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The Bottom Line Up Front
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• Automate the process of analyzing the collective 
mental models of a group from text.

• Increase efficiency and scale-up analysis for 
larger samples and groups.

• Utilized generative artificial intelligence (AI), 
network science, and clustering.



There are also implications for group model building and thus system dynamics 
modeling.

Mental models

• Help simplify the world; help “make sense” of it
• Implicit: includes beliefs, assumptions, and preferences
• Influence our daily decisions

• People have different mental models: 
A major barrier for shared understanding, 
organizational learning, and collective decision 
making. 
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internal, cognitive representation of how one understands and 
interprets the world around them (Forrester 1971, Senge 2000).



Gathering and analyzing mental models can be difficult to do for several reasons.

Grand challenge:
How to analyze a group of mental models
• Multiple ways to collect people’s mental models

• Surveys, interviews, games, vignettes, text data
• Analyzing mental models is labor intensive (Kim, 

2009; Kim & Andersen, 2012)
• Strengths and weaknesses of different analysis 

techniques
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Method
1. Employ a network science approach to analyze a large set of 

mental models derived from text data
• Transition from text to maps, and from maps to causal matrices
• Compare the matrices
• Apply community clustering to matrices

• To showcase: we collect data from a sample of participants
2. Validate our approach by comparing our identified clusters 

with clusters derived from a different survey
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Which demographic and other validation to collect was informed by previous studies. 
See Davis et al. (2023) and Liu et al. (2024). 

Data collection
• We gather data from Eng. Undergraduate students at Virginia Tech
• Each individual received this prompt: 

“What effects do you think ChatGPT will have on the world? In 
your own words, please write a few sentences to a paragraph 
describing these factors and impacts.” 

• Response rate: n=64
• Also collected demographic and psychographic data
• And asked them about their response, e.g. what was important to them as 

they responded
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The System Dynamics Bot (SD Bot) takes text as input and identifies variables and 
causal relationships. See Hosseinichimeh, N., Majumdar, A., Williams, R. and 
Ghaffarzadegan, N. (2024), From text to map: a system dynamics bot for constructing 
causal loop diagrams. Syst. Dyn. Rev., 40: e1782. https://doi.org/10.1002/sdr.1782.

From text to map: SD Bot utilized
Example 1:
“I think it can bring about laziness. 
LinkedIn nowadays sounds like all the 
same person. I do think it help save 
time in multiple ways.” 

Example 2:
“I think that people will have a hard 
time writing and coming up with their 
original ideas. As a result, we as a 
society will regress in our ability to 
communicate effectively without the 
aid of technology. People will also 
become more impatient when it comes 
to researching answers on their own.” 
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Causal matrix construction
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We turn each text/map to one matrix.

Variable names ChatGPT 
use (it) Laziness Time 

spent …. …

ChatGPT use (it) 0 1 -1 0 0

Laziness 0 0 0 0 0

Time spent 0 0 0 0 0

… 0 0 0 0 0

… 0 0 0 0 0
Variables used by 

others but absent in 
this response

1 for increase, -1 for decrease, 
0 for no effect/mention

Text
“I think it can bring about 
laziness… I do think it helps 
decrease time spent in 
multiple ways.” 

ChatGPT use à(+) laziness
ChatGPT use à (-) time spent



From matrices to shared maps
So far: one matrix per individual with the same variable labels in order
Consider these two matrices (coming from two individuals, 𝐴! and 𝐴"): 

𝐴! =
0 −1
1 0 	 and 𝐴" =

0 0
1 0 	

Collective map of the two: 𝐴! +𝐴" =
0 −1
2 0

-- shows one of the causal links is more commonly mentioned

Scaling up: A collective map can be plotted by calculating
∑!"#$ 𝐴!  

Let’s check our dataset of n=64 è
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A section of the collective mental map from these participants. Color and link 
thickness indicate number of mentions. For example, several participants mentioned 
that an increase in “chatgpt use” would result in an increase in “laziness.”
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Collective Mental Map



Zooming out on more of the collective mental map.
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Collective Mental Map



The entire collective mental map. Some variables were only mentioned once (on the 
right).
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Collective Mental Map



Using matrices to cluster individuals
Consider again these two matrices (two individuals, 𝐴! and 𝐴"): 

𝐴! =
0 −1
1 0 	 and 𝐴" =

0 0
1 0 	

Calculate the distance between the two:     𝐴! −𝐴" =
0 −1
0 0

• This says there is one link that they disagree on
• But they agree on the other link
• We define the distance between these individuals, 𝐴! and 𝐴" as |-1|=1

Scaling up: The distance between any pair
𝐴$%$ = [𝑎!&] and 𝐵$%$ = [𝑏!&],  is  ∑𝒊,𝒋𝒏 𝒂𝒊𝒋 − 𝒃𝒊𝒋

• Let’s check our dataset of n=64 è
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Network representation
• The nodes are people
• The edges are distances

• People who think similarly
  are closer in the network
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Generated Network of Mental Models



The colors represent the results of community detection / clustering.

16

Generated Network of Mental Models



We uploaded the original text along with a community/cluster label and asked 
ChatGPT for help in categorizing these two clusters.
Interestingly, in this group of participants, the second (orange) cluster is partly 
defined by not being in the first (maroon) cluster.

Two communities were detected
• Skeptical Realists  (21 members; maroon)

Express concerns about the potential negative impacts of 
ChatGPT, particularly for students, while acknowledging 
the practical benefits.

• Revolutionary Change  (23 members; orange)
See ChatGPT as a transformative tool that will bring 
significant positive changes to the way work is conducted.
Many have unique individual thoughts different from the 
Skeptical Realists.
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If we can predict the clusters separately using the other data we collected 
(demographics, own response categorization, etc), then that would provide evidence 
supporting the validity of this new approach.

So far
• We used Generative AI to analyze mental models of 
a group members, depict collective mental model, 
and cluster them

• Validation question: Are these clusters revealing 
anything? 
• We use a logistic regression model to predict 
community membership using other data
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Interesting that the clusters were defined in part by concerns for students, while in 
the model variables for the importance of ethics while one was answering, 
categorizing one’s own response as being about ethics, seeing AI as a threat, and 
applications (education is an application) were significant predictors. The model is 
evidence for the validity of the new approach.

The model can predict community

  *statistically significant at the 95% confidence level (alpha = 0.05)
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Variable Coefficient Estimate p-value
ImportanceEthics* -1.86 0.033*
ImportanceApplications* -2.12 0.028*
CategoryEthical* 2.73 0.048*
ThreatAI* -1.42 0.014*
CurrentChatGPT* -3.85 0.028*
WorkExperience -0.60 0.094^    
USCitizen 2.05 0.154^ 
FrequencyChatGPT* 1.73 0.028*
Woman 1.55 0.087^

Response Categorization Psychographics Demographics



The SD Bot allows analyzing text at large scales and will only continue to 
improve.

Key takeaways from this work:
• Offers a different approach for analyzing a group of 
textual mental models, employing automation for 
efficiency and scale.

• Contributes to the literature of systems thinking and 
social learning.
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Thank you!
Are there any questions?

Correspondence to:
Sami Nour

srnour@vt.edu
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