep  learning  pipeline,  we  take  our  results  to  be  indicative  of  the  capacity  for 

 systems thinking through causal loop diagrams to reduce underspecification. 

 The  remainder  of  this  paper  proceeds  as  follows:  in  the  next  section,  we  provide  more  technical 

 details  on  the  problem  of  underspecification  in  the  deep  learning  pipeline.  After  that,  we  introduce  a  case 

 study  involving  an  attempt  to  use  deep  learning  to  classify  the  polarity  of  the  feedback  loop  that  controls 

 the  overall  level  of  infections  in  an  epidemic.  Using  a  fairly  simple  version  of  the  SIR  (Susceptible, 

 Infected,  Recovered)  model  of  epidemic  dynamics,  we  can  build  a  causal  loop  diagram  and  measure  loop 

 polarities  in  a  way  that  improves  the  performance  of  a  deep  learning  model  on  this  classification  task,  as 

 opposed  to  a  more  naive  approach.  We  then  discuss  the  significance  of  these  results  for  the  broader 

 relationship between deep learning, system dynamics, and artificial intelligence. 

 Underspecification in the Deep Learning Pipeline 

 We  will  use  the  term  “deep  learning”  to  refer  to  any  algorithmic  process  for  using  a  set  of  training 

 data  points  to  approximate  a  function  from  features  to  outputs.  To  be  more  precise,  consider  a  set  of 

 training  data  points  ,  where  each  is  a  vector  in  an  n  -dimensional  real  vector ( 𝑥 
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 computation.  Deep  learning  aims  to  approximate  this  data-generating  function  by  using  training  data  to 

 learn  a  vector  of  parameters  ,  which  defines  a  function  that  can  be  used  to  compute  outputs  from θ  𝑓 
θ

 features.  Many  different  architectures  and  algorithms  exist  for  taking  in  training  data  and  then  using  those 

 data  to  learn  weights  that  define  a  function  that  is  a  close  approximation  of  the  unknown  𝑓 
θ

 data-generating  function  ,  in  the  sense  that  for  any  pair  in  the  training  data,  the  value  of  is  𝑓 ( 𝑥 
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 sufficiently  close  to  =  .  The  details  of  these  different  algorithms  (e.g.,  neural  network  training  with  𝑦 
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 gradient  descent)  need  not  detain  us  here.  Since  is  an  approximate  representation  of  the  true  𝑓 
θ

 data-generating function  , it is sometimes referred to as a “model” of the data-generating function.   𝑓 

 What  will  concern  us  are  the  human  choices  that  are  made  throughout  the  deep  learning  pipeline 

 described  in  the  previous  paragraph.  Indeed,  before  training  data  are  even  collected,  researchers  must  first 

 identify  the  problem  that  they  are  even  trying  to  solve  via  deep  learning,  by  identifying  an  unknown 

 data-generating  function  (also  called  a  “data  generating  process”)  that  they  are  trying  to  estimate  and  by 

 leveraging  domain  expertise  and  background  knowledge  to  better  understand  that  problem  domain.  This 

 gives  rise  to  a  qualitative,  conceptual  understanding  of  the  problem  that  they  are  trying  to  solve.  From 

 there,  the  problem  can  be  formulated  in  terms  that  are  tractable  in  the  context  of  deep  learning;  that  is, 

 researchers  state  the  problem  that  they  are  trying  to  solve  in  terms  of  the  outputs  that  they  are  trying  to 



 predict  from  a  specific  set  of  possible  features  that  a  system  might  instantiate.  Next,  researchers  select  and 

 prepare  training  data  that  are  collected  from  the  system,  before  feeding  that  data  into  any  number  of 

 learning  algorithms  to  train  and  evaluate  a  model  of  the  data-generating  process.  Finally,  once  this  model 

 is  sufficiently  trained  and  evaluated  (and  found  to  have  high  accuracy),  we  end  up  with  a  model  of  the 

 data  generating  process  that  is  capable  of  inferring  outcomes  from  novel  features  (i.e.,  features  not 

 included in the training data set). See Fig. 2 for a schematic representation of this deep learning pipeline. 

 As  a  toy  example  of  the  deep  learning  pipeline,  suppose  that  we  want  to  understand  the  problem 

 of  how  a  person’s  physiology  affects  their  ability  to  exercise  vigorously.  We  first  gain  an  understanding  of 

 the  problem  by  adopting  a  simple  operationalization  of  a  person’s  physiology  in  terms  of  their  height  in 

 centimeters  and  their  weight  in  kilograms.  Thus,  each  person  can  be  represented  as  a  two-dimensional 

 vector,  with  one  component  representing  their  height  and  the  other  representing  their  weight.  We 

 operationalize  a  person’s  ability  to  engage  in  vigorous  exercise  using  their  VO2  max,  or  the  maximum 

 rate  at  which  they  can  consume  oxygen  during  physical  activity.  Now  we  are  in  a  position  to  formulate  the 

 problem  of  understanding  the  relationship  between  physiology  and  exercise  ability  as  a  problem  for  deep 

 learning:  can  we  use  deep  learning  to  approximate  the  true  data-generating  function  that  takes  as  input  a 

 vector  representing  a  person’s  height  and  weight  and  outputs  a  real  number  representing  their  VO2  max. 

 To  attempt  to  solve  this  problem,  we  might  select  and  prepare  training  data  by  taking  some  sample  of  a 

 population  and  measuring  their  height,  weight  and  VO2  max,  before  using  a  deep  learning  algorithm  to 

 train  and  evaluate  a  model  that  eventually  produces  an  accurate  function  (in  the  sense  that  it  has  high 

 accuracy  when evaluated on the training data  ) mapping height-weight vectors to VO2 max values. 

 The  problem  with  this  application  of  the  deep  learning  pipeline  (and,  indeed,  with  many 

 applications  of  this  pipeline)  is  that  the  problem  being  solved  is  very  likely  to  be  underspecified.  That  is, 

 for  any  given  choice  of  algorithm  and  architecture  for  finding  a  vector  of  weights  to  parameterize  a 

 function  that  approximates  the  true  data-generating  process  relating  physiology  to  exercise  ability,  there 

 are  likely  many  different  weight  vectors  that  will  parameterize  this  function  equally  well,  in  the  sense  that 

 each  weight  vector  will  yield  a  function  that  is  highly  accurate  within  the  context  of  the  training  data. 



 There  are  many  reasons  why  such  underspecification  can  occur.  To  begin  with,  given  the  rich  diversity  of 

 ways  in  which  physiology  (even  when  measured  as  crudely  as  just  considering  height  and  weight)  can 

 affect  VO2  max,  the  training  data  may  not  be  representative  enough  to  include  instances  of  all  of  these 

 interactions.  Thus,  it  may  be  that  multiple  weight  vectors  parameterize  a  function  to  fit  the  training  data 

 equally  well,  but  if  more  (and  more  diverse)  data  were  collected,  then  the  solution  space  for  the 

 approximation  problem  would  be  narrowed.  In  the  absence  of  such  a  narrower  solution  space,  the 

 approximation  problem  being  solved  (and  thus,  the  deep  learning  pipeline)  remains  underspecified.  In 

 addition,  only  two  variables  (height  and  weight)  are  measured,  meaning  that  any  choice  of  parameters 

 will  not  be  sensitive  to  other  physiological  variables  that  affect  VO2  max;  were  more  variables  measured, 

 it  might  be  difficult  to  find  multiple  distinct  parameter  vectors  that  capture  all  of  the  interactions  between 

 these  variables  and  their  effects  on  VO2  max.  This  would  also  narrow  the  solution  space  and  reduce 

 underspecification. 

 As  described  in  the  introduction,  our  aim  in  this  paper  is  to  use  techniques  from  system  dynamics 

 to  reduce  the  threat  of  underspecification  in  the  deep  learning  pipeline.  We  do  this  using  an  example  in 

 which  we  aim  to  classify  the  behavior  of  an  epidemic  based  on  the  underlying  data  generated  by  that 

 epidemic.  There  are  three  specific  techniques  from  the  system  dynamics  literature  that  we  deploy.  First,  at 

 the  stage  of  the  pipeline  where  a  problem  is  specifically  formulated  in  terms  amenable  to  deep  learning, 

 we  will  also  use  terms  with  a  well-defined  meaning  in  the  system  dynamics  literature.  Specifically,  we 

 will  use  the  language  of  the  polarity  of  feedback  loops  during  this  problem-definition  phase.  Second, 

 during  the  training  data  selection  and  preparation  phase  of  the  pipeline,  we  will  use  simulation  techniques 

 from  system  dynamics  in  order  to  generate  synthetic  training  data  according  to  an  a  priori  causal  theory 

 of  the  data-generating  process  (an  SIR  model  of  an  epidemic),  where  this  causal  theory  is  representable  as 

 a  causal  loop  diagram.  Finally,  and  also  during  the  training  data  selection  and  preparation  phase,  we  will 

 manually  engineer  the  feature  vectors  of  our  training  data  to  measure  the  polarity  of  different  feedback 

 loops  in  our  causal  model  of  the  data-generating  process.  The  result  is  a  novel  instance  of  the  deep 

 learning  pipeline  that  is  thoroughly  imbued  with  the  vocabulary  and  techniques  of  systems  dynamics. 



 Most  importantly,  we  show  that  this  reformulation  of  the  deep  learning  pipeline  is  effective,  significantly 

 outperforming  a  naive  approach  to  the  same  problem.  We  begin  this  demonstration  in  the  next  section,  by 

 introducing the details of our case study. 

 Case Study: Understanding an Epidemic 

 Suppose  that  a  non-fatal  epidemic  is  occurring  within  a  given  population.  At  every  time  step  t  ,  we 

 have  access  to  the  number  (  S  )  of  susceptible  individuals  in  the  population  (i.e.,  those  who  have  not  yet 

 been  infected),  the  number  (  I  )  of  currently  infected  individuals  in  the  population,  and  the  number  (  R  )  of 

 recovered  individuals  in  the  population.  Over  any  given  interval  of  time,  we  are  interested  in  a  crucial, 

 system-level  behavior  of  the  epidemic:  is  the  rate  of  the  overall  level  of  infected  individuals  behaving  as 

 though  it  is  part  of  a  balancing  or  reinforcing  feedback  loop?  In  other  words,  as  the  total  number  of 

 infected  individuals  in  a  population  goes  up  (down)  during  a  given  temporal  interval,  does  the  rate  of 

 change  in  the  level  of  infections  also  increase  (decrease)  during  the  same  interval?  Assuming  that  we 

 know  the  level  of  infections  I(t)  at  any  time  step  t  ,  we  can  help  ourselves  to  a  simple  calculation  of  this 

 polarity value over the three-step time interval [  t  :  t+2  ]: 

 , 

 where  the  function  sgn(x)  returns  the  value  1  if  x>0,  -1  if  x<0,  and  0  otherwise.  In  the  toy  example  that 

 follows,  we  will  set  up  our  simulations  so  that  the  polarity  of  the  overall  level  of  infections  is  easily 

 calculated  using  the  equation  given  above.  However,  in  real-world  cases,  these  polarities  may  not  be  as 

 easily  calculated,  and  are  of  considerable  epidemiological  importance  (Centers  for  Disease  Control  and 

 Prevention,  2021).  Thus,  we  are  interested  in  the  ability  of  a  deep  learning  algorithm  to  classify  the  level 

 of infections in an epidemic as being of positive or negative polarity from measurable data. 

 Moreover,  even  if  quantities  like  the  polarity  of  the  level  of  infections  in  an  epidemic  over  time 

 are  easily  calculable  by  humans,  we  remain  interested  in  whether  deep  learning  models  can  learn  to 

 perform  the  same  calculations.  That  is,  given  only  training  data  consisting  of  micro-level  observations  of 

 an  epidemic  system  over  some  time  interval  and  macro-level  observations  of  the  same  system  over  a 
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 period  of  time,  can  a  deep  learning  architecture  learn  the  relationship  between  micro-level  components  of 

 a  system  and  macro-level  system  behavior?  If  so,  then  the  deep  learning  model  could  be  said  to  instantiate 

 a  systems-thinking-style  understanding  (i.e.,  understanding  how  component  parts  of  a  system  drive 

 overall  system  behavior)  of  the  data-generating  process  behind  an  epidemic.  As  we  will  see  below,  it  turns 

 out  that  on  a  naive  approach  to  the  selection  and  preparation  of  training  data,  the  deep  learning  models  we 

 study  here  have,  at  best,  a  limited  ability  to  instantiate  this  kind  of  systems-thinking  approach  to 

 understanding  an  epidemic.  In  what  follows,  we  illustrate  these  limitations  of  a  naive  approach,  before 

 showing  how  an  approach  that  takes  more  seriously  how  the  insights  gleaned  from  a  causal  loop  diagram 

 can inform our selection of training data and reduce underspecification in the deep learning pipeline. 

 Using Deep Learning to Understand an Epidemic: The Naive Approach 

 As  per  the  diagram  in  Fig.  2,  the  first  step  in  the  machine  learning  pipeline  is  to  understand  the 

 problem  to  be  solved.  In  our  case  study,  this  is  straightforward:  we  want  to  use  more  fine-grained  features 

 of  an  epidemic  that  are  observed  over  a  given  time  interval  to  determine  the  overall  polarity  of  the  level  of 

 infections  over  the  same  time  interval.  Following  the  arrows  of  the  diagram  in  Fig.  2,  the  next  step  is  to 

 formulate  this  more  precisely  as  a  problem  for  deep  learning.  One  natural  rephrasing  of  our  problem 

 statement  for  deep  learning,  which  we  will  adopt  here,  is  the  following:  can  we  train  a  neural  network  to 

 predict,  based  on  more  fine-grained  observations  of  an  epidemic  system  across  a  time-step  interval,  the 

 polarity of the level of infections across the same three-time-step interval? 

 Next,  we  enter  the  crucial  phase  of  selecting  and  preparing  training  data.  Following  the  naive 

 approach,  we  will  assume  that  our  training  data  consist  of  pairs  in  which  the  first  element  represents  the 

 observed  numbers  of  susceptible,  infected,  and  recovered  people  in  the  population  across  three  time  steps, 

 and  the  second  element  consists  of  a  single  number  representing  the  polarity  of  the  level  of  infections 

 over  the  same  time  step  interval.  To  actually  generate  this  data,  we  first  assume  that  numbers  of 

 susceptible,  infected,  and  recovered  people  in  the  population  are  generated  by  the  following  set  of 

 differential  equations,  where  is  the  birth  rate  in  the  population  at  time  t  ,  is  the  death  rate  in  the 
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 population  at  time  t  (note  that  because  the  epidemic  is  assumed  to  be  non-fatal,  this  death  rate  is  the  same 

 across  the  populations  of  susceptible,  infected,  and  recovered  people),  is  the  recovery  rate  in  the 

 population  at  time  t  ,  is  the  average  number  of  interactions  between  susceptible  and  infected  people 

 at time  t  , and  is the total size of the population: 

 We  assume  further  that  at  each  time  step  the  birth  rate,  death  rate,  recovery  rate,  and  average  number  of 

 interactions are generated by sampling from the following probability distributions: 

 Equipped  with  these  equations,  we  use  the  ODEInt  Python  package  to  simulate  100  epidemics,  each  with 

 100  time  steps.  All  simulations  assume  a  population  size  N  of  one  million  people,  and  are  initialized  at 

 N-1  susceptible  people,  one  infected  person,  and  zero  recovered  people.  At  each  time  step,  we  record  the 

 number  of  susceptible,  infected,  and  recovered  people  in  the  population,  and  for  each  three-time  step 

 interval,  we  record  the  polarity  of  the  level  of  infections  in  the  population.  This  yields  9,800  pairs  in 

 which  the  first  element  is  a  nine-component  vector  representing  the  numbers  of  susceptible,  infected,  and 

 recovered  people  in  the  population  at  each  of  the  three  time  steps  in  an  interval  and  the  second  element  is 

 a  single  number  representing  the  polarity  of  the  level  of  infections  over  that  same  interval.  Note  that  while 
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 we  use  simulated  data  here,  if  one  had  access  to  real-world  SIR  data  from  an  epidemic,  one  could  use  that 

 data to prepare a similar training set. 

 Moving  to  the  next  phase  of  the  deep  learning  pipeline,  we  trained  a  multi-layer  perceptron  (a 

 common  type  of  neural  network)  with  one  hidden  layer  on  all  9,800  of  our  synthetically-generated 

 training  data  points.  1  The  training  accuracy  was  69%,  suggesting  that  the  neural  network  model  learns  to 

 predict  the  overall  polarity  of  the  level  of  infections  from  more  fine-grained  SIR  data  at  a  rate 

 significantly  above  chance,  at  least  when  confined  to  the  context  in  which  training  data  is  generated  (in 

 the  training  data,  the  polarity  of  the  rate  of  infections  is  positive  46.67%  of  the  time  and  negative  53.33% 

 of  the  time).  Note  that  because  the  training  accuracy  is  also  far  below  100%,  we  can  also  conclude  that 

 the  neural  network  has  not  learned  the  mathematical  formula  for  calculating  the  overall  polarity  of  the 

 level  of  infections  from  SIR  data,  but  has  instead  learned  a  (relatively)  reliable  statistical  pattern  linking 

 combinations  of  values  of  SIR  data  to  the  polarity  of  the  level  of  infections,  which  it  then  exploits  to 

 classify the overall polarity of the system. 

 Finally,  we  move  to  the  evaluation  phase  of  the  deep  learning  pipeline.  Here,  we  seek  to  evaluate 

 the  performance  of  the  model  trained  on  our  training  data  when  it  is  given  inputs  generated  by  a 

 structurally  similar  but  distributionally  distinct  data-generating  process.  That  is,  we  generate  simulated 

 data  using  the  same  differential  equations  as  above,  but  with  the  birth  rate,  death  rate,  recovery  rate,  and 

 average number of interactions sampled from the following new distributions: 

 1  Code and results for all computation experiments can be viewed in an open repository at: 
 https://osf.io/zb27c/?view_only=3b57e60d514a43fe9117697f334a8be8  . 
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 We  simulate  twenty  of  these  out-of-distribution  epidemics,  and  test  the  performance  of  our  neural  network 

 that  was  trained  on  the  in-distribution  data  when  it  comes  to  using  out-of-distribution  data  to  classify  the 

 polarity  of  the  epidemic  over  a  given  interval.  The  average  accuracy  across  the  twenty  epidemics  is 

 51.86%,  which  is  not  significantly  above  chance.  We  take  this  as  evidence  that  the  deep  learning  pipeline 

 described  here,  which  uses  a  naive  approach  to  the  selection  and  representation  of  training  data,  is 

 underspecified.  Despite  finding  a  weight  vector  that  allows  it  to  achieve  some  degree  of  accuracy  on 

 in-distribution  data,  the  accuracy  of  a  model  parameterized  by  those  weights  evaporates  when  we  move  to 

 an  out-of-distribution  setting.  This  suggests  that  whatever  patterns  the  model  was  exploiting  in  order  to 

 classify  the  overall  polarity  of  the  level  of  infections  based  on  more  fine-grained  SIR  data,  those  patterns 

 were  specific  to  the  distributions  used  to  generate  the  parameters  of  the  model,  rather  than  to  the 

 underlying  structure  of  the  data-generating  process  captured  by  the  differential  equations.  In  what  follows, 

 we  explore  how  an  approach  inspired  by  system  dynamics  allows  us  to  achieve  significantly  better 

 performance on the same fundamental problem. 

 Using Deep Learning to Understand an Epidemic: The Component Loop Approach 

 We  now  re-run  the  deep  learning  pipeline  in  a  manner  designed  to  specifically  integrate  a 

 system-dynamics-inspired  approach,  in  which  a  key  part  of  understanding  a  system  is  understanding  how 

 the  polarities  of  the  system’s  various  component  loops  constrain  overall  loop  behavior.  The  first  two 

 stages  of  the  pipeline  are  unchanged  from  the  naive  approach:  the  fundamental  problem  to  be  solved  is 

 still  to  use  more  fine-grained  features  of  an  epidemic  that  are  observed  over  a  given  time  interval  to 

 determine  the  overall  polarity  of  the  level  of  infections  over  the  same  time  interval,  and  the  formulation  of 

 that  problem  for  machine  learning  is  still  to  train  a  neural  network  to  predict,  based  on  more  fine-grained 

 observations  of  an  epidemic  system  across  a  time-step  interval,  the  polarity  of  the  level  of  infections 

 across the same three-time-step interval. 

 However,  once  we  reach  the  stage  where  we  select  and  prepare  training  data,  we  begin  to 

 incorporate  novel  insights  from  system  dynamics.  At  a  high  level,  our  goal  is  to  use  both  our  knowledge 

 of  the  structure  of  the  differential  equations  from  the  SIR  model  and  a  loop-polarity  based  approach  to 



 improve  the  robustness  of  our  pipeline.  To  do  this,  we  run  the  same  simulations  as  before,  only  now  we 

 save  both  the  SIR  data  (i.e.,  the  numbers  of  susceptible,  infected  and  recovered  people  at  each  time  step), 

 and  the parameters of the differential equations (i.e., the birth rate, death rate, recovery rate, and average 

 number  of  interactions  at  each  time  step).  Using  these  data,  we  calculate  the  accumulations  in  each  of  the 

 six  unique  summands  on  the  LHS  of  each  of  the  differential  equations  at  a  given  time-step,  using  the 

 following equations: 

 Looking  at  a  causal  loop  diagram  of  the  epidemic  system  defined  by  our  SIR  model  (Fig.  3),  one  can  find 

 a  correspondence  between  these  accumulations  and  the  six  main  loops  that  compose  the  epidemic  system 

 being  simulated.  Beginning  with  Loop  1/Accumulation  1,  we  can  see  that  as  the  number  of  susceptible 

 people  changes,  so  too  does  the  accumulation  of  the  multiple  of  the  birthrate  and  the  population,  which  in 

 turn  affects  the  number  of  susceptible  people.  In  the  case  of  Loop  2/Accumulation  2,  we  note  that  as  the 

 number  of  susceptible  people  increases,  so  too  does  the  accumulation  of  the  total  number  of  people  who 
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 have  died  during  the  epidemic,  which  in  turn  affects  the  number  of  susceptible  people.  One  could  give 

 analogous  reasoning  for  all  six  loops/accumulations,  to  demonstrate  the  correspondence  between  these 

 loops and the accumulations in our model. 

 Having  calculated  these  accumulations,  we  next  calculate  the  polarity  of  each  accumulation  over 

 the same three-time-step interval using the formula: 

 This,  in  turn,  enables  us  to  compile  our  training  data.  Each  training  datum  is  a  pair  whose  first  element  is 

 a  six-component  vector  representing  the  polarity  of  each  of  the  accumulations  listed  above  over  a 

 three-time-step  interval  (which  we  calculate  for  each  interval)  and  whose  second  element  is  a  single 

 number  representing  the  polarity  of  the  overall  level  of  infections  across  the  same  three-time-step  interval. 

 Note  that  our  calculations  of  the  loop  polarities  for  each  component  loop  of  the  system  are  what,  in  the 

 machine  learning  literature,  are  called  “manually  engineered”  features,  since  they  are  calculated  by  human 

 researchers  from  the  data,  rather  than  merely  being  read  off  of  the  raw  data  (Verdonck  et  al.,  2024).  Our 

 goal  is  for  a  neural  network  to  learn  the  systematic  relationship  between  the  polarities  of  these  component 
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 loops  of  the  epidemic  system  and  the  overall  polarity  of  the  level  of  infections.  If  such  learning  is 

 possible,  then  it  will  show  that  the  model  is  capable  of  inferring  macro-level  behavior  from  the  behavior 

 of  a  system’s  component  parts,  provided  that  those  components  are  appropriately  represented  in  the 

 training data. 

 Having  prepared  our  training  data  in  this  way,  we  again  train  a  multi-layer  perceptron  with  one 

 hidden  layer  on  this  new  training  data  set.  The  training  accuracy  on  this  data  is  much  improved  from  the 

 naive  approach,  reaching  98.86%.  Most  importantly,  when  we  move  to  the  evaluation  phase  of  the  deep 

 learning  pipeline  and  generate  twenty  out-of-distribution  epidemics,  we  find  that  the  average  accuracy  of 

 our  newly-trained  model  when  it  comes  to  predicting  the  polarity  of  the  level  of  infections  for  a  given 

 three-time-step-interval  is  74.41%.  This  constitutes  a  highly  significant  difference  in  OOD  accuracy 

 between  the  model  trained  on  loop  polarity  data  and  the  model  trained  via  the  more  naive  methodology. 

 See  Fig.  4  for  a  comparison  of  the  accuracy  of  the  two  approaches  when  applied  to  OOD  data.  Thus,  we 

 produce  evidence  showing  that,  by  manually  engineering  our  training  data  using  a  perspective  rooted  in 

 causal  loop  dynamics,  and  in  particular  the  relationship  between  the  component  loops  of  a  system  and 



 overall  system  behavior,  we  can  significantly  reduce  the  brittleness  of  our  models,  suggesting  a  similarly 

 significant reduction in the degree to which our model-production pipeline is underspecified. 

 Discussion 

 Our  findings  from  this  computational  experiment  have  broader  implications  for  the  optimal 

 functioning  of  the  machine  learning  development  pipeline.  As  discussed  throughout  this  paper,  at  a  high 

 level  of  abstraction,  a  typical  workflow  in  developing  deep  learning  applications  involves:  1)  observing 

 data  from  a  system,  2)  devising  a  mathematical  representation  of  that  data,  3)  training  a  neural  network 

 model  on  that  data,  and  4)  using  that  data  to  make  OOD  classifications.  Our  results  demonstrate  the 

 importance  of  data  representation  in  the  success  of  this  pipeline.  Choices  that  we  make  about  how  data  is 

 represented  as  it  is  measured  and  collected  influence  the  training  of  neural  network  classifiers,  which  in 

 turn  influence  the  success  of  these  models  in  OOD  testing  scenarios.  Importantly,  implementing  the 

 polarity  scheme  for  representing  data  requires  domain  knowledge  of  the  kind  that  is  emphasized  in  the 

 practice  of  system  dynamics  .  Namely,  one  must  know  the  summands  of  the  ODEs  that  represent  the 

 dynamics  of  a  system,  recognize  their  accumulations  as  corresponding  to  the  feedback  loops  that  compose 

 the  overall  data-generating  system,  and  know  that  measuring  their  polarity  is  key  to  inferring  the  overall 

 polarity  of  the  number  of  infected  people.  This  is  a  perspective  on  the  data  that  requires  some  background 

 in  epidemiology  and  the  modeling  of  dynamical  systems;  unlike  the  raw  data  representation,  it  cannot  be 

 measured from an entirely naive perspective on the nature of the data-generating process. 

 The  perspective  on  the  nature  of  dynamical  systems  that  recommends  decomposing  those  systems 

 into  feedback  loops  and  measuring  the  polarity  of  those  loops  is  not  one  that  is  well-represented  in 

 existing  deep  learning  practice.  The  results  here  indicate  that  in  at  least  some  contexts,  this  perspective 

 should  be  represented,  as  it  can  enable  data  representations  that  allow  for  more  accurate  classification  of 

 OOD  data.  To  this  end,  we  recommend  that,  throughout  the  development  of  the  deep  learning  pipeline  and 

 the  development  of  artificial  intelligence  applications  more  broadly,  developers  should  draw  on  the 

 literature  in  system  dynamics.  They  should  also  receive  input  -  in  the  form  of  causal  theories  -  from 

 system  dynamics  practitioners,  problem  domain  experts,  and  stakeholders.  This  is  especially  true  in  the 



 data  representation  stage  of  the  pipeline,  where  the  emphasis  is  not  on  designing  optimal  architectures  for 

 function  approximation,  but  is  instead  on  how  to  interpret  and  optimally  represent  the  outputs  of  a 

 data-generating  process.  It  is  at  this  earlier  (but  still  deeply  important)  stage  that  domain-specific  causal 

 theories  with  reduced  epistemic  uncertainty  about  the  nature  of  the  data-generating  can  be  leveraged  to 

 enable better OOD performance. 

 Conclusion 

 There  are  several  avenues  for  future  work  that  build  on  our  findings  here.  First,  we  note  that  the 

 polarity  framework  is  just  one  example  of  the  many  ways  that  experts  in  system  dynamics  have 

 formalized  the  concept  of  understanding  system  behavior.  In  future  work,  we  aim  to  explore  whether 

 other  SD-inspired  methods  can  show  similar  fecundity  in  reducing  underspecification  in  deep  learning. 

 Second,  we  plan  to  extend  our  results  beyond  the  synthetic  setting,  demonstrating  similar  performance  for 

 the  results  presented  here  on  real-world  data  sets.  Finally,  while  we  have  demonstrated  the  feasibility  of 

 our  approach  in  a  specific  case  study,  we  hope  in  the  near  future  to  both  extend  our  approach  to  other 

 dynamical  systems  beyond  the  SIR  model,  and  to  provide  a  theoretical  guarantee  or  closed-form  proof  of 

 the  general  ability  of  the  polarity  framework  to  improve  out-of-distribution  classification  of  system 

 behavior. 
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