
LunaSim: A Lightweight, Web-Based, Open-Source
System Dynamics Modeling Software

Karthik S. Vedula, Sienna Simms, Aditya Patil, Ishan Khetarpal, and Mark R. Estep
Poolesville High School, Poolesville, Maryland, USA

Abstract—System dynamics modeling is the process of un-
derstanding and representing various elements of a complex
system. The majority of system dynamics modeling software are
desktop apps, and many web-based alternatives are commercial,
lending them unfavorable to educational settings. We developed
LunaSim, a lightweight, web-based, system dynamics modeling
software to address this gap. LunaSim includes a graphical
editor that facilitates the creation of stock and flow diagrams,
incorporates JavaScript-based equations for elements in the
simulation, simulates using numerical methods, and facilitates
the creation of web-based, user-defined charts and tables that
display simulation results. We tested this app extensively, and is
currently being used by over 60 students.

Index Terms—system dynamics, software development, web
app

I. INTRODUCTION

System dynamics modeling is the process of graphically
outlining various elements and their interactions in a complex
system (which often represents real-world mechanisms) and
simulating them to get theoretical results on how that system
will play out over a period of time. Specifically, there are
stock-and-flow diagrams, where the user defines stocks, which
are elements in a system that will accumulate over time. Flows
regulate the accumulation of those stocks; variables/converters
allow calculations performed every timestep to be grouped
for abstraction; influences/connectors are arrows that display
which elements affect which other elements in the simulation.

The ability to create these stock-and-flow diagrams is pro-
vided by many software products, such as STELLA [1], Ven-
sim [2], Berkeley Madonna [3], etc. However, many of these
software products run as desktop applications with operating
system dependencies and require specific installation (which is
often time-consuming and require maintenance in institution
environments). For example, a system-wide software upgrade
made the previous modeling software at our school inoper-
able on Windows and school-issued Chromebooks, upending
students’ curriculum. Our software, LunaSim was developed
to meet this critical need by providing an online alternative
that can be accessed from any computer with a standard
browser, allowing students to use both the desktop computers
and Chromebooks to build their simulations.

II. RELATED WORK

The majority of system dynamics modeling software are
desktop apps. STELLA, Vensim, and Berkeley Madonna all

Corresponding author: K. S. Vedula (email: karthik@vedula.me).

run on the desktop. However, with the rise in popularity
in web applications, there has been a lot of development
on web-based system dynamics modeling software. STELLA
Online [8], Forio [9], and Insight Maker [4], for example,
all are web-based options. STELLA Online and Forio are
commercial software, while Insight Maker is free and open-
source. However, while Insight Maker is feature rich, LunaSim
is a simple lightweight tool primarily intended for educational
use. It also provides full flexibility by allowing the user to
input the equations as JavaScript code, which is favorable
as it is a standardized, well-known programming language.
Furthermore, LunaSim is also suitable for self-hosting.

III. METHODS

We followed industry standard practices to develop Lu-
naSim - developing a Software Requirements Document
(SRS), Software Project Management Plan (SPMP), and Soft-
ware Test Plan (STP). The SRS outlined the requirements for
our software to comply with, and these requirements were ap-
proved by our client (Teacher) prior to software development.
Our software development process, outlined by the SPMP, was
a mixture of the iterative and incremental process models. The
iterative model consisted of the development and addition of
specific functional groups (features) that were added iteratively
to the product; this technique was employed for the source
code development. The incremental model consisted of refin-
ing the product over time, continuously improving the product
in response to feedback; this incremental model was employed
during the testing phase of the software development process.

We used Git for version control and performed code reviews
when merging branches (each feature had its own branch).
Each milestone was tagged with a release number.

Each component of the software was unit-tested along with
the entire system through benchmark simulations being run
on both LunaSim and another system dynamics modeling
software. After undergoing beta testing, the app is now being
used by over 60 students at Poolesville High School.

IV. SOFTWARE ARCHITECTURE

Like most system dynamics modeling software, LunaSim
can be broken into three parts: the model editor (which is
the graphical user interface that allows the creation of the
simulation diagram and definition of equations for stocks,
flows, and variables), the simulation engine (which calculates
the values of elements in the simulation over time), and a data

Fig. 1. Sample model that simulates the trajectories of the two bodies in a binary star system.

visualizer (which displays user-defined tables and charts). All
of these components are written in JavaScript, which all run
on the client-side.

A. Model editor

The model editor facilitates the creation, movement, and
deletion of stocks, clouds (essentially stocks of infinite value),
flows, variables, and influences. This is done through the GoJS
[5] library, which is a library for building interactive diagrams
in JavaScript. Specifically, stocks, clouds, and variables are
represented as GoJS nodes, while flows and influences are
represented as GoJS links. These nodes and links are formatted
through GoJS according to standard conventions, with stocks
as rectangles, clouds as cloud icons, variables as circles, flows
as straight arrows, and influences as curved arrows. GoJS
stores this node and link data in JavaScript Object Notation
(JSON), and therefore, LunaSim models are stored internally
as JSON objects. These models can be saved as JSON files
and can be loaded and exported by the user to share their
work.

The model editor was built from a GoJS demo which
had originally contained the basic functionality of adding
and deleting stocks, flows, variables and influences [10].
Features such as double arrowed flows, curvature adjustment
for influences, and element name validation were added as
enhancements. Fig. 1 shows a sample model with stocks,
clouds, variables, and influences in LunaSim.

Ghosting is a feature that is implemented in most system
dynamics modeling software. Ghosting is the ability to make
a reference to a stock, flow, or variable by making a copy
of the shape in the diagram. This makes complex models
much more organized, as it prevents influences overlapping

with each other since one can create a copy of an element to
be much closer to the element that it is supposed to influence.
It is important to note that this does not create a copy of
the element itself but instead is just a copy of the shape that
represents the element. This ghosting feature is implemented
in LunaSim by interpreting elements with names that start with
a dollar sign ($) as ghosts of the elements whose name are
the same except for the dollar sign (e.g. $stock1 is the ghost
of stock1).

Equations are entered by the user in a table, with each stock,
variable, and flow having an entry. Each entry consists of the
associated element’s name, type (stock, variable, or flow), and
its equation and whether it can be negative (both of which are
user-defined through text box inputs and checkboxes respec-
tively). This table is automatically updated if the simulation
diagram is modified (i.e. a new element is added, an element’s
name changed, or if an element was deleted).

This design of a table-based equation editor was chosen over
an individual pop-up that is displayed when a specific element
was clicked on due to the table’s ability to show all equations
at once, which can be useful during model debugging. Fig. 2
shows a sample table. The model editor also features a method
of entering the start and end time, along with the timestep (dt)
value.

When the model is run, the nodes and links format is
changed into a format in which each stock encapsulates
connected flows (see section Internal File Format Examples
in appendix). Though ghosts are internally represented in the
model editor as separate GoJS nodes, the equivalence between
ghosts and their original elements is reconciled at this stage.
This new format is then sent to the simulation engine for
calculating results.

Fig. 2. Equation table which allows user to edit equations of different elements
in the simulation.

Fig. 3. Pop-up displayed that provides user ability to configure table/plot.

Fig. 4. Results of binary star simulation in user-specified tabular format.

Fig. 5. Results of binary star simulation (Body 1’s Y position vs X position)
in user-specified scatterplot.

B. Simulation engine
The simulation engine can be broken down into two parts:

equation parsing and integration. Equation parsing involves,
for each element’s equation, recursively replacing each ref-
erence of another element with its equation. Each reference
is denoted by the element’s name enclosed in brackets. For
example, if the equation of stock1 is [stock2] + 2, then the
parsed version would replace [stock2] with the parsed version
of stock2’s own equation. If an equation does not have any
further references, it is simply returned. This recursive function
ensures, as long as there are not any circular definitions,
that each parsed equation can be directly evaluated by the
JavaScript eval() function. If the user writes an invalid
equation, a JavaScript runtime error is thrown, which is
reformatted into an error that is shown to the user for model
debugging. See Fig. 6 for a sample error popup.

Fig. 6. Example of an error shown to the user.

LunaSim provides two integration methods to be used for
running the simulation: Euler’s method and Runge-Kutta 4.
Integration requires taking each flow’s parsed equation (which
inherently requires any dependent equations to be parsed) and
updating the connected stock values accordingly. In Euler’s
method, the flow value is multiplied by dt and then added to
the stock value. In Runge-Kutta 4, flow values of intermediate
timesteps are factored in and then added to the stock value.

The advantage of LunaSim’s simulation engine is the fact
that equations are directly put through the eval() function,
which allows the user to leverage the JavaScript language and
its libraries to make complex equations. For example, all the
mathematical functions (trigonometric, logarithmic, etc) are
provided by the Math namespace. If-and-else statements can
simply be written in JavaScript as if (...) {...} else
{...}. The JavaScript methods alert() and prompt()
can be included in equations to show and ask for user input
when the simulation is run. This functionality also opens up
the possibility of having the simulation query for data through
HTTP APIs as well, which we leave for future work.

C. Data visualization
Like most system dynamics modeling software, LunaSim

allows the user to create custom charts and tables, where
the user specifies which elements’ (specifically stocks, flows,
variables) simulation data are displayed. LunaSim displays
these tables and charts as tabs, where the user can select a
tab to have its associated chart/table to be displayed. Charts
are created using the ApexCharts library [6], and tables are
created using the Tabulator [7] JavaScript library. Fig. 3, 4,
and 5 show samples of this functionality.

Fig. 7. Sample model that simulates mechanics of a catapult.

V. TESTING

A. Unit & Integration Testing

Each requirement developed in the SRS was covered by test
cases generated in the STP, and tests were organized according
to the specific feature they are assessing. In order to test the
application fully, we created and ran two simulation models:
the catapult simulation and the binary star system simulation.

The catapult model simulates a see-saw-like catapult. The
model splits the catapult into the counterweight, the section
of the beam on the side of the counterweight, the section of
the beam on the side of the projectile, and the projectile itself.
Given an initial beam angle, the model calculates the launch
velocity (providing launch speed and angle) of a projectile
if the projectile were to leave the catapult at that timestep.
This can be used to calculate the optimum angle at which the
projectile should be launched. See Fig. 9 for results.

The binary star model simulates the trajectories of two
planetary objects that exert a gravitational force on each other.
The model breaks the system down into the position, velocity,
acceleration, and force (in both x and y directions) exerted by
each planetary object. See Fig. 4 and 5 for results.

The equations used to create these two simulations are in
the appendix of this paper.

VI. OPERATIONAL DEPLOYMENT

A. Catapult Project

Over 60 students have been using LunaSim after it was
integrated into Poolesville High School’s 9th Grade curricu-
lum. Students were tasked to build a miniature catapult to
launch a projectile onto a target. Prior to building the catapult,
students were assigned to prototype small-scale concepts and

to use computer-aided design (CAD) software to plan their
catapult design (see Fig 8). After designing the catapult
in CAD, students designed a stock-and-flow model (similar
to the model shown in Fig. 7) in LunaSim to model the
mechanics of the catapult. Specifically, they were tasked to
create a model that, given the parameters such as the beam,
counterweight, and projectile weights, calculates the velocity
of the projectile if it were to leave the catapult at a certain
timestep. Students then created a stock-and-flow model that
modeled a projectile’s trajectory (given the initial mass and
velocity) that factored-in air resistance (by using drag constant
calculated empirically by students) to simulate how far their
catapult will launch the projectile. Students then built the
catapult they designed in CAD and simulated in LunaSim and
compared theoretical to actual results.

This project was taught in the 9th Grade Magnet Computer
Science course where it provided interdisciplinary learning
by combining Mathematics, Physics, Computer Science, and
Engineering concepts.

Fig. 8. Sample CAD design made by students.

B. Hosting and Compatible Platforms
The app is hosted on an Amazon Web Services S3 Storage

Bucket, as LunaSim runs fully on the client side (which makes

Fig. 9. Results of catapult simulation in user-specified scatterplot. Beam angle
(blue) and Beam Angular Velocity (green) vs. time.

it very easy to deploy). The students typically access this app
through their Chromebooks but has been tested on Windows,
Mac, and iPad as well; browser support includes Chrome,
Firefox, Safari, and Edge.

VII. CONCLUSION

We developed a web-based system dynamics modeling soft-
ware that uses a JavaScript-based equation definition system
that can be easily deployed due to it being a fully client-side
app. We tested this app extensively and the app has been used
in educational settings to teach system dynamics modelling.

VIII. CODE AVAILABILITY

LunaSim’s code is available on GitHub at
https://github.com/oboy-1/LunaSim. LunaSim
uses unpkg to load dependencies.

REFERENCES

[1] STELLA Architect. Version 2.0.3, ISEE Systems. Available:
https://www.iseesystems.com/store/products/stella-architect.aspx

[2] Vensim. Ventana Systems. Available: https://vensim.com/
[3] Berkeley Madonna. Berkeley Madonna. Available: https://berkeley-

madonna.myshopify.com/
[4] Insight Maker. S. Fortmann-Roe, ‘Insight Maker: A general-purpose

tool for web-based modeling & simulation’, Simulation Mod-
elling Practice and Theory, vol. 47, pp. 28–45, 2014. Available
https://insightmaker.com/

[5] GoJS. Version 2.3. Northwoods Software. Available:
https://gojs.net/latest/index.html

[6] ApexCharts. ApexCharts. Available: https://apexcharts.com/
[7] Tabulator. Version 5.5, Tabulator. Available: https://tabulator.info
[8] STELLA Online. ISEE Systems. Available:

https://www.iseesystems.com/store/products/stella-online.aspx
[9] Forio. Forio. Available: https://forio.com/

[10] R. Muetzelfeldt. GoJS System Dynamics demo. Available:
https://gojs.net/latest/samples/systemDynamics.html

IX. ACKNOWLEDGMENTS

The authors are grateful to Northwoods Software for per-
mitting the use of GoJS for free with LunaSim for non-
commercial educational purposes.

APPENDIX

Note that in a system of equations, each equation is
evaluated for each timestep, including variables and flows.
Therefore, in an equation such as α = Ttotal

Itotal
, α can be thought

of as αt, where t is the given timestep.

A. Catapult Model Equations



Initial Angle (v1): ϕ
Angular Position (s): θ0 = π

2
− ϕ, θt+1 = θt + ωflow · dt

Angular Velocity Flow (f): ωflow = ω

Angular Velocity (s): ω0 = 0, ωt+1 = ωt + α · dt
Angular Acceleration (f): α = Ttotal

Itotal

Total MoI2 (v): Itotal = ICWBeam + ICW + Ip + IpBeam

Total Torque (v): Ttotal = TCWBeam + TCW + Tp + TpBeam

Projectile MoI (v): Ip = Mp · L2
pBeam

Projectile Beam MoI (v):

IpBeam = 1
3
·MpBeam ·

(
LpBeam

2

)2

Counterweight MoI (v): ICW = Mp · L2
pBeam

Counterweight Beam MoI (v):

ICWBeam = 1
3
·MCWBeam ·

(
LCWBeam

2

)2

Mass of Projectile (v): Mp

Mass of Counterweight (v): MCW

Mass of Beam (Projectile side) (v): MpBeam

Mass of Beam (Counterweight side) (v): MCWBeam

Length of Beam (Projectile side) (v): LpBeam

Length of Beam (Counterweight side) (v): LCWBeam

Projectile Torque (v): Tp = Fp · LpBeam · cos(θ)
Projectile Beam Torque (v): TpBeam = FpBeam · LpBeam · cos(θ)
Counterweight Torque (v): TCW = FCW · LCWBeam · cos(θ)
Counterweight Beam Torque (v):
TCWBeam = FCWBeam · LCWBeam · cos(θ)
Force for object x (v): Fx = 9.8 ·Mx

Launch Degrees (v): θdegrees =
(
π
2
+ θ

)
· 180

π

Launch Speed (v): vlaunch = −ω · LpBeam

B. Binary Star Model Equations



Mass of Body n (v): Mn

X-Position of Body n (s):
x(n)0 = 0, x(n)t+1 = x(n)t + vx(n)flow · dt
Y-Position of Body n (s):
y(n)0 = 0, y(n)t+1 = y(n)t + vy(n)flow · dt
X-Velocity Flow of Body n (f): vx(n)flow = vx(n)

Y-Velocity Flow of Body n (f): vy(n)flow = vy(n)

X-Velocity of Body n (s): vx(n)t+1 = vx(n)t + ax(n) · dt
Y-Velocity of Body n (s): vy(n)t+1 = vy(n)t + ay(n) · dt
X-Acceleration of Body n (f): ax(n) =

Fgx(n)

Mn

Y-Acceleration of Body n (f): ay(n) =
Fgy(n)

Mn

X-Force Exerted by Body 1 (v): Fgx1 = −Fg

D
·Dx

Y-Force Exerted by Body 1 (v): Fgy1 = −Fg

D
·Dy

X and Y-Force Exerted by Body 2 (v):
Fgx2 = −Fgx1, Fgy2 = −Fgy1

Gravitational Force on Bodies 1 and 2 (v): Fg = G · M1·M2
d2

Distance between planets (v): D =
√

D2
x +D2

y

X and Y-Distance between planets (v): Dx = x1 − x2, Dy = y1 − y2
Gravitational Constant (v): G = 6.67 · 10−11

1The letter in parentheses before the colon in each equation signifies
whether the value is represented as a stock, flow, or variable.

2MoI: Moment of Inertia

C. Internal File Format Examples

1 {
2 "nodeDataArray" : [
3 {
4 "category":"stock",
5 "label":"Population",
6 "location":"...",
7 * Fields on whether stock is

nonnegative, stock’s equation,
etc *

8 },
9

10 {"key":"cloud1"...}
11 ...
12]
13
14 "linkDataArray" : [
15 {"category":"flow","text":"flow","from

":"cloud1","to":"stock1"...}
16 ...
17]
18
19 * Simulation parameter fields - dt,

start and end time, integration
method *

20 }

Listing 1. The sample JSON file above is in the ”nodes and links
format,” where all elements in the model are stored either as nodes
(stocks and converters) or as links (flows and influences). Note that this
is a simplified version of the GoJS format used in LunaSim.

1 {
2 "stocks" : {
3 "population" : {
4 * Fields on whether stock is

nonnegative, stock’s equation,
etc *

5 "inflows" : {
6 "births" : {
7 * Fields on whether flow is

uniflow/biflow, flow’s
equation, etc *

8 }
9 }

10 "outflows" : {
11 "deaths" : {
12 * Fields on whether flow is

uniflow/biflow, flow’s
equation, etc *

13 }
14 }
15 }
16 }
17
18 "converters" : {
19 "birthrate" : {
20 * Equation field *
21 }
22 "mortalityrate" : {
23 * Equation field *
24 }
25 }
26
27 * Simulation parameter fields - dt,

start and end time, integration
method *

28
29 }

Listing 2. The sample JSON file above has stocks encapsulating the
flows that connect to them.

