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Abstract

There are typically two important questions addressed via the model calibration process:
(1) does the time series of the fitted model match to the historical data; and (2) can reliable
parameter estimates be inferred that are bounded within credible intervals. The evolution
of Markov Chain Monte Carlo (MCMC) methods provide powerful methodological and
computational frameworks for parameter estimation, and recent studies confirm the
value of the Hamiltonian Monte Carlo approach for system dynamics models. This paper
addresses an important research question for the calibration process, namely: what is the
impact of data availability and indicator coverage on parameter estimation. It presents
a 3 x 7 factorial study based on an SEIR model with cases, hospitalisations, and deaths.
An exploratory analysis is presented, where all models converge. Our results highlight
differences for a number of posterior distributions calculated, depending on the data
availablity, and the set of indicators used.
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1 Introduction

In system dynamics, models must be grounded in data if modellers are to provide
reliable advice to decision makers, and as part of this, robust parameter and confidence
interval estimation is crucial [I]. There are a number of computational methods that
can be used to fit models and estimate parameters. These include: (1) the use of
numerical optimisation combined with bootstrapping for confidence interval estimation
and hypothesis testing in system dynamics models [2]; and (2) Markov chain Monte Carlo
(MCMC) approaches to estimate the posterior distribution for parameters, a statistical
approach that has gained significant adoption in the system dynamics community in
recent years [3 4l Bl [6, [7, 8, @].

Our approach in the paper is to fit an SEIR model (based on synthetic data) using
Hamiltonian Monte Carlo (HMC) [5], in order to gain insights into the how the availability
of data (through epochs and indicators) impacts the overall credible intervals ranges
for model parameters. Our choice of the three indicators is motivated by the benefits
of having more than one indicator to calibrate a model, for example, to help migitate
against reporting biases that would be a factor in real-world implemntations [10].

As part of our analysis we also introduce a new evaluation method for comparing
posterior distributions, known as overlapping, and this provides useful insights into the
sensitivity of parameter estimation to the availability of data.

The structure of the paper is as follows:

e We introduce the SEIR model structure and overall experimental design, which
involves 21 experiments;

e We present an open-source computational framework, mainly written in R, and
also using the Stan HMC package;

e We present a detailed set of results, including: convergence tests, model fits,
descriptive summaries of fits; 95% quantile analysis; and, overlapping analysis for
all 21 experiments.

e The appendices include: (1) a sample stan file for inference of cases, hospitalisations,
and deaths; (2) the main script file for running experiments; (3) the configuration
file for the experiments; and (4) the code comparing the posterior distributions.

2 Model Structure and Experimental Design

2.1 Model Structure

The model used is an extension the well-known deterministic SEIR structure [I1], and is
shown in Figure |1l People start out as being susceptible to a novel pathogen, and with

the introduction of patient zero to the infectious (I) stock, the contagion loop is activated.

People then move to an exposed (E) stock, where they do not contribute to the force
of infection (A), before entering an infectious state. Once in an infectious state people
contribute to the force of infection (), before exiting via a first order exponential delay
structure. A certain proportion of those infected have symptoms (clinical fraction), and
a proportion of infectious are hospitalised, while the remainder recover. Hospitalisation
is modelled as a third order delay structure, and 90% of those hospitalised recover, while
10% do not and move to the deaths stock (D). Three stocks (TC, TH, and TD) are used
to record the cumulative numbers of cases, hospitalisations, and deaths.

Equations (1-6) for the main SEIR structure are shown below. The parameters o
and ~y represent the inverse of the latent and infectious delays, ¢ is the clinical fraction,
and h is the hospitalisation fraction. The model assumes that only those who show

May 18, 2024

229

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46



@
Q ‘*/ Bola Param
" Lamibda -_-""--.,___ ima Para
P @ T
& P K]= E + 2 ¥ D = = ]
- — __.-'x.’ T

b - - —_
> -
o - =
- -
e
T — -~ = AH

I+

= - +
cF
T
7
I
) 0
Ly +
/ ™ i
I
.
™ TN
= [N

Fig 1. An SEIR Influenza Model with Hospitalisations and Deaths

symptoms can end up in the hospital stream. The force of infection A is calculated based
on product of the effective contact rate () with the number of infectious (I), divided
by the total population (N).

S=-\S (1)

E=\S-0E (2)

I=0FE —(1—ch)yI — chyl (3)

R=(1-ch)yI (4)
I

r=pL 6

B=1.0 (6)

The hospitalisation stream is modelled via equations 7-13. It involves a straightforward
sequence of stocks that model people staying in hospital, with the average length of
stay (L) set to 10 days. The hospitalisation rate is governed by the fraction ch exiting

the infectious stock, and therefore for this model, that will evaluate to 0.6 x 0.1 = 0.06.

Upon exiting hospital, (1 — d) move to the stock Ry, while the fraction d move to the
stock D.
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Ry =(1-d)= (10)
Ls
Hj
D=d— 11
. (1)
L
L=10 (13)

As part of the inference process, we need to generate incidence rates for cases,
hospitalisations, and deaths, and these numbers are initially recorded as cumulative
(stock) values (14-16).

To = coE (14)
Ty = chyl (15)
Hj
Tp =d— 1
p=dz (16)

The difference values are calculated as follows (17-19), and these values are then used
as part of the data fitting process.

Xc(t+1)=Tc(t+1) —Tc(t) (17)
Xpt+1)=Tg(t+1)—Ty(t) (18)
Xp(t+1)=Tp(t+1)—Tp(t) (19)

The statistical distributions (count data) used for the fitting process are shown in
equations (20-22), and this is appropriate given that the synthetic data generated for the
three indicators in based on the negative binomial distribution. Note that, depending
on the experiment, a subset of these will be used.

Yo ~ Nbin(X¢, ¢1) (20)
Yy ~ Nbin(Xg, ¢2) (21)
Yp ~ Nbin(Xp, ¢3) (22)

The model parameters for the experiments are shown below. Two of these are based
on the literature relating to pandemic influenza [12], and the remaining values are
arbitrary choices used as part of the experimentation process. Four of these parameters
(8, ¢, d and h) will be estimated as part of the MCMC inference process.
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Fig 2. Sample synthetic data generated for the experiments

Name Symbol | Value | Units Source
Latent Duration ot 2.0 | Days Vynnycky et al. [12]
Infectious Duration 1 2.0 | Days Vynnycky et al. [12]

Effective Contact Rate 8 1.0 Days—! | Model estimate
Clinical Fraction (CF) c 0.60 | Dimn Model estimate
Death Fraction (DF) d 0.10 | Dimn Model estimate
h
L

Hospitalisation Fraction (HF) 0.10 | Diml Model estimate
Average Length of Stay 10.0 | Days Model estimate

2.2 Experimental Design

The overall aim of the experimental design is to explore the possible effect of data
availability and indicator coverage on the fitting process. The SEIR model was run
once, and synthetic data generated, as shown in Figure [2] This synthetic data was
based on the SEIR model values generated (17-19), and different levels of variation were
introduced via the negative binomial dispersion parameter, where values of 10, 20 and
40 were used respectively for cases, hospitalisations, and deaths.

With three data sets available, a factorial-type set of experiments was designed based
on:

e Three epochs of equal length, one for the start of the epidemic, one for the middle
duration, and one for the end. These are shown on the figure, and capture different
dynamic phases (e.g. exponential growth, inflection point, peak, and decline) for
each indicator.

e Seven combinations of indicators based on the indicators cases (C), hospitalisation
(H), and deaths (D). This yielded the subsets: (CHD,CH,CD,HD,C,H,D).

The combination of epochs (3) and indicators (7) were then combined to run 21 exper-
iments, which involve fitting the parameters to different data sources. The computation
framework for this process is now described.
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Fig 3. Overall framework for experiments

3 Computational Framework

Figure 3 captures the overall computational framework used to configure the experiments,
generate the results, and produce the analysis. In order to execute this workflow, which
is open-source and designed using R [I3], [14], a number of additional components were
required:

e Stan [I5], a statistical modelling platform, which provides an interface to perform
Bayesian inference via the No-U-Turn-Sampler (NUTS). Stan models can contain
ordinary differential equations, and is used to perform inference for deterministic
models of infectious disease [5], 6], [7]

e cmdstanr [I6], which is a lightweight interface to Stan for R users.

e readsdr [I7], a package that automatically converts XMILE files from Stella and
Vensim to Stan code.

e R’s tidyverse packages, specifically dplyr for data manipulation, ggplot2 for
visualisation and tidyr for nesting data frames, a feature that allows the results
to be conveniently organised into a 21 by 12 table.

The overall framework is divided into three main functions.

e Generate Synthetic Data, which runs the SEIR model using the package
readsdr for one instance, and is based on the differencing of the three indicator
stocks (see equations 13-15). The negative binomial distribution is used to generate
random count variables based on the model outputs. For this experiment, the
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dispersion parameters selected are (10, 20, 40) for (Cases, Hospitalisations, and
Deaths). A sample run from the synthetic data generation process is shown in

Figure [2|

e Estimate Parameters, which performs the fitting process. For each experiment,
this will (1) use readsdr to generate a stan file, (2) run the stan file using the
cmdstanr interface, and (3) prepare and store all of the results in a single multidi-
mensional data structure. This structure will contain one row for each experiment,
and encapsulate variables such as the number of indictors, the measurement model,
the data used for the calibration, the posterior samples for each parameter (4,000
each), the time series output for each model run, and the duration of the run.
Given the computational resources needed to run the fitting, an advantage of
storing all the results in a database (RDS file used) is that the analysis stage can
then be conducted independently.

e Analyse Results, which provides a number of scripts to generate a range of
results to support analysis. These include: trace plots to explore convergence;
time series showing the fits; boxplots highlighting the parameter distributions
across all 21 experiments; quantile analysis to show the 95% credible intervals from
the inference process; and overlap analysis to provide insights into how close the
posterior distributions are for each combination of epoch and indicator.

The results are now presented in more detail.

4 Results

Overall, the inference process for the 21 experiments generates over 273MB of data, so
there is a wide range of analysis that can be performed. Given that the overall goal is to
explore possible differences in parameter estimates, our analysis comprises the following
stages:

e Presentation of convergence tests for each parameter over the four MCMC chains,
for each of the 21 data configurations.

e Exploring of the model fits, to confirm that the parameter estimates generate
plausible dynamic behaviour for each model.

e Boxplots to highlight the distribution of inferred parameters, and to see how the
estimates line up with the original values used to construct the synthetic data sets.

e Overlapping analysis, defined as the area intersected by two or more probability
density functions [I8|, [19], to provide a measure of how close the estimates are
across each of the 21 experiments.

4.1 Convergence Tests

Our first analysis, capture in Figure [d] displays the trace plots showing how the estimates
of the parameter values change over the MCMC process. Four MCMC chains are run,
with 1000 iterations for the warm-up phase, and 1000 for the sampling process. The
goal is to ensure that a stationary distribution is achieved for all parameters [5], and
this is achieved, and confirmed by analysing the output from stan, which showed no
divergences within all the samples. This chain convergence is an important property of
the inference method. However, the plots can also illustrate interesting properties of the
fitted parameters. Through observation, we can see the different ranges of the estimates,
for example:

May 18, 2024

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151



Parameter= CF Parameter= HF

Epachi-C Epoch1-LD Epochi-CH Epoch1-CHD Epochi D Epoch1-C Epoch1-LD Epachi-CH Epechi-CHD Epocht-D
jses i

Eposni-HD Epach2.C Epoch2LD Epoch.CH

Epochi-H Epach1-HD EpectdC Epoch.CD Epochd-CH

Egochz-D Epoch2-H Epochz-HD Epachd-C.
W o ) AR g
LpochdCH  GmehdCHD  Epochd-0 Epoch-H N
......... i 2iostariota) Zosori
Heration Iteration
Parameter= OF Parameters Beta_Param
EpechtC  Epoch1LD  EpochiCH  EpochiCHD  EpochiD Epohif  Epochi-CD EpochiCH Epochi-CHD  Epochid

EpochiH Epoch1-HD Epoch2C Epoth2CD  EpehlCH

EpochZ-CHD Epochi2-O Epoch2H EpochZ-HD EpochdC
2 10- r— 3

Meration Ieration

Fig 4. Exploring parameter convergence

e Experiments involving epoch one (the opening phase of the epidemic) typically
have wider ranges, which is as expected, as there is less data available to inform
the fitting process. For example, for the parameter HF (true value 0.1), the values
for Epoch1-C seem to cover the interval from 0 to 1.

e Experiments where the three indicators were used tend to have narrower bands,
which again is intuitive given that more information is available for the calibration
process. Returning to parameter HF, we can see that its values for Epoch1-CHD
remain much closer to the true value of 0.1.

A more detailed analysis of these parameter values will be explored through boxplots,
quantile analysis and overlapping analysis.

4.2 Model fits

An important requirement for calibration is that the model provides a plausible repre-
sentation of historical data, and in MCMC fitting we can also explore the time series
quantiles returned as part of the posterior distribution. From a process perspective,
having fits that align with historical data is needed to confirm that the model structure
can generate the behaviour of interest, and these outputs also can be deployed as a
confidence-building measure for modellers and clients. A sample of the fits are displayed
in Figure [} for the indicators Cases and Deaths, across three of the epochs. The mean
value from the MCMC samples is also shown, and overall, on visual inspection, these
look like good fits to the data.

An interesting aspect is what the fits do not show, which is the range of parameter
values underling the generated time series. For example, if you take the set of plots in
row 1 column 1 (epoch 1), and compare the fits for indicator C and indicators CHD,
there is not an observable distinction between both, in that both fits look plausible.
However, when we compare the parameters estimated for these two samples, differences
emerge. This can first be explored using boxplots.
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Fig 5. A sample of fits from the inference process

4.3 Boxplots of parameter estimates

The boxplot is a valuable method to summarise data, as it shows the median, the
interquartile range (IQR), the location of values 1.5 times above and below the 75th and
25th percentiles, and outliers. We use the boxplot as a means to compare parameter
values from all 21 experiments, and estimated across (1) each of the three epochs and
(2) all of the seven combinations of data indicators. The 84 boxplots are presented in
Figure[6] Our working assumption is that a narrower range indicates a more certain fit
(the 95% credible intervals are shown in the following section).
We can initailly observe a number of patterns from these descriptive statistics:

e Across all parameters, the narrowest parameter estimate ranges seem to be those
fits using the most indicators, and using the most data (i.e. epoch 3).

e The rate at which parameters “lose their narrowness” varies across both indicators,
and epochs. For example, the parameter § within epoch 3 retains a narrow range
for most indicator combinations, while the death fraction (DF) only retains a
narrow range using three indicators across epoch 1 and 2.

e Therefore, this highlights a difference depending on the epochs used, and the
indicators. For example, for parameter DF with indicators CHD, there is a large
difference in median and the overall spread of data across the three epochs.

4.4 Quantile analyis of fitted parameters

The plots displayed in the preceding section are useful to gain an overall appreciation
of the posterior distributions, and to supplement that analysis, it is important to show
the 95% credible intervals. For the four parameters, this information is presented in
Figure [7] and arranged in descending order by the difference between the upper and
lower quantiles.

For each of the fitted parameters, we can make the following initial observations:
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Fig 6. Box plot analysis for parameters by epoch and indicator source(s)

e Beta_Param, which models the effective contact rate within the population model.
The true value is 1.0, and many of the 95% ranges contain this value. A shift in
the range occurs for observation 14, and the experiment Epoch1-CH. From that
point onwards, 7 of the 8 experiments relate to epoch 1, showing that epochl is
prominent for fits with wider estimate ranges.

e Clinical fraction (CF), which is the fraction of cases that are clinical, with a true
value of 0.60. All of the estimates include this value, although a significant shift
in the range happens with experiment 9 (Epoch1-CHD). Prior to that, of the eight
experiments that have narrower bands, four are from epoch 2 and four from epoch
3. The four best are from epoch 3, which has the most data points used for the
calibration process.

e Hospitalisation fraction (HF), which is the fraction of cases hospitalised, with a
true value of 0.10. All values contain the true value within their range, however,
an observable widening of the range occurs from expertment 5 (Epoch1-CHD). Of
the four experiments with the narrowest interval, two are from epoch 3, and two
from epoch 2.

e Death fraction (DF), which is the fraction of hospitalisations that die, with a true
value of 0.10. Interestingly, the narrowest ranges (the first four experiments) do not
cover the true value at the 2.5% level, although the difference is small (e.g. 0.002
for Epoch2-CHD).

4.5 Overlapping analysis of posterior densities

Visual inspection of the parameter densities can be performed for each of the 21 experi-
ments. The aim is to identify fitted parameters that have different posterior distributions,
and explore possible reasons why this might be so. In Figure [§| we explore the posterior
densities for 8 and ¢ (the clinical fraction). The original model parameter values are
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EpindCode  Parameter Q_0.025 Median Mean Q_0.975 Q95Rang  EpindCode Parameter Q_0.025 Median Mean Q_0.975 Q95Range
1 Epochd-CH Beta Param 0991 0995 0895 1000 0009 1 Epoch3-CH  CF 0552 053 0598 0645  0.093
2 Epoch3.CHD Beta Param 0990 0995 0995 0899 0009 2 Epoch3CD  CF 0559 0603 0604 0655 0.0
3 Epoch3-CD Beta Param 0992 0998 0938 1003 0011 3 Epoch3CHD  CF 0550 0596 0597 0645 0095
4 Epoch3-C  Beta Paam 0893 0999 0999 1005 0012 4 Epoch3-C CcF 0560 0606 06807 0657  0.097

5 Epoch3-HD Beta Param 0984 0990 0890 099 0012 5 Epoch2-CHD CF 0.581 0647 0648 0721 0.140
6 Epoch3-H Beta Param 0983 0.990 0990 0997 0.014 & Epoch2-CH CF 0578 0644 0646 0723 0.145
7 Epoch2-CH Beta Param 0.981 0889 0989 0897 0018 7 Epoch2-C CF 0570 0639 0840 0OTI9 0.149

& Epoch2-CHD Beta_Param 0980 0988 0988 099 0016 & Epoch2-CD CF 0574 0644 0645 0727 0.153
9 Epoch2-H Beta Param 0873 0986 0986 0997 0022 & Epochi-CHD CF 0.360 0634 0634 0.808 0.548
10 Epoch2-CD Beta Param 0978 0890 0990 1.001 0023 10 Epochl-CH CF 0.358 0841 0641 D821 0.563
11 Epoch2-HD Beta_Param 0973 0885 0985 099 0023 711 Epochl-C CF 0346 0637 0639 0915 0.569
12 Epoch2-C  Beta Param 0830 0832 0892 1.004 0024 12 Epochi-CD CF 0.342 0835 08635 0820 0.578

13 Epoch3-D Beta_Param 0973 0887 0987 1.003 0030 713 Epoch3-HD CF 0077 0239 0284 0773 0.696
14 Epochi-CH Beta_Param 0928 0873 0876 1.038 0.111 74 EpochZ-HD CF 0078 0252 0301 0785 0.707
15 Epoch1-CHD Beta_Param 0930 0874 0877 1.041 0.111 15 Epoch3-H CF 0076 0249 0304 0787 0.711
16 Epochl-C  Beta Param 0930 0876 0979 1.046 0.116 76 Epoch2-H CF 0077 0254 0307 079 0713

17 Epochi-CD Beta_Param 0927 0874 0977 1.046 0.119 17 Epochi-HD CF 0072 0324 0359 0819 0.747
18 Epoch2-D Beta Param 0783 0858 0841 0989 0216 18 Epochd-D CF 0026 0216 0271 0775 0.749

19 Epochi-HD Beta Param 0827 0940 0944 1078 0.251 19 Epochi-H CF 0076 0344 0380 0842 0.766
20 Epochi-H Beta_Param 0815 0829 0833 1073 0.258 20 Epoch2-D CF 0.040 0273 0320 0829 0.789
21 Epochl-D Beta Param 0196 0571 0570 03848 0752 21 Epochl-D CF 0.091 0482 0487 089 0.807

EpindCode  Parameter Q_0.025 Median Mean Q_0.975 Q95Range  EpindCode Parameter Q_0.025 Median Mean Q_0.975 Q35Range
1 Epoch3CH  HF 0089 0100 0100 0111 002 1 Epoch3CHD  DF 0104 0121 0121 0140 0036
2 Epoch3-CHD HF 0.089 0088 0100 0112 0,023 2 Epeth3-HD DF 0.104 0122 0122 0141 0.037
3 Epoch2-CH  HF 0081 0083 0084 0107 0026 3 Epoch2-CHD  DF 0102 0122 0123 0146  0.044
4 Epoch2-CHD  HF 0081 0093 0093 0107 0026 4 Epxch2HD  DF 0103 0124 0124 0149 0046
5 Epoch1-CHD HF 0,073 0108 0110 0157 0,084 5 Epochi-HD DF 0.043 0.187 0222 0541 0.4%6
6 Epochi-CH  HF 0076 0413 0114 0163 0087 6 Epochl-CHD  DF 0045 0204 0227 0562 0517
7 Epech2-CD HF 0015 0,103 0178 0699 0.684 7 Epech2-CD DF 0.016 0112 0178 0676 0,660
5 Epoch3-HD  HF 0076 0248 0300 0760 0684 & EpochiCD  DF 0018 0139 0204 0701 0683
9 Epoch2HD  HF 0079 0244 0208 0769 069 9 Epach3CD  OF 0017 0117 0188 0718 0701
‘0 Epoch3-CD HF 0.016 011 0176 0713 0687 10 Epoch2-D DF 0.036 0251 0298 0.786 0.750
‘1 Epochz-H HF 0078 0239 0205 0784 0706 11 Epoch3-D OF 0027 0217 0273 0779 0752
2 Epochd-H HF 0076 0239 0294 0785 0709 12 Epoch2CH  DF 0104 0505 0502 0897 0793
'3 Epochi-CD HF 0.0s 0155 0218 0728 o710 13 Epoch2-C DF 0.104 0502 0503 0905 0.801
‘4 Epochi-HD  HF 0076 0319 0358 0811 0735 14 Epoch3-C OF 0097 0495 0498 0800 0,803
'5 Epochi-H HF 0080 0354 0384 0836 075 15 Epochl-D OF 0093 0478 0483 0897 0804
‘6 Epoch3-D HF 0.025 0221 0277 0.782 0.757 16 Epoch3-CH DF 0.096 0495 0483 0901 0.805
‘7 Epoch2-D HF 0033 0254 0308 0826 0793 17 Epochl-H OF 009 0497 0500 0906 0810
'8 Epoch3-C HF 0102 0498 0493 0835 0793 18 EpochiC oF 0084 0492 0495 0907 0813

‘#  Epoch2-C HF 0102 0501 0501 0.898 0.79%6 19 Epoch3-H DF 0.095 0513 0506 0912 0817
0 Epochi-D HF 0099 0452 0495 0.800 0.801 20 Epochi-CH DF 0090 0498 0484 0908 0.818
" Epochl-C HF 0084 0505 0501 0807 0823 21 Epoch2-H DF 0.088 0484 0485 0908 0.820

Fig 7. Summary of quantiles for parameters across the 21 experiments.
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Fig 8. Posterior density distributions for beta and the clinical fraction

indicated by the dotted vertical lines, and the density plots are divided into three epochs.
The purpose of these plots is to show the overall shape, however it should be noted that
the scales on the x axis are different. For example, that parameter range for Beta_Param
in epoch 3 is quite small, when compared to epochs 1 and 2. There seems to be more
variation for the clinical fraction parameter with an epoch, and across the three epochs.

While the visual inspection method is a useful way to explore differences, more formal
approaches can provide measurements to provide insights into the similarity between
distributions. One such method is overlapping, which defined as the area intersected by
two or more probability density functions [I9]. The R package overlapping [I§] is used
to calculate this measure for each fitted parameter, with comparisons made between
each of the 21 experiments. Output from an overlapping analysis of the parameter S is
shown in Figure

While we already mentioned that the range for epoch 3 is quite narrow for g
estimates, the data provided through this analysis is interesting. For example, the
highest overlapping value (98%) is between Epoch1-CHD and Epochl1-CH, where the
only difference between these data sets is the used of the deaths indicator. In general,
overlapping values of 90% or higher are associated with data sets from similar epochs,
which is a useful test of the fitting process.The lowest overlapping values are associated
with Epoch1-D, which would have the lowest amount of data (one indicator with 33 data
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points).

A second overlapping analysis for the hospitalisation fraction parameter is shown in
Figure and these show a range of values from a high overlapping fraction of 99%
(Epoch2-C with Epoch3-C), and low values of 2%, for example, between Epoch3-CH and
Epoch1-C. If we take Epoch3-CHD as a plausible experiment where you would expect
good estimations (given that it maximises the amount of data for calibration), it is
interesting to see that only one other experiment has a high level of overlap, namely,
Epoch3-CH.

Overall, the value of this overlapping algorithm is that it provides a similarity
measurement between the parameter posterior distributions. The measure indicates the
impact of data availability, and choice of indicators, on the fitting process. Potentially,
this approach could have value during the validation stages of parameter fitting, as a
means to explore teh relationships between data availability and parameter estimates.

On reflection, it would also have been useful to highlight the prior distribution on the
density graphs, just to confirm that the fitting process has been impacted by the available
data. For example, some of the posterior densities for the death fraction (Epochl), do
look quite similar to the prior Beta(2,2) distribution that was specified as part of the
stan inference model.

Further research could combine additional fitting metrics to bear on this process.

For example, the potential scale-reduction factor (R) [5] which compares within-chain
variance (stationarity) to between-chain variance (mixing). This could provide further
insights into how the overlap percentage could be used to indicate an acceptable level
of similarity between posterior distributions. Also, the use of additional unsupervised
machine learning methods such as clustering could be benefiical, as a way to explore
further patterns in the data.

5 Conclusion

In reflecting on the results, a valuable output (in additional to the visualisation and
exploratory analysis), is the calculation of the overlapping metric, whic presents a
similarity measure between the parameter estimates. The differences calculated indicate
that the MCMC fitting process is sensitive to (1) the amount of data in a time series

May 18, 2024

14/23

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276



(e.g. whether it is epoch one, two, or three), and (2) the number of indicators available
for the process (combinations of cases, hospitalisations, and deaths). On the broader
point, it also suggests that modellers must reflect on parameter estimates, and how the
ranges can vary depending on the amount of data available. Overall, despite impressive
technical advances in computational inference processes, parameter estimation remains
a challenging task in system dynamics; the following quote seems as relevant today as it
was in the early 2000s.

. limitations in numerical data availability mean it is often impossible to
estimate all parameters in a model. You must also develop the ability to esti-
mate parameters judgmentally using expert opinion gleaned from interviews,
workshops, archival materials, direct experience, and other methods.

— John D. Sterman [20]
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6 Appendix 1 - Stan model for CHD Indicators -

The following stan code was automatically generated by the package readsdr [I7] based 2o
on the Stella XMILE file. It embeds the system dynamics model (functions block), and 20
also adds code to calculate the incidence data (delta x 1, delta x 2, and delta x 3), 2
namely the earlier equations (17-19). The model block below comprises the parameters s
to be fitted, and also specifies the distributions for cases (C), hospitalisations (H), and 20
deaths (D). A separate stan file (seven in total) was created for each unique combination 20
of indicator (i.e., CHD, CH, CD, HD, C, H, and D). 206

// Code generated by the R package readsdr v0.2.0.9014
// See more info at github https://github.com/jandraor/readsdr

// SEIR Model in stan, direct translation from XMILE via readsdr
functions {
vector X model(real time, vector y, array[] real params) {
vector[12] dydt;
real ER;
real RR;
real HR1;
real HR2;
real HR3;
real RRH;
real RRD;
real Lambda;
real TCI;
real THI;
real TDI;
real TIH;
real Checksum;
real IR;
ER = y[2]%0.5;

RR = (1-params[1]*params[2])+*y[3]*0.5;
HR1 = params[1]*params[2]*y[3]*0.5;
HR2 = y[5]/(10/3.0);

HR3 = y[61/(10/3.0);

RRH = (1-params([3])*y[7]/(10/3);
RRD = params[3]*y[7]/(10/3.0);
Lambda = params [4]+*y[3]/1e+05;
TCI = params[1]*ER;

THI = HR1;
TDI = RRD;
TIH = y[5]+y[61+y[7];

Checksum = y[1]+y[2]+y[3]+TIH+y[4]+y[8]+y[9];
IR = y[1]+Lambda;

dydt[1] = -IR;

dydt[2] = IR-ER;

dydt[3] = ER-RR-HR1;

dydt[4] = RR;

dydt [5] = HR1-HR2;

dydt[6] = HR2-HR3;

dydt[7] = HR3-RRH-RRD;

dydt[8] = RRH;
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dydt[9] = RRD;

dydt[10] = TCI;
dydt[11] = THI;
dydt[12] = TDI;

return dydt;

}
}

// Data for the calibration process

data {

int<lower = 1> n_obs;
array[n_obs] int C;
array[n_obs] int H;
array[n_obs] int D;
array[n_obs] real ts;
vector[12] x0;

// Parameters to be fitted.
parameters {

real<lower = 0, upper

1> CF;

real<lower = O, upper = 1> HF;

real<lower = 0, upper

1> DF;

real<lower = 0> Beta_ Param;
real<lower = 0> inv_phil;
real<lower = 0> inv_phi2;
real<lower = 0> inv_phi3;

}

// Calling the SEIR model and extracting cases
transformed parameters{

array[n_obs] vector[12] x; // Output from the ODE

array[4] real params;

array[n_obs] real deltax_1;
array[n_obs] real delta x_2;
array[n_obs] real delta x_3;

real phil;

real phi2;

real phi3;

phil = 1 / inv_phiil;
phi2 = 1 / inv_phi2;
phi3 = 1 / inv_phi3;
params[1] = CF;
params[2] = HF;

params[3] = DF;
params[4] = Beta Param;

X =

ode_rk45(X_model, x0, 0, ts, params);

deltax_1[1] = =x[1, 10] - x0[10] + 1le-5;
deltax_2[1] = =x[1, 11] - x0[11] + 1le-5;
deltax_3[1] = =x[1, 12] - x0[12] + 1le-5;
for (i in 1:n_obs-1) {

solver
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deltax_1[i + 1] x[i + 1, 10] - x[i, 10] + 1le-5;
deltax 2[i + 1] x[i + 1, 11] - x[i, 11] + 1le-5;
deltax 3[i + 1] = x[i + 1, 12] - x[i, 12] + le-5;
}
}

// The stan model, including priors.
model {

CF ~ beta(2, 2);

HF ~ beta(2, 2);

DF ~ beta(2, 2);

Beta Param ~ lognormal(0, 1);

inv_phil ~ exponential(5);

inv_phi2 ~ exponential(5);

inv_phi3 ~ exponential(5);
C ~ neg binomial 2(deltax_1, phil);
H ~ neg binomial 2(delta x 2, phi2);
D ~ neg binomial 2(delta_x_3, phi3);

}

// Values generated by fitting process.
generated quantities {

real log-lik;

array[n_obs] int sim.C;

array[n_obs] int sim H;

array[n_obs] int sim.D;

// The negative binomial probability mass given location and precision.

log-lik = neg binomial 2 1pmf(C | delta_x-1, phil)+
neg-binomial 2 lpmf(H | delta_x_2, phi2)+
neg binomial 2 lpmf(D | delta_x_3, phi3);

// Generate the three negative binomial variates
sim C = neg binomial 2 rng(deltax_1, phil);
sim H = neg binomial 2 rng(deltax_2, phi2);
sim D = neg binomial 2 rng(deltax_3, phi3);

7 Appendix 2 - Overall script to run the inference
process

This code is the main script used to run the inference process. Using R’s tidyverse

tools [I4], it stores all the runs in an RDS file which can be used for subsequent analysis.

library(purrr)
library(glue)
library(lubridate)

source("R/02 estimate/Header.R")
get_stamp <- function(sep=" ")

{
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lubridate: :ymd_hms(Sys.time()) %>
str_replace("UTC","") %>%
str_trim() %>Y%
str_replace(" ",sep)

}

# Get the data
epi <- get_data(config$G_DATA)

# Configure factorial design
exp <- configure_ exp(config$EPOCHS,

config$MEAS_MODELS)

# Prepare readsdr stan measure models

exp <- exp %>

mutate (FitData=map (Epoch, "filter _data(epi,.x)),
MM_readsdr=map(Indicators, “get meas model(.x)))

config$RUN_INFO <- vector(mode="list",length = nrow(exp))

# Run stan fits for each experiment, store in mew column

exp <- exp %>

mutate (StanFit=pmap(list (ExpNumber,
IndCode,
Indicators,
FitData,
MM_readsdr) , " {

tl <- Sys.time()
start_time <- get_stamp()

f <- fit_model(XMILEFILE = config$G_MODEL,

STAN_FILE = str_replace(config$G_STAN_MODEL,
"SEIRH.stan",
pasteO("SEIRH.",..2,".stan")),

Exper = ..1,

Indicators = ..3,

data = ..4,

meas_model = ..5)

diagnostic <- f$cmdstan_diagnose()

diagnostic_summ <- f$diagnostic_summary()

finish time <- get_stamp()

config$RUN_INFO[[..1]] <<- list(ExpNo=..1,

12D

Indicators=..2,

Obs=nrow(..3),
Start_Time=start_time,

Finish Time=finish _time,
Duration=Sys.time()-t1,
Diagnostic=diagnostic,
Diagnostic_Summary=diagnostic_summ)
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# Save in RDS file
STAMP <- get_stamp("#")

fits <- prepare_datal(exp,config)

rds_file <- glue("data/estimates/{config$DESC} {STAMP} EP{length (config$EPOCHS)

saveRDS(fits,rds_file)

8 Appendix 3 - Header.R file -
Thsi script configures the runs and specifies (1) the source scripts for the SEIR model 0
and data, (2) the epochs and (3) the indicator combinations. 303

source("R/02 estimate/GenerateSamples.R")
source("R/02 estimate/Data.R")
source("R/02 estimate/PrepareData.R")

G_DESC <- "TEST"

config <- list(G_DATA = "data/SEIRH Beta.xlsx",
G_MODEL = "models/SEIRH Beta.stmx",
G_STAN_MODEL = "models/stan/SEIRH.stan",
EPOCHS = c("Epochl","Epoch2","Epoch3"),
MEAS MODELS = list(c("Cases","Hospitalisations","Deaths"),

c("Cases","Hospitalisations"),
c("Cases","Deaths"),
c("Hospitalisations","Deaths"),
c("Cases"),
c("Hospitalisations"),
c("Deaths")),

DESC = G_DESC)

9 Appendix 4 - Running the overlapping analysis 04

Here, we present one of the analysis scripts, which uses the overlapping package in R s0s
to generate a similarity measure between the posterior distributions. 306

library(overlapping)
library (purrr)
library(dplyr)
library(tidyr)
library (ggpubr)

FILE <- "data/estimates/TEST_2024-02-28#14:28:32_EP3_MM7_FITS.rds"
fits <- readRDS(FILE)

object_size(fits)

May 18, 2024 20



all params <- fits %>
select (EpIndCode,Params) 7,>7
unnest(cols = "Params")

# Prepare the data for pair-wise analysis for each parameter

prep <- map_df(list("CF","HF","DF","Beta Param"), {
x1 <- all_params >/
select (EpIndCode,SN,dplyr: :matches(.x))

cf <- pivot_wider(x1l,names_from=EpIndCode,
values_from = .x) %>Y%
mutate (Param=.x) %>%
select(Param,everything())
cf
V) %> group_by(Param) 7> nest()

overlaps <- prep %>
mutate (Overlap=map(data, " {
d <- select(.x,-SN)
exps <- names(d)
cbs <- combn(exps,2)
inputs <- list(From=cbs[1,],
To=cbs[2,])

over <- map2_df (inputs$From,inputs$To, {
vl <- d[,.x] %>% pull(Q
v2 <- d[,.yl 7%>% pull(Q)
0ol <- overlap(list(vil,v2))$0V
tibble(From=.x,To=.y,0verlap=o0l)

9

over

12,

oa <- overlaps %>
select (Param,Qverlap) 7>
unnest (cols="0Overlap") %>Y%
mutate (From=factor (From,levels=fits$EpIndCode),
To=factor(To,levels=fits$EpIndCode))

s_oa <- oa %>
group_by (From,To) %>7
summarise (Median=median(Overlap),
Mean=round (mean(Overlap),2),
Min=min(Overlap),
Max=max (Overlap))

p <- ggplot(s_oa,aes(x=To,y=From,fill=Mean))+geom_tile()+
scale fill gradient2(midpoint = 0.5,mid="grey70",limits=c(0,1))+
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geom_text (aes(To, From, label=Mean), colour = "white", check_ overlap = TRUE)+
theme (legend.position = "top",

axis.text.x = element_text(angle = 45,hjust = 1),

panel.background = element_rect(fill="white"),

panel.grid=element_line(colour="blue",linetype=3,linewidth = 0.3))+
labs(fill="Mean overlap estimate")

sp-oa <- oa %>%
group_by (From,To,Param) %>/
summarise (Median=median(Overlap),
Mean=round (mean (Overlap),2),
Min=min(QOverlap),
Max=max (Overlap))

target <- "HF"
p <- ggplot(filter(sp_oa,Param==target) ,aes(x=To,y=From,fill=Mean))+geom tile()-
scale fill gradient2(midpoint = 0.5,mid="grey70",limits=c(0,1))+
geom_text (aes(To, From, label=Mean), size=3,colour = "white", check_overlap =
theme (legend.position = "top",
axis.text.x = element_text(angle = 45,hjust = 1),
panel.background = element rect(fill="white"),
panel.grid=element_line(colour="grey",linetype=3,linewidth = 0.3))+
labs(fill="Mean overlap estimate",
subtitle=pasteO("Parameter = ",target))

# Plot histograms to show the overlaps
plots <- prep %>
mutate (Plots=map2(Param,data, " {
set.seed(100)
d <- select(.y,-SN)
rn <- sample(l:ncol(d),4)
d <- d %>% select(rn)
plots <- final.plot(as.list(d),pairs=T)+labs(subtitle=.x)
)

pl <- ggarrange(plotlist = plots$Plots)
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