

System Dynamics and Machine Learning Combined Approach to Simulate Sustainable Competitive Advantage in Banking Industry

Fandhy Haristha Siregar Dian Masyita Mokhamad Anwar Yudi Ahmad Faisal

Faculty of Economic and Business, Universitas Padjadjaran, Indonesia

Research Publication in ISDC 2024

Presentation on VPoster Session #330 – Virtual Poster Session (31 Jul 2024)

Presentation in VPoster Session #225 – Integrative Methods for Complex Simulation (6 Aug 2024)

Combined Approach of System Dynamics & Machine Learning for the Banking Performance and Crisis Simulation Analyzing Biases in Banking Strategic Planning: Prioritizing Profitability vs. Stability

Optimizing Structured Graphs Modelling using Supervised Machine Learning: Case of Indonesian Banking Performance 2015 – 2021

Inverse Performance

Bank Umun

806.722

2.804.755

DEPOSITO

Modal Keria

Investasi

Konsums

- Lending has increased, on the other hand, Non Performing Loan has also increased and the concentration is still on Working Capital Loan.
- The concentration of Third Party Fund is still in deposits.
- Several large Banks suffered underperformance before COVID19, contradicting to the overall banking industry performance.

Indonesia Banking Industry Performance in 2020

Highly competitive market with more than 100 Banks.

Profitability vs Financial Stability

IMF Working Paper

Bank Profitability and Financial Stability

Xu, T., Hu, K., & Das, U. S. (2015). Bank Profitability and Financial Stability. International Monetary Fund (IMF), Working Paper No. 2019/005.

- From a financial stability policy viewpoint, the right balance between cost efficiency and a competitive and stable banking environment is an important consideration.
- These results highlight <u>the need to evaluate the</u> <u>sustainability of bank profitability</u>.
- An over-reliance on leverage and wholesale funding are associated with higher idiosyncratic and contribution to systemic risks and thereby lower financial stability.
- Policy makers and financial stability authorities should pay more attention to the source and the sustainability of bank profitability in the design and the calibration of macroprudential stress tests and systemic risk analysis.
- Banking system is the one of the most complex systems that several internal and external factors intertwined together in a dynamic environment creating a potential misjudgement in strategic planning process

Literature Review & Systematic Thinking

Insufficient Simulation to Support Bank Strategic Planning Process

Source: Bounded Rationality (Simon, 1957)

5

Systematic Thinking

Low Interest Rate Fund is the Limited Resource

Source: Limits to Growth (Meadows et. al., 1972)

Using the World3 Model derived from World Dynamics and Industrial Dynamics (Forrester, 1971)

Growth depends on the availability of resources. If there are still resources, they can continue to grow and support sustainability. However, bank management's social intervention (bounded rationality) causes losses due to the need to look for alternative funding resources.

Alternative funding resources (high interest rate/rare):

- 1. Interbank Borrowing (high interest rate)
- 2. Government capital injection (rate)
- 3. Wholesale/corporate deposits (high interest rate)
- 4. Loans are given to existing debtors (low margin/non productive loan)

Research Methodology

Research Methodology

This research is basically carried out in the form of an iterative cycle to obtain model optimization using references from Business Dynamics (Sterman, 2000)

Research Methodology (steps 3-5)

Splitting Data Into Training and Testing

Testing is simultaneously carried out by the program in the Testing Data group, and displays the results in the Confusion Matrix

Initial Causal Loop Diagram

Reinforcements and Balancings occured in the performance system which is the core to create the system behaviors.

A good bank is able to create a control strategy that allows it to see not only reinforcement factors but also balancing factors.

The limits/restrictions that exist at each bank determine the strength of the balancing.

Interlinked Operational Variables as Dynamic Hypothesis

This interlinked variables structure represent the complexity of decision making in the Banking credit risk management

 $Z2 = a + b4.Y + \epsilon$

Z2

CAR Bank dalam 3 sd 5 tahun terakhir tidak terlalu besar $(<\!\!20\%)$

Correlation Analysis

Cluster	Efficiency Factor				
Independent Variable	BOPO_pos, Pdit_pos, DPK_pos, Kredit				
Dependent Variable	Pdit_pos				
Pdit 000000000 0	0 250000000 0 6000 0.43 0.50 -0.01 0 DPK 0.95 -0.03 0 0.95	Standard deviation of Pdit: 2,692,796.036 Standard deviation of residuals: 2,304,150.043 for 238 degrees of freedom 95% range of residual variation: 9,078,266.052 = 2 * (1.970 * 2,304,150.043) R-squared: 0.277 Adjusted R-squared: 0.268 PRESS R-squared: -0.036 Null hypothesis of all 0 population slope coefficients: F-statistic: 30.386 df: 3 and 238 p-value: 0.000 Analysis of Variance df Sum Sq DFK 1 1 160544845582534.625 160544845582534.625 BOPO 1 719656712537.802 Model 3 483959701885123.500 161319900628374.500 30.386 0.000			
8	Kredit -0.05	Residuals 238 1263567566132339.250 5309107420724.114 Pdit 241 1747527268017462.750 7251150489699.016 Correlation Matrix			
	BOPO 0 20000000	Pdit DPK Kredit BOPO Pdit 1.00 0.43 0.50 -0.01 DPK 0.43 1.00 0.95 -0.03 Kredit 0.50 0.95 1.00 -0.05 BOPO -0.01 -0.03 -0.05 1.00 Collinearity Tolerance VIF DPK 0.094 10.602 Kredit 0.094 10.617			

BOPO

0.995

1.005

usal-Loop: Third Party Fund PK) and Lon have a positive prrelation with Interbank prowing (Pdit), meaning that lit increases along with an crease in Loan. This explains at during the Loan Growth, nding sources from DPK and so from Interbank Borrowing dit) are required.

4

Correlation Analysis

Cluster	Efficiency Factor				
Independent Variable	Variable BOPO_pos, Pdit_pos, DPK_pos, Kredit				
Dependent Variable	It Variable Pdit_pos				
		_	Standard deviation of Pdit: 2,692,796.036		
0 Pdit	0.43 0.50	0 6000 -0.01 0000000000000000000000000000000000	<pre>Standard deviation of residuals: 2,304,150.043 for 238 degrees of freedom 95% range of residual variation: 9,078,266.052 = 2 * (1.970 * 2,304,150.043) R-squared: 0.277 Adjusted R-squared: 0.268 PRESS R-squared: -0.036 Null hypothesis of all 0 population slope coefficients: F-statistic: 30.386 df: 3 and 238 p-value: 0.000 Analysis of Variance</pre>		
0 20000000	DPK 0.95	-0.03	df Sum Sq Mean Sq F-value p-value DPK 1 322695199590051.062 322695199590051.062 60.781 0.000 Kredit 1 160544845582534.625 160544845582534.625 30.240 0.000 BOPO 1 719656712537.802 719656712537.802 0.136 0.713		
	Kredit	-0.05	Model 3 483959701885123.500 161319900628374.500 30.386 0.000 Residuals 238 1263567566132339.250 5309107420724.114 7251150489699.016 Pdit 241 1747527268017462.750 7251150489699.016 16		
		воро	Pdit DPK Kredit BOPO Pdit 1.00 0.43 0.50 -0.01 DPK 0.43 1.00 0.95 -0.03 Kredit 0.50 0.95 1.00 -0.05 BOPO -0.01 -0.03 -0.05 1.00		
0 1000000	0 20000000		Tolerance VIF DPK 0.094 10.602 Kredit 0.094 10.617		

BOPO

0.995

1.005

Causal-Loop: Meanwhile, on CIR, the influence of Pdit, DPK and Loan is small, so it is necessary to look for other intermediary variable(s). The R-Squared of this model is 0.277, and it can be seen that the correlation between CIR and 3 other variables is below 0.1. Apart from that, there is multicollinearity between DPK and Loan.

Correlation Analysis

Cluster	Efficiency Factor			
Independent Variable	Kredit_pos, Pdit_pos			
Dependent Variable	BOPO_pos			
	200000000 -0.05 -0.01 Kredit 0.50	0 200 500 1.00 000 -0.06 0000 -0.03 00000 NPL	Standard deviation of BOP0: 764.758 Standard deviation of residuals: 67.642 for 238 degrees of freedom 95% range of residual variation: 266.506 = 2 * (1.970 * 67.642) R-squared: 0.994 Adjusted R-squared: 0.994 PRESS R-squared: 0.994 Null hypothesis of all 0 population slope coefficients: F-statistic: 13705.324 df: 3 and 238 p-value: 0.000 Analysis of Variance df Sum Sq Kredit 1 419435.773 91.672 0.000 Pdit 32984.210 32984.210 32984.210 7.209 0.008 NPL 1 1 187669364.698 Model 3 1 189210728.525 785106.757	Causal-Loop: NPL variable is added into the model. It can be seen that r-squared has increased to 0.994 because NPL affects CIR very significantly. This shows that in the causality model, the role of NPL is very high in influencing CIR. The interconnection between DPK, Loan, Pdit to CIR and then to Profit, is influenced by NPL.
			NPL 0.996 1.004	21

Supervised Machine Learning KNN - Predicting Profit/Loss

Deskripsi	Melakukan pemisahan data training dan data testing (split)		
	Melakukan klasifikasi dengan ROA positif dan negatif pada data training (positif/profit = 1, loss/negatif = 0)		
	Melakukan prediksi ROA pada data testing dengan model yang dibentuk dari data training menggunakan algoritma		
	KNN/SVM		
Label Kelas	ROA (positive class = kerugian (dikonversi menjadi 0)		
Nearest Neighbors	BOPO, CAR, NPL		
Hasil	Confusion Matrix dan Accuracy		

dataworktest target m1Й 105 Ø 77

Confusion Matrix

Accuracy : 0.9838 95% CI : (0.9533, 0.9966) No Information Rate : 0.573 Kappa : 0.9668 Sensitivity : 0.9906 Specificity : 0.9747 Pos Pred Value : 0.9813 Neg Pred Value : 0.9872 Prevalence : 0.5730 Detection Rate : 0.5676 Detection Prevalence : 0.5784 Balanced Accuracy : 0.9826 'Positive' Class : 0

Causal-Loop: ROA or Profitability can be predicted very well with an accuracy of 0.9838 using model generated from dataset in research samples. There were only 3 errors from testing from the testing dataset of 185 records, out of 738 total records in the sample.

Accuracy

Final Causal Loop Diagram

Revising the relationship between Non-Performing Credit/Loan (NPL) by adding a loop of influence from NPL can influence credit growth determined by bank management.

Added a relationship to Operational Costs

Added relationship with CKPN and Capital Adequacy

Decision Making Dynamic Model

Variables	Description	Causal Loop	Supervised Machine Learning	R-Squared	R-Squared	Supervised Machine	R-Squared	R-Squared
		Relationship	Regression - 1	1	1 (add)	Learning Regression - 1	2	2 (add)
Kredit	Credit/Loan	Initial	Independent	0.822	0.916	Dependent	0.277	0.994
DPK	Third-party funds	Initial	Dependent			Dependent		
Pdit	Interbank Borrowing	Additional	Dependent	n/a		Dependent		
BOPO	Cost to Income Ratio	Initial	n/a	n/a	n/a	Independent		
NPL	Non-performingLoan	Additional	n/a	n/a	n/a	Dependent	n/a	

Fig 5. Gradual Cause-Effect Relationships Enhancement using MRA and SVM

At the end, it is confirmed that banks whose credit risk management are not able to control the NPL will end up with underperformance situation more deepened than banks with ability to manage credit risk properly and manage to have the low-interest rate source of funding. Applying this result to the System Dynamics modelling after gradual enhancements of cause effect relationships using Supervised Machine Learning will create a robust model for simulating the behavior planning or strategic decision

SFD Model

This model was built with the Stella Professional tool which is able to describe dynamic structures with components (primitives) in the form of stock-flow, variables and flow/links which describe the relationships between them.

System Dynamic Model Simulation Summary

No.	Scenario #	Parameters	Result	Limit to Growth
1.	High/Rapid Growth, High NPL	Credit Growth >50%, NPL >3%	High-profitability for the first 2-3 years but quickly reduced due high Cost to Income Ratio	Yes
2.	Moderate Growth, High NPL (>3%)	Credit Growth 10-15%, NPL >3%	Positive growth and profitability for more than 3 years but in the long run will be creating stress to Loan to Deposit Ratio	Yes
3.	High/Rapid Growth (>50%), Low NPL (<3%)	Credit Growth >50%, NPL <3%	Fluctuated profitability in Banks with Limit to Growth of low-interest funding and fund the growth using Interbank Borrowing/Commercial Loan	Yes
4.	Controlled Growth (Floating scenario according to the 2 nd Scenario)	Credit Growth 1-2 times higher than Funding Growth (esp. for low- interest rate)	Sustainable growth and sustainable profitability. However, the credit risk management is still another key driven factor.	Yes (2 times for Retail Deposits and Retained Earning)

Conclusion

- 1) The structure of the banking performance system is a complex and dynamic structure, so that determining a strategy can have different impacts between one bank entity and another bank.
- 2) In this dynamic banking performance system, there are phenomena that follow the nature of the Limits to Growth archetype because banks have limited cheap funds so that their ability to reinforce loan expansion is also limited (balancing).
- 3) To overcome this reinforcing factor, several banks often carry out aggressive loan expansion strategies by looking for alternative funding (externally through inter-bank borrowings and/or issuing new shares-right issues).
- 4) Banks should change their strategy by carrying out a gradual expansion/growth while observing the limits of their credit risk management and limit of their low-interest fundings. Banks need to improve credit risk management to reduce the NPL ratio and maintain efficiency (Cost to Income Ratio), as well as maintaining adequate reserves for potential losses using a forward looking approach. This is the proper growth policy that Financial Authority should create for sustainable growth.
- 5) The dynamic model of the performance system structure has been tested and can be used as a simulation tool and early warning system so that it can be used as a dynamic capability in strategic planning that supports the achievement of sustainable competitive advantage for as long as possible.

THANK YOU

5:30-7:00

THE 42ND INTERNATIONAL SYSTEM DYNAMICS CONFERENCE Bergen, Norway and Virtually