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Abstract

There are typically two important questions addressed via the model calibration process:
(1) does the time series of the fitted model match to the historical data; and (2) can reliable
parameter estimates be inferred that are bounded within credible intervals. The evolution
of Markov Chain Monte Carlo (MCMC) methods provide powerful methodological and
computational frameworks for parameter estimation, and recent studies confirm the
value of the Hamiltonian Monte Carlo approach for system dynamics models. This paper
addresses an important research question for the calibration process, namely: what is the
impact of data availability and indicator coverage on parameter estimation. It presents
a 3 x 7 factorial study based on an SEIR model with cases, hospitalisations, and deaths.
An exploratory analysis is presented, where all models converge. Our results highlight
differences for a number of posterior distributions calculated, depending on the data
availablity, and the set of indicators used.
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1 Introduction 1

In system dynamics, models must be grounded in data if modellers are to provide 2

reliable advice to decision makers, and as part of this, robust parameter and confidence 3

interval estimation is crucial [1]. There are a number of computational methods that 4

can be used to fit models and estimate parameters. These include: (1) the use of 5

numerical optimisation combined with bootstrapping for confidence interval estimation 6

and hypothesis testing in system dynamics models [2]; and (2) Markov chain Monte Carlo 7

(MCMC) approaches to estimate the posterior distribution for parameters, a statistical 8

approach that has gained significant adoption in the system dynamics community in 9

recent years [3, 4, 5, 6, 7, 8, 9]. 10

Our approach in the paper is to fit an SEIR model (based on synthetic data) using 11

Hamiltonian Monte Carlo (HMC) [5], in order to gain insights into the how the availability 12

of data (through epochs and indicators) impacts the overall credible intervals ranges 13

for model parameters. Our choice of the three indicators is motivated by the benefits 14

of having more than one indicator to calibrate a model, for example, to help migitate 15

against reporting biases that would be a factor in real-world implemntations [10]. 16

As part of our analysis we also introduce a new evaluation method for comparing 17

posterior distributions, known as overlapping, and this provides useful insights into the 18

sensitivity of parameter estimation to the availability of data. 19

The structure of the paper is as follows: 20

• We introduce the SEIR model structure and overall experimental design, which 21

involves 21 experiments; 22

• We present an open-source computational framework, mainly written in R, and 23

also using the Stan HMC package; 24

• We present a detailed set of results, including: convergence tests, model fits, 25

descriptive summaries of fits; 95% quantile analysis; and, overlapping analysis for 26

all 21 experiments. 27

• The appendices include: (1) a sample stan file for inference of cases, hospitalisations, 28

and deaths; (2) the main script file for running experiments; (3) the configuration 29

file for the experiments; and (4) the code comparing the posterior distributions. 30

2 Model Structure and Experimental Design 31

2.1 Model Structure 32

The model used is an extension the well-known deterministic SEIR structure [11], and is 33

shown in Figure 1. People start out as being susceptible to a novel pathogen, and with 34

the introduction of patient zero to the infectious (I) stock, the contagion loop is activated. 35

People then move to an exposed (E) stock, where they do not contribute to the force 36

of infection (λ), before entering an infectious state. Once in an infectious state people 37

contribute to the force of infection (λ), before exiting via a first order exponential delay 38

structure. A certain proportion of those infected have symptoms (clinical fraction), and 39

a proportion of infectious are hospitalised, while the remainder recover. Hospitalisation 40

is modelled as a third order delay structure, and 90% of those hospitalised recover, while 41

10% do not and move to the deaths stock (D). Three stocks (TC, TH, and TD) are used 42

to record the cumulative numbers of cases, hospitalisations, and deaths. 43

Equations (1-6) for the main SEIR structure are shown below. The parameters σ 44

and γ represent the inverse of the latent and infectious delays, c is the clinical fraction, 45

and h is the hospitalisation fraction. The model assumes that only those who show 46
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Fig 1. An SEIR Influenza Model with Hospitalisations and Deaths

symptoms can end up in the hospital stream. The force of infection λ is calculated based 47

on product of the effective contact rate (β) with the number of infectious (I), divided 48

by the total population (N). 49

Ṡ = −λS (1)

Ė = λS − σE (2)

İ = σE − (1− ch)γI − chγI (3)

Ṙ = (1− ch)γI (4)

λ = β
I

N
(5)

β = 1.0 (6)

The hospitalisation stream is modelled via equations 7-13. It involves a straightforward 50

sequence of stocks that model people staying in hospital, with the average length of 51

stay (L) set to 10 days. The hospitalisation rate is governed by the fraction ch exiting 52

the infectious stock, and therefore for this model, that will evaluate to 0.6× 0.1 = 0.06. 53

Upon exiting hospital, (1− d) move to the stock RH , while the fraction d move to the 54

stock D. 55
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Ḣ1 = chγI − H1

L1
(7)

Ḣ2 =
H1

L1
− H2

L2
(8)

Ḣ3 =
H2

L2
− d

H3

L3
− (1− d)

H3

L3
(9)

ṘH = (1− d)
H3

L3
(10)

Ḋ = d
H3

L3
(11)

L1 = L2 = L3 =
L

3.0
(12)

L = 10 (13)

As part of the inference process, we need to generate incidence rates for cases, 56

hospitalisations, and deaths, and these numbers are initially recorded as cumulative 57

(stock) values (14-16). 58

ṪC = cσE (14)

˙TH = chγI (15)

˙TD = d
H3

L3
(16)

The difference values are calculated as follows (17-19), and these values are then used 59

as part of the data fitting process. 60

XC(t+ 1) = TC(t+ 1)− TC(t) (17)

XH(t+ 1) = TH(t+ 1)− TH(t) (18)

XD(t+ 1) = TD(t+ 1)− TD(t) (19)

The statistical distributions (count data) used for the fitting process are shown in 61

equations (20-22), and this is appropriate given that the synthetic data generated for the 62

three indicators in based on the negative binomial distribution. Note that, depending 63

on the experiment, a subset of these will be used. 64

YC ∼ Nbin(XC , ϕ1) (20)

YH ∼ Nbin(XH , ϕ2) (21)

YD ∼ Nbin(XD, ϕ3) (22)

The model parameters for the experiments are shown below. Two of these are based 65

on the literature relating to pandemic influenza [12], and the remaining values are 66

arbitrary choices used as part of the experimentation process. Four of these parameters 67

(β, c, d and h) will be estimated as part of the MCMC inference process. 68
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Fig 2. Sample synthetic data generated for the experiments

Name Symbol Value Units Source
Latent Duration σ−1 2.0 Days Vynnycky et al. [12]
Infectious Duration γ−1 2.0 Days Vynnycky et al. [12]
Effective Contact Rate β 1.0 Days−1 Model estimate
Clinical Fraction (CF) c 0.60 Dimn Model estimate
Death Fraction (DF) d 0.10 Dimn Model estimate
Hospitalisation Fraction (HF) h 0.10 Diml Model estimate
Average Length of Stay L 10.0 Days Model estimate

69

2.2 Experimental Design 70

The overall aim of the experimental design is to explore the possible effect of data 71

availability and indicator coverage on the fitting process. The SEIR model was run 72

once, and synthetic data generated, as shown in Figure 2. This synthetic data was 73

based on the SEIR model values generated (17-19), and different levels of variation were 74

introduced via the negative binomial dispersion parameter, where values of 10, 20 and 75

40 were used respectively for cases, hospitalisations, and deaths. 76

With three data sets available, a factorial-type set of experiments was designed based 77

on: 78

• Three epochs of equal length, one for the start of the epidemic, one for the middle 79

duration, and one for the end. These are shown on the figure, and capture different 80

dynamic phases (e.g. exponential growth, inflection point, peak, and decline) for 81

each indicator. 82

• Seven combinations of indicators based on the indicators cases (C), hospitalisation 83

(H), and deaths (D). This yielded the subsets: (CHD,CH,CD,HD,C,H,D). 84

The combination of epochs (3) and indicators (7) were then combined to run 21 exper- 85

iments, which involve fitting the parameters to different data sources. The computation 86

framework for this process is now described. 87
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Fig 3. Overall framework for experiments

3 Computational Framework 88

Figure 3 captures the overall computational framework used to configure the experiments, 89

generate the results, and produce the analysis. In order to execute this workflow, which 90

is open-source and designed using R [13, 14], a number of additional components were 91

required: 92

• Stan [15], a statistical modelling platform, which provides an interface to perform 93

Bayesian inference via the No-U-Turn-Sampler (NUTS). Stan models can contain 94

ordinary differential equations, and is used to perform inference for deterministic 95

models of infectious disease [5, 6, 7] 96

• cmdstanr [16], which is a lightweight interface to Stan for R users. 97

• readsdr [17], a package that automatically converts XMILE files from Stella and 98

Vensim to Stan code. 99

• R’s tidyverse packages, specifically dplyr for data manipulation, ggplot2 for 100

visualisation and tidyr for nesting data frames, a feature that allows the results 101

to be conveniently organised into a 21 by 12 table. 102

The overall framework is divided into three main functions. 103

• Generate Synthetic Data, which runs the SEIR model using the package 104

readsdr for one instance, and is based on the differencing of the three indicator 105

stocks (see equations 13-15). The negative binomial distribution is used to generate 106

random count variables based on the model outputs. For this experiment, the 107
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dispersion parameters selected are (10, 20, 40) for (Cases, Hospitalisations, and 108

Deaths). A sample run from the synthetic data generation process is shown in 109

Figure 2. 110

• Estimate Parameters, which performs the fitting process. For each experiment, 111

this will (1) use readsdr to generate a stan file, (2) run the stan file using the 112

cmdstanr interface, and (3) prepare and store all of the results in a single multidi- 113

mensional data structure. This structure will contain one row for each experiment, 114

and encapsulate variables such as the number of indictors, the measurement model, 115

the data used for the calibration, the posterior samples for each parameter (4,000 116

each), the time series output for each model run, and the duration of the run. 117

Given the computational resources needed to run the fitting, an advantage of 118

storing all the results in a database (RDS file used) is that the analysis stage can 119

then be conducted independently. 120

• Analyse Results, which provides a number of scripts to generate a range of 121

results to support analysis. These include: trace plots to explore convergence; 122

time series showing the fits; boxplots highlighting the parameter distributions 123

across all 21 experiments; quantile analysis to show the 95% credible intervals from 124

the inference process; and overlap analysis to provide insights into how close the 125

posterior distributions are for each combination of epoch and indicator. 126

The results are now presented in more detail. 127

4 Results 128

Overall, the inference process for the 21 experiments generates over 273MB of data, so 129

there is a wide range of analysis that can be performed. Given that the overall goal is to 130

explore possible differences in parameter estimates, our analysis comprises the following 131

stages: 132

• Presentation of convergence tests for each parameter over the four MCMC chains, 133

for each of the 21 data configurations. 134

• Exploring of the model fits, to confirm that the parameter estimates generate 135

plausible dynamic behaviour for each model. 136

• Boxplots to highlight the distribution of inferred parameters, and to see how the 137

estimates line up with the original values used to construct the synthetic data sets. 138

• Overlapping analysis, defined as the area intersected by two or more probability 139

density functions [18, 19], to provide a measure of how close the estimates are 140

across each of the 21 experiments. 141

4.1 Convergence Tests 142

Our first analysis, capture in Figure 4, displays the trace plots showing how the estimates 143

of the parameter values change over the MCMC process. Four MCMC chains are run, 144

with 1000 iterations for the warm-up phase, and 1000 for the sampling process. The 145

goal is to ensure that a stationary distribution is achieved for all parameters [5], and 146

this is achieved, and confirmed by analysing the output from stan, which showed no 147

divergences within all the samples. This chain convergence is an important property of 148

the inference method. However, the plots can also illustrate interesting properties of the 149

fitted parameters. Through observation, we can see the different ranges of the estimates, 150

for example: 151
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Fig 4. Exploring parameter convergence

• Experiments involving epoch one (the opening phase of the epidemic) typically 152

have wider ranges, which is as expected, as there is less data available to inform 153

the fitting process. For example, for the parameter HF (true value 0.1), the values 154

for Epoch1-C seem to cover the interval from 0 to 1. 155

• Experiments where the three indicators were used tend to have narrower bands, 156

which again is intuitive given that more information is available for the calibration 157

process. Returning to parameter HF, we can see that its values for Epoch1-CHD 158

remain much closer to the true value of 0.1. 159

A more detailed analysis of these parameter values will be explored through boxplots, 160

quantile analysis and overlapping analysis. 161

4.2 Model fits 162

An important requirement for calibration is that the model provides a plausible repre- 163

sentation of historical data, and in MCMC fitting we can also explore the time series 164

quantiles returned as part of the posterior distribution. From a process perspective, 165

having fits that align with historical data is needed to confirm that the model structure 166

can generate the behaviour of interest, and these outputs also can be deployed as a 167

confidence-building measure for modellers and clients. A sample of the fits are displayed 168

in Figure 5, for the indicators Cases and Deaths, across three of the epochs. The mean 169

value from the MCMC samples is also shown, and overall, on visual inspection, these 170

look like good fits to the data. 171

An interesting aspect is what the fits do not show, which is the range of parameter 172

values underling the generated time series. For example, if you take the set of plots in 173

row 1 column 1 (epoch 1), and compare the fits for indicator C and indicators CHD, 174

there is not an observable distinction between both, in that both fits look plausible. 175

However, when we compare the parameters estimated for these two samples, differences 176

emerge. This can first be explored using boxplots. 177
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Fig 5. A sample of fits from the inference process

4.3 Boxplots of parameter estimates 178

The boxplot is a valuable method to summarise data, as it shows the median, the 179

interquartile range (IQR), the location of values 1.5 times above and below the 75th and 180

25th percentiles, and outliers. We use the boxplot as a means to compare parameter 181

values from all 21 experiments, and estimated across (1) each of the three epochs and 182

(2) all of the seven combinations of data indicators. The 84 boxplots are presented in 183

Figure 6. Our working assumption is that a narrower range indicates a more certain fit 184

(the 95% credible intervals are shown in the following section). 185

We can initailly observe a number of patterns from these descriptive statistics: 186

• Across all parameters, the narrowest parameter estimate ranges seem to be those 187

fits using the most indicators, and using the most data (i.e. epoch 3). 188

• The rate at which parameters “lose their narrowness” varies across both indicators, 189

and epochs. For example, the parameter β within epoch 3 retains a narrow range 190

for most indicator combinations, while the death fraction (DF) only retains a 191

narrow range using three indicators across epoch 1 and 2. 192

• Therefore, this highlights a difference depending on the epochs used, and the 193

indicators. For example, for parameter DF with indicators CHD, there is a large 194

difference in median and the overall spread of data across the three epochs. 195

4.4 Quantile analyis of fitted parameters 196

The plots displayed in the preceding section are useful to gain an overall appreciation 197

of the posterior distributions, and to supplement that analysis, it is important to show 198

the 95% credible intervals. For the four parameters, this information is presented in 199

Figure 7, and arranged in descending order by the difference between the upper and 200

lower quantiles. 201

For each of the fitted parameters, we can make the following initial observations: 202
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Fig 6. Box plot analysis for parameters by epoch and indicator source(s)

• Beta Param, which models the effective contact rate within the population model. 203

The true value is 1.0, and many of the 95% ranges contain this value. A shift in 204

the range occurs for observation 14, and the experiment Epoch1-CH. From that 205

point onwards, 7 of the 8 experiments relate to epoch 1, showing that epoch1 is 206

prominent for fits with wider estimate ranges. 207

• Clinical fraction (CF), which is the fraction of cases that are clinical, with a true 208

value of 0.60. All of the estimates include this value, although a significant shift 209

in the range happens with experiment 9 (Epoch1-CHD). Prior to that, of the eight 210

experiments that have narrower bands, four are from epoch 2 and four from epoch 211

3. The four best are from epoch 3, which has the most data points used for the 212

calibration process. 213

• Hospitalisation fraction (HF), which is the fraction of cases hospitalised, with a 214

true value of 0.10. All values contain the true value within their range, however, 215

an observable widening of the range occurs from expertment 5 (Epoch1-CHD). Of 216

the four experiments with the narrowest interval, two are from epoch 3, and two 217

from epoch 2. 218

• Death fraction (DF), which is the fraction of hospitalisations that die, with a true 219

value of 0.10. Interestingly, the narrowest ranges (the first four experiments) do not 220

cover the true value at the 2.5% level, although the difference is small (e.g. 0.002 221

for Epoch2-CHD). 222

4.5 Overlapping analysis of posterior densities 223

Visual inspection of the parameter densities can be performed for each of the 21 experi- 224

ments. The aim is to identify fitted parameters that have different posterior distributions, 225

and explore possible reasons why this might be so. In Figure 8 we explore the posterior 226

densities for β and c (the clinical fraction). The original model parameter values are 227
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Fig 7. Summary of quantiles for parameters across the 21 experiments.
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Fig 8. Posterior density distributions for beta and the clinical fraction

indicated by the dotted vertical lines, and the density plots are divided into three epochs. 228

The purpose of these plots is to show the overall shape, however it should be noted that 229

the scales on the x axis are different. For example, that parameter range for Beta Param 230

in epoch 3 is quite small, when compared to epochs 1 and 2. There seems to be more 231

variation for the clinical fraction parameter with an epoch, and across the three epochs. 232

While the visual inspection method is a useful way to explore differences, more formal 233

approaches can provide measurements to provide insights into the similarity between 234

distributions. One such method is overlapping, which defined as the area intersected by 235

two or more probability density functions [19]. The R package overlapping [18] is used 236

to calculate this measure for each fitted parameter, with comparisons made between 237

each of the 21 experiments. Output from an overlapping analysis of the parameter β is 238

shown in Figure 10. 239

While we already mentioned that the range for epoch 3 is quite narrow for β 240

estimates, the data provided through this analysis is interesting. For example, the 241

highest overlapping value (98%) is between Epoch1-CHD and Epoch1-CH, where the 242

only difference between these data sets is the used of the deaths indicator. In general, 243

overlapping values of 90% or higher are associated with data sets from similar epochs, 244

which is a useful test of the fitting process.The lowest overlapping values are associated 245

with Epoch1-D, which would have the lowest amount of data (one indicator with 33 data 246
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Fig 9. Posterior density distributions for hospitalisation and death fractions

Fig 10. Overlapping analysis for beta
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Fig 11. Overlapping analysis for hospitalisation fraction

points). 247

A second overlapping analysis for the hospitalisation fraction parameter is shown in 248

Figure 11, and these show a range of values from a high overlapping fraction of 99% 249

(Epoch2-C with Epoch3-C), and low values of 2%, for example, between Epoch3-CH and 250

Epoch1-C. If we take Epoch3-CHD as a plausible experiment where you would expect 251

good estimations (given that it maximises the amount of data for calibration), it is 252

interesting to see that only one other experiment has a high level of overlap, namely, 253

Epoch3-CH. 254

Overall, the value of this overlapping algorithm is that it provides a similarity 255

measurement between the parameter posterior distributions. The measure indicates the 256

impact of data availability, and choice of indicators, on the fitting process. Potentially, 257

this approach could have value during the validation stages of parameter fitting, as a 258

means to explore teh relationships between data availability and parameter estimates. 259

On reflection, it would also have been useful to highlight the prior distribution on the 260

density graphs, just to confirm that the fitting process has been impacted by the available 261

data. For example, some of the posterior densities for the death fraction (Epoch1), do 262

look quite similar to the prior Beta(2, 2) distribution that was specified as part of the 263

stan inference model. 264

Further research could combine additional fitting metrics to bear on this process. 265

For example, the potential scale-reduction factor (R̂) [5] which compares within-chain 266

variance (stationarity) to between-chain variance (mixing). This could provide further 267

insights into how the overlap percentage could be used to indicate an acceptable level 268

of similarity between posterior distributions. Also, the use of additional unsupervised 269

machine learning methods such as clustering could be benefiical, as a way to explore 270

further patterns in the data. 271

5 Conclusion 272

In reflecting on the results, a valuable output (in additional to the visualisation and 273

exploratory analysis), is the calculation of the overlapping metric, whic presents a 274

similarity measure between the parameter estimates. The differences calculated indicate 275

that the MCMC fitting process is sensitive to (1) the amount of data in a time series 276
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(e.g. whether it is epoch one, two, or three), and (2) the number of indicators available 277

for the process (combinations of cases, hospitalisations, and deaths). On the broader 278

point, it also suggests that modellers must reflect on parameter estimates, and how the 279

ranges can vary depending on the amount of data available. Overall, despite impressive 280

technical advances in computational inference processes, parameter estimation remains 281

a challenging task in system dynamics; the following quote seems as relevant today as it 282

was in the early 2000s. 283

. . . limitations in numerical data availability mean it is often impossible to 284

estimate all parameters in a model. You must also develop the ability to esti- 285

mate parameters judgmentally using expert opinion gleaned from interviews, 286

workshops, archival materials, direct experience, and other methods. 287

— John D. Sterman [20] 288
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6 Appendix 1 - Stan model for CHD Indicators 289

The following stan code was automatically generated by the package readsdr [17] based 290

on the Stella XMILE file. It embeds the system dynamics model (functions block), and 291

also adds code to calculate the incidence data (delta x 1, delta x 2, and delta x 3), 292

namely the earlier equations (17-19). The model block below comprises the parameters 293

to be fitted, and also specifies the distributions for cases (C), hospitalisations (H), and 294

deaths (D). A separate stan file (seven in total) was created for each unique combination 295

of indicator (i.e., CHD, CH, CD, HD, C, H, and D). 296

// Code generated by the R package readsdr v0.2.0.9014

// See more info at github https://github.com/jandraor/readsdr

// SEIR Model in stan, direct translation from XMILE via readsdr

functions {
vector X model(real time, vector y, array[] real params) {
vector[12] dydt;

real ER;

real RR;

real HR1;

real HR2;

real HR3;

real RRH;

real RRD;

real Lambda;

real TCI;

real THI;

real TDI;

real TIH;

real Checksum;

real IR;

ER = y[2]*0.5;

RR = (1-params[1]*params[2])*y[3]*0.5;

HR1 = params[1]*params[2]*y[3]*0.5;

HR2 = y[5]/(10/3.0);

HR3 = y[6]/(10/3.0);

RRH = (1-params[3])*y[7]/(10/3);

RRD = params[3]*y[7]/(10/3.0);

Lambda = params[4]*y[3]/1e+05;

TCI = params[1]*ER;

THI = HR1;

TDI = RRD;

TIH = y[5]+y[6]+y[7];

Checksum = y[1]+y[2]+y[3]+TIH+y[4]+y[8]+y[9];

IR = y[1]*Lambda;

dydt[1] = -IR;

dydt[2] = IR-ER;

dydt[3] = ER-RR-HR1;

dydt[4] = RR;

dydt[5] = HR1-HR2;

dydt[6] = HR2-HR3;

dydt[7] = HR3-RRH-RRD;

dydt[8] = RRH;
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dydt[9] = RRD;

dydt[10] = TCI;

dydt[11] = THI;

dydt[12] = TDI;

return dydt;

}
}

// Data for the calibration process

data {
int<lower = 1> n obs;

array[n obs] int C;

array[n obs] int H;

array[n obs] int D;

array[n obs] real ts;

vector[12] x0;

}

// Parameters to be fitted.

parameters {
real<lower = 0, upper = 1> CF;

real<lower = 0, upper = 1> HF;

real<lower = 0, upper = 1> DF;

real<lower = 0> Beta Param;

real<lower = 0> inv phi1;

real<lower = 0> inv phi2;

real<lower = 0> inv phi3;

}

// Calling the SEIR model and extracting cases

transformed parameters{
array[n obs] vector[12] x; // Output from the ODE solver

array[4] real params;

array[n obs] real delta x 1;

array[n obs] real delta x 2;

array[n obs] real delta x 3;

real phi1;

real phi2;

real phi3;

phi1 = 1 / inv phi1;

phi2 = 1 / inv phi2;

phi3 = 1 / inv phi3;

params[1] = CF;

params[2] = HF;

params[3] = DF;

params[4] = Beta Param;

x = ode rk45(X model, x0, 0, ts, params);

delta x 1[1] = x[1, 10] - x0[10] + 1e-5;

delta x 2[1] = x[1, 11] - x0[11] + 1e-5;

delta x 3[1] = x[1, 12] - x0[12] + 1e-5;

for (i in 1:n obs-1) {

May 18, 2024 17/23



delta x 1[i + 1] = x[i + 1, 10] - x[i, 10] + 1e-5;

delta x 2[i + 1] = x[i + 1, 11] - x[i, 11] + 1e-5;

delta x 3[i + 1] = x[i + 1, 12] - x[i, 12] + 1e-5;

}
}

// The stan model, including priors.

model {
CF ~ beta(2, 2);

HF ~ beta(2, 2);

DF ~ beta(2, 2);

Beta Param ~ lognormal(0, 1);

inv phi1 ~ exponential(5);

inv phi2 ~ exponential(5);

inv phi3 ~ exponential(5);

C ~ neg binomial 2(delta x 1, phi1);

H ~ neg binomial 2(delta x 2, phi2);

D ~ neg binomial 2(delta x 3, phi3);

}

// Values generated by fitting process.

generated quantities {
real log lik;

array[n obs] int sim C;

array[n obs] int sim H;

array[n obs] int sim D;

// The negative binomial probability mass given location and precision.

log lik = neg binomial 2 lpmf(C | delta x 1, phi1)+

neg binomial 2 lpmf(H | delta x 2, phi2)+

neg binomial 2 lpmf(D | delta x 3, phi3);

// Generate the three negative binomial variates

sim C = neg binomial 2 rng(delta x 1, phi1);

sim H = neg binomial 2 rng(delta x 2, phi2);

sim D = neg binomial 2 rng(delta x 3, phi3);

}

7 Appendix 2 - Overall script to run the inference 297

process 298

This code is the main script used to run the inference process. Using R’s tidyverse 299

tools [14], it stores all the runs in an RDS file which can be used for subsequent analysis. 300

library(purrr)

library(glue)

library(lubridate)

source("R/02 estimate/Header.R")

get stamp <- function(sep=" ")

{
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lubridate::ymd hms(Sys.time()) %>%
str replace("UTC","") %>%
str trim() %>%
str replace(" ",sep)

}

# Get the data

epi <- get data(config$G DATA)

# Configure factorial design

exp <- configure exp(config$EPOCHS,

config$MEAS MODELS)

# Prepare readsdr stan measure models

exp <- exp %>%
mutate(FitData=map(Epoch,~filter data(epi,.x)),

MM readsdr=map(Indicators,~get meas model(.x)))

config$RUN INFO <- vector(mode="list",length = nrow(exp))

# Run stan fits for each experiment, store in new column

exp <- exp %>%
mutate(StanFit=pmap(list(ExpNumber,

IndCode,

Indicators,

FitData,

MM readsdr),~{
t1 <- Sys.time()

start time <- get stamp()

f <- fit model(XMILE FILE = config$G MODEL,

STAN FILE = str replace(config$G STAN MODEL,

"SEIRH.stan",

paste0("SEIRH ",..2,".stan")),

Exper = ..1,

Indicators = ..3,

data = ..4,

meas model = ..5)

diagnostic <- f$cmdstan diagnose()

diagnostic summ <- f$diagnostic summary()

finish time <- get stamp()

config$RUN INFO[[..1]] <<- list(ExpNo=..1,

Indicators=..2,

Obs=nrow(..3),

Start Time=start time,

Finish Time=finish time,

Duration=Sys.time()-t1,

Diagnostic=diagnostic,

Diagnostic Summary=diagnostic summ)

f

}))
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# Save in RDS file

STAMP <- get stamp("#")

fits <- prepare data1(exp,config)

rds file <- glue("data/estimates/{config$DESC} {STAMP} EP{length(config$EPOCHS)} MM{length(config$MEAS MODELS)} FITS.rds")

saveRDS(fits,rds file)

8 Appendix 3 - Header.R file 301

Thsi script configures the runs and specifies (1) the source scripts for the SEIR model 302

and data, (2) the epochs and (3) the indicator combinations. 303

source("R/02 estimate/GenerateSamples.R")

source("R/02 estimate/Data.R")

source("R/02 estimate/PrepareData.R")

G DESC <- "TEST"

config <- list(G DATA = "data/SEIRH Beta.xlsx",

G MODEL = "models/SEIRH Beta.stmx",

G STAN MODEL = "models/stan/SEIRH.stan",

EPOCHS = c("Epoch1","Epoch2","Epoch3"),

MEAS MODELS = list(c("Cases","Hospitalisations","Deaths"),

c("Cases","Hospitalisations"),

c("Cases","Deaths"),

c("Hospitalisations","Deaths"),

c("Cases"),

c("Hospitalisations"),

c("Deaths")),

DESC = G DESC)

9 Appendix 4 - Running the overlapping analysis 304

Here, we present one of the analysis scripts, which uses the overlapping package in R 305

to generate a similarity measure between the posterior distributions. 306

library(overlapping)

library(purrr)

library(dplyr)

library(tidyr)

library(ggpubr)

FILE <- "data/estimates/TEST 2024-02-28#14:28:32 EP3 MM7 FITS.rds"

fits <- readRDS(FILE)

object size(fits)
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all params <- fits %>%
select(EpIndCode,Params) %>%
unnest(cols = "Params")

# Prepare the data for pair-wise analysis for each parameter

prep <- map df(list("CF","HF","DF","Beta Param"),~{
x1 <- all params %>%

select(EpIndCode,SN,dplyr::matches(.x))

cf <- pivot wider(x1,names from=EpIndCode,

values from = .x) %>%
mutate(Param=.x) %>%
select(Param,everything())

cf

}) %>% group by(Param) %>% nest()

overlaps <- prep %>%
mutate(Overlap=map(data,~{
d <- select(.x,-SN)

exps <- names(d)

cbs <- combn(exps,2)

inputs <- list(From=cbs[1,],

To=cbs[2,])

over <- map2 df(inputs$From,inputs$To,~{
v1 <- d[,.x] %>% pull()

v2 <- d[,.y] %>% pull()

ol <- overlap(list(v1,v2))$OV

tibble(From=.x,To=.y,Overlap=ol)

})

over

}))

oa <- overlaps %>%
select(Param,Overlap) %>%
unnest(cols="Overlap") %>%
mutate(From=factor(From,levels=fits$EpIndCode),

To=factor(To,levels=fits$EpIndCode))

s oa <- oa %>%
group by(From,To) %>%
summarise(Median=median(Overlap),

Mean=round(mean(Overlap),2),

Min=min(Overlap),

Max=max(Overlap))

p <- ggplot(s oa,aes(x=To,y=From,fill=Mean))+geom tile()+

scale fill gradient2(midpoint = 0.5,mid="grey70",limits=c(0,1))+
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geom text(aes(To, From, label=Mean), colour = "white", check overlap = TRUE)+

theme(legend.position = "top",

axis.text.x = element text(angle = 45,hjust = 1),

panel.background = element rect(fill="white"),

panel.grid=element line(colour="blue",linetype=3,linewidth = 0.3))+

labs(fill="Mean overlap estimate")

sp oa <- oa %>%
group by(From,To,Param) %>%
summarise(Median=median(Overlap),

Mean=round(mean(Overlap),2),

Min=min(Overlap),

Max=max(Overlap))

target <- "HF"

p <- ggplot(filter(sp oa,Param==target),aes(x=To,y=From,fill=Mean))+geom tile()+

scale fill gradient2(midpoint = 0.5,mid="grey70",limits=c(0,1))+

geom text(aes(To, From, label=Mean), size=3,colour = "white", check overlap = TRUE)+

theme(legend.position = "top",

axis.text.x = element text(angle = 45,hjust = 1),

panel.background = element rect(fill="white"),

panel.grid=element line(colour="grey",linetype=3,linewidth = 0.3))+

labs(fill="Mean overlap estimate",

subtitle=paste0("Parameter = ",target))

# Plot histograms to show the overlaps

plots <- prep %>%
mutate(Plots=map2(Param,data,~{
set.seed(100)

d <- select(.y,-SN)

rn <- sample(1:ncol(d),4)

d <- d %>% select(rn)

plots <- final.plot(as.list(d),pairs=T)+labs(subtitle=.x)

}))

p1 <- ggarrange(plotlist = plots$Plots)
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