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Abstract 

During the SARS-CoV-2 pandemic, various intervention strategies, including widespread testing, 

were deployed to contain the spread. Analytical laboratories in Germany conducted PCR tests, 

but they were unprepared for the surge in demand, leading to increased analysis times and 

workloads. 

This work is based on the assumption that a delayed PCR test result has implications for the 

healthcare system. The reason for such an assumption is that infection chains are only identified 

with a delay, and intervention strategies depend on the number of reported infected individuals. 

This research proposes a System Dynamics model integrating an SEIR model with a newly 

developed laboratory order processing model. This model elucidates the factors influencing 

analytical laboratory workloads and the total analysis time for PCR test orders, including machine 

and analyst availability. The applicability of the model is validated through the modeling of the 

pandemic situation in Germany at the beginning of 2022.  
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Introduction 

The SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) pandemic had global 

ramifications, impacting countries differently and prompting varied strategies to combat it. In 

Germany, among other measures, quarantines were imposed to reduce the risk of further 

transmission by diagnosed individuals. Quarantine was imposed for an infected person only upon 

receiving a positive PCR test result (polymerase chain reaction) confirming SARS-CoV-2 

infection. 

 

The analysis of PCR samples was carried out in analytical laboratories that were suddenly faced 

with a high and increasing demand for their services during the pandemic. Simultaneously, these 

laboratories were obligated by the German healthcare system to inform infected individuals of 

their test results within a maximum of three days after sample collection. Meeting this requirement 

was often challenging for laboratories during the pandemic. In Germany, the association ALM 

(Akkredierte Labore in der Medizin e.V.) monitored the workload of analytical laboratories 

during the pandemic and issued warnings when laboratory utilization exceeded 80%. (ALM e.V. 

b) 

 

Insights from previous research on the workload of analytical laboratories, particularly in the 

context of a pandemic, were not found during the literature review. While studies on testing 

strategies exist in the scientific literature, they seldom focus on the operational level. Therefore, 

this study aims to determine the influence of selected factors on the workload of analytical 

laboratories and the resultant total analysis time (TAT) for PCR tests to facilitate compliance with 

legal requirements for these laboratories during future pandemics. 

 

The core of this work involves developing a model to simulate the impact of factors on laboratory 

workload. System Dynamics (SD) methodology was chosen for its proven effectiveness in 

pandemic research and its suitability for analyzing individual factors and their associated effects. 

 

State of the art  

Research on optimizing and analyzing testing strategies in a pandemic situation exists. For 

instance, (Du et al. 2022) developed a mathematical framework for test allocation. Based on 

factors such as a limited budget and a pandemic scenario, test allocation scenarios can be derived. 



 

4 
 

(Lampariello and Sagratella 2021) created a mathematical model to determine the number of tests 

needed to maximize disease detection. Their study compared results with the actual number of 

tests for SARS-CoV-2 in Italy and demonstrated potential improvements to testing strategies. 

In contrast, (Baker et al. 2021) demonstrated that the percentage of positive tests does not indicate 

the extent of disease transmission. Therefore, the influence of the testing rate on disease 

transmission is analyzed to establish a SARS-CoV-2 testing strategy. It is shown that the testing 

rate is directly related to test TAT and the percentage of positive tests. The study highlights that 

test TAT is the most crucial indicator for effective pandemic intervention strategies and that a 

lower testing rate can improve test system efficiency and reduce disease transmission. 

The research conducted by (Lampariello and Sagratella 2021) as well as (Baker et al. 2021) 

regarding laboratory tests can thus be applied to PCR tests for the initial pandemic situation in 

Germany. 

In research, pooling strategies are discussed at the operational level. Pooling refers to conducting 

collective tests from multiple swab samples in a single tube, i.e., in a single process. For instance, 

(Hapsari et al. 2022) explain the efficiency of pooling strategies for PCR mass testing in a 

pandemic situation, using the example of Indonesia. It is demonstrated that laboratory workload 

can be reduced by up to 50% with a test positivity rate of less than 22%, by reducing personnel 

and reagent costs. Additionally, there are studies on the environmental impact of PCR tests (Ji et 

al. 2022) analyze the life cycle of PCR tests, showing that mass testing burdens the environment, 

leading to recommendations. For example, efforts should be made to minimize logistical 

distances, and pooling strategies are recommended due to their cost efficiency. 

Apart from determining testing strategies, there are also approaches for selecting optimal testing 

locations. For instance, (Liu et al. 2021) developed a method for determining locations for testing 

facilities. These testing facilities are rapid testing sites for the initial pandemic situation in 

Germany. They showed that it may be advantageous to close a facility rather than reduce the 

testing capacities of a facility. 

(Buhat et al. 2021) developed a model for the allocation of test kits for SARS-CoV-2 in the 

Philippines. The model can be used to derive the optimal number of facilities based on resource 

constraints for test kits. The research findings can be applied to pandemic preparedness in 

Germany by interpreting defined testing facility locations as analytical laboratories. 

Simulations, especially based on SD models, are also used to analyze the impacts and factors of 

testing strategies. For pandemic research, models such as SIR or SEIR are used, characterized by 

the development of a pandemic disease. Model elements include susceptible individuals (S), 
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infectious individuals (I), exposed individuals (E), recovered individuals (R), deceased 

individuals (D), and treated individuals (T). 

For example, (Sy et al. 2021) developed an SD model to analyze the effects of public health 

interventions based on an SEIRD model. They provided a general model that can be used with 

minimal data and for multiple pandemic situations. (Paul und Venkateswaran 2018) developed a 

System Dynamics model to investigate inventory management strategy for a pandemic situation 

based on an SEITR model. The study showed that a simple SIR model is sufficient to model and 

analyze behavior during a pandemic. Moreover, it is shown that forecasting disease transmission, 

especially with shorter planning horizons, can reduce the need for frequent updates of inventory 

and therefore require more frequent updates in a pandemic situation (Van Oorschot et al. 2022) 

developed a System Dynamics model to analyze collaboration on test kits based on an SIR model. 

The study demonstrated the relevance of the modeled combination of disease transmission, policy 

measures, and test supply chain management. It is demonstrated that cooperation among these 

actors is possible. The most positive impact on overall disease transmission occurs in the scenario 

where individual countries act selfishly and claim the stock they need to reduce their disease 

transmission. 

Research on analytical laboratories during a pandemic and testing strategies is limited. While the 

dependencies between testing strategy and test TAT are known, research on factors influencing 

workload or TAT, particularly those based on an SD model, could not be found. 

Method  

The developed System Dynamics (SD) model is described in detail below. The model employs 

days as the unit of time. 

SEIR Model for describing laboratory demand for PCR tests in a pandemic 

situation 

The spread of infection in a pandemic situation can be modeled and described using an SEIR 

model, as shown in Figure 1. Despite insights from research, an SEIR model was chosen over an 

SIR model due to the ability of the former to best represent key parameters such as the 

reproduction number and incubation period observed in past pandemics. 

The underlying relationships of the model components are explained below. The stock of healthy 

individuals, Susceptible (S), initially determined by the total population, is continuously reduced 

by a quantity of infected individuals, represented by the change rate (Exposed Rate). The Exposed 

(E) stock describes individuals within the incubation period who cannot transmit the disease. 

After the incubation period (Infectious Rate), these individuals can infect others and transition to 
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the stock of infected individuals, Infectious (I). Infected individuals are considered recovered 

upon the expiration of a period of illness (Recovery Rate Actual), resulting in a stock of Recovered 

(R) individuals who can no longer transmit the disease. 

   

Figure 1: SEIR model in accordance in (Taghizadeh and Mohammad-Djafari 2022) 

In this work, the SEIR model is expanded to determine the subset of individuals identified through 

the testing strategy. These individuals are described by the Testing stock and represent the 

expected workload for laboratories, as illustrated in Figure 2. 

 

Figure 2: SEIR model extension to include undiagnosed (Undiagnosed Infectious Population), diagnosed (Testing by 

Infectious Testing Rate) and diagnosed non-infectious people (Testing by Non Infectious Testing Rate) 

The expansion consists of the following three parts:  

 Firstly, the constant Under Coverage is introduced to account for the fact that not all 

infectious individuals are willing to be tested (symptomatic) or are aware of a potential 

infection (asymptomatic). This constant influences the Infectious Non Testing Rate and 

is thus used to determine Undiagnosed Infectious Population, individuals who are 

infected but remain undiagnosed. 

 Secondly, the constant Under Coverage affects the Infectious Testing Rate, which in turn 

determines the number of individuals yet to be tested in the Testing stock, thereby 

impacting the workload of laboratories.  
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 Thirdly, individuals who have been tested but are not infected are taken into account. 

This expansion is represented by the Non Infectious Testing Rate, which also affects the 

Testing stock and, consequently, the workload of laboratories. 

In summary, the model divides the stock of infectious individuals (Infectious) into an 

Undiagnosed Infectious Population and a Testing stock of diagnosed infectious individuals. By 

directly partitioning the stock of Infectious in Figure 3, the stocks of Actual Infectious and 

Recovered are required subsequently, despite the expansion, to avoid distorting the corresponding 

stocks of Undiagnosed Infectious Population and Testing. 

 

Figure 3: Expanded SEIR model 

Laboratory order processing model for analytical laboratories regarding PCR 

Tests 

In addition to expanding the SEIR model, a laboratory order processing model was developed. 

The general order processing of PCR tests in analytical laboratories, and thus the underlying 

structure of the model, is shown in Figure 4. Here, each individual to be diagnosed corresponds 

to a laboratory order or a PCR test. 

PCR tests of individuals to be diagnosed, derived from the Testing stock, as provided by an SEIR 

model (e.g., Figure 2), are distributed to laboratories using the Order Arrival Rate and initially 

form the Order Inventory stock of laboratories. Therefore, the Order Inventory represents the 

workload of laboratories, which is continuously reduced according to the laboratory's 

performance represented by the Order Analysis Rate. The test results, Order Analysed, are 
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transmitted to the affected individuals, Diagnosed Population, with a time delay determined by 

the Order Feedback Rate.  

   

Figure 4: Simplified laboratory order model including PCR test delivery (Order Arrival Rate), PCR test analysis 

(Order Analysis Rate) and PCR test result submission (Order Feedback Rate) 

The influencing factors of the Order Arrival Rate and Order Analysis Rate from Figure 4 are 

described in more detail below.  

The Order Arrival Rate describes the number of transported PCR tests per day from the Testing 

stock. This rate, as depicted in Figure 5, is influenced by the constant Transport Time and the 

variable Max Transport. The Max Transport variable describes the maximum possible size of a 

transport, depending on the number of considered laboratories (Number Labs), the average 

number of transports per day (Daily Transport), and the available capacity of a transport 

(Transport Capacity). 

  

Figure 5: Detailed Order Arrival Rate of laboratory order model 

The Order Analysis Rate in Figure 6 describes the amount of work performed per day, where the 

work of laboratories corresponds to the evaluation or analysis of PCR tests. This rate details the 

work that the considered number of laboratories (Number Labs) can perform in relation to the 

order inventory stock (Order Inventory) and takes into account fundamental factors influencing 

the average work performance of these laboratories. 
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Figure 6: Detailed Order Analysis Rate of Laboratory order model 

The Order Analysis Rate corresponds to True Daily Capacity and consequently depends on the 

Daily Analysis Capacity variable, which describes the actual laboratory capacity, and the Order 

Inventory stock, representing the amount of work present in a laboratory. Therefore, the maximum 

number of PCR tests analyzed by a laboratory is determined by either the Daily Analysis Capacity 

Analyst, Daily Analysis Capacity Machine, or Inventory Of Diagnostic Tests, whichever is lower. 

The Daily Analysis Capacity Analyst variable describes the maximum number of PCR tests that 

can be analyzed by the available analysts within a certain working time. This variable, in turn, 

depends on the Analysis Capacity Analyst and Number Daily Analysis variables. Analysis 

Capacity Analyst focuses on machine-related restrictions for the work of analysts and is 

determined by constants such as Machine Per Analyst, Number Analyst, and Machine Capacity. 

The Machine Per Analyst constant accounts for the restriction that an analyst can only be 

responsible for a maximum number of machines. The Machine Capacity constant allows for batch 

processing considerations, i.e., when analyzing multiple PCR tests in one process, and Number 

Analyst describes the amount of available personnel. Number Daily Analysis indicates how often 

an analysis run can be performed daily and depends on constants such as Analysis Time, 

representing the actual duration for conducting PCR process analysis, and Available Working 

Hours, determining the laboratory's working hours. 

The maximum number of PCR tests that can be analyzed by the available machines within a 

certain working time is described by the Daily Analysis Capacity Machine variable. This variable 
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is influenced by the previously described Number Daily Analysis variable and the Analysis 

Capacity Machine variable. Analysis Capacity Machine depends on the number of PCR machines 

in a laboratory (Available Machine) and the dimension of each PCR machine (Machine Capacity). 

The dimension represents the number of PCR samples that can be analyzed by the machine 

simultaneously. 

Inventory Of Diagnostic Tests simplistically describes the available consumables, such as PCR 

test kits, which are used on a one-to-one basis in this case. For example, one unit of diagnostic 

test kits is used for one PCR test. 

The availability of these materials depends on the delivery rate, Shipment Rate, described by the 

Ordered Tests variable and the constant Shipment Time. Ordered Tests corresponds to the value 

of the Expected Tests variable, delayed by the Order Time constant, which represents the duration 

of the ordering process. Expected Tests corresponds to the forecast of material demand based on 

the current workload (Order Inventory). Due to the dynamic behavior of the Inventory Of 

Diagnostic Tests stock, the model assumes that no material inventory exists at the beginning of a 

pandemic situation and is replenished based on expected demand. Inventory management is 

considered in line with (Paul and Venkateswaran 2018). 

Finally, the Workload variable is introduced for informational purposes, described by True Daily 

Capacity and Daily Analysis Capacity. It serves the direct evaluation of resulting laboratory 

workload in a single model run.  

Consideration of the Developed System Dynamics Model 

Both sub-models are linked through the Testing stock (see Figure 12 in the appendix). Thus, the 

developed extension of the SEIR model provides the demand for PCR tests and the resulting 

workload of laboratories in the event of a pandemic situation.  

Results  

In this chapter, the developed SD model is used to determine the influencing factors on the 

workload of laboratories. Following the classification of ALM e. V., four laboratory categories 

(see Table 1) are distinguished, each with different work capacities (test capacity per day). In 

optimal conditions, Category 1 small laboratories can analyze up to 350 tests per day, while 

Category 2 laboratories can handle up to 800 tests per day. Category 3 laboratories have a capacity 

for analyzing up to 3000 tests per day, and Category 4 describes large analysis centers capable of 

analyzing a minimum of 3000 tests per day. This differentiation is justified by the assumption 

that the same influencing factors may have different effects on the workload of each laboratory 

category. 
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Table 1: Characterization of laboratory categories by capacity distribution and laboratory (ALM e. V. a) 

category capacity distribution laboratory distribution 

1 0.05 0.344 

2 0.15 0.328 

3 0.28 0.24 

4 0.52 0.088 

Beforehand, in Chapter 4.1, the model will be validated based on data from an actual pandemic 

situation.  

Simulation of the behavior of analytical laboratories in a pandemic situation 

The evaluation of the developed model is based on data provided by ALM. These data represent 

the pandemic situation in Germany at the beginning of 2022 and are formatted in a 6-day week 

format. In accordance with the available data, the developed model focuses on calendar weeks 1 

to 17 in the year 2022 and simulates a) technological availability (Daily Analysis Capacity), b) 

the number of diagnosed individuals (Order Analysed), and c) the workload of laboratories over 

a period of 102 days or 17 6-day weeks.  

 

Figure 7: Model behavior regarding reproduction of pandemic situation early 2022 in Germany: (a) maximal 

technological availability described by Daily Analysis Capacity; (b) number of analysed PCR tests described by 

Order Analysed; (c) resulting workload of laboratories 

In Figure 7, the results of the model can be compared with real data. It becomes evident that the 

developed model (model) approximately reproduces the maximum capacity (actual), as depicted 

in Figure 7 (a). However, a transition period is noticeable at the beginning. This is attributed to 

the dynamic behavior of the Inventory Of Diagnostic Tests stock and its initially empty state. 
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The cumulative trend of diagnosed individuals, illustrated in Figure 7 (b), is also comparable to 

the actual data. With the progression of the model time, the number of diagnosed individuals 

increases. However, there is a slight difference in reaching this quantity, as the model reaches the 

amount of diagnosed individuals earlier than the actual data. Initially, the model is also slower in 

diagnosing individuals compared to reality. These differences are attributed to the model's 

transition period at the beginning and the simplified representation of pandemic demand by the 

model itself. 

Differences related to the model's definition are also evident at the beginning and end of the model 

time when evaluating workload in Figure 7 (c). The model is designed to simulate the pandemic 

situation of a single wave of infection, so without adjusting the model, a second wave or 

reinfection of the population is not possible. As a result, the model does not capture a second rise 

in laboratory workload, explaining the difference with the actual data. 

Focusing on workload during the first wave, the model results show a comparable increase at the 

beginning. The modeled workloads are slightly higher than the actual real workloads. As shown 

in Figure 7 (a), this is attributed to the low technological availability of the model at the beginning. 

It is worth noting that comparing workloads is inherently challenging. The actual workloads of 

laboratories in Germany correspond to an average workload and are provided by ALM as an 

average of the workloads of laboratories in individual states. A disaggregation of workload for 

each laboratory in detail could not be found in the research. Additionally, in reality, individual 

laboratory workloads could exceed 100%, whereas the model limits utilization to 100%. Lastly, 

the developed model assumes that each laboratory has the same characteristics, leading to equal 

technological availabilities. This assumption does not fully align with the actual situation in 

laboratories. Nonetheless, the model can be considered validated against this pandemic situation. 

Analysis of effects concerning laboratories working to capacity 

To assess the impact of factors such as Shipment Time, Available Machines, Number Analyst, 

Available Workinghours, and Transport Time on laboratory performance and consequently on 

TAT, the values of these factors in the SD model are varied, and their effects on changes in True 

Daily Capacity are evaluated. The simulation is conducted for each change in constant values 

following a full factorial experimental design. 

The graphs in Figure 8, Figure 9, and Figure 10 illustrate how the number of weeks with maximum 

laboratory workload varies with changes in technological availability. These factors are varied 

accordingly. The different categories in the graphs represent various types of laboratories (see 
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Table 1 and Table 3). Additionally, results for a laboratory with an average performance 

characterization (average) are presented. 

The laboratory average represents one with average performance, defined by factors such as 

Available Machines, Number Analyst, and Available Workinghours. The value of these factors is 

determined as the sum of the values of factors for individual laboratory categories [refer to Table 

3], which were previously multiplied by their percentage share of the total number of laboratories 

(ALM e. V. c) 

The target variable, the number of weeks with maximum workload, was chosen for two main 

reasons: firstly, because excessive workload at the operational level of laboratories poses 

challenges, and secondly, because it leads to an extension of the TAT. To comply with legal 

requirements, laboratories must operate in a state where they can efficiently handle demand to 

ensure a short time frame between sample acceptance and result communication. High workload 

and particularly long processing times significantly increase the likelihood of delayed results 

reaching patients. Consequently, delays can lead to delayed recognition of disease transmission 

and suboptimal pandemic response strategies. Prolonged processing times increase the risk of 

disruptions significantly impacting laboratory operations and result communication timelines. 

 
 

Figure 8: Diagram of Shipment Time for modelled laboratory behavior regarding maximal number of week’s 

laboratories working to capacity 

The variable Shipment Time is considered to analyze the effects of interruptions in material 

delivery to the laboratories. As can be seen from Figure 8, there is no increase in the number of 

weeks with maximum laboratory workload for laboratories in categories 1, 2, and 3 in the 

simulated scenario. The reason for this is the high workload in these laboratory categories, 

preventing them from accommodating an increase in sample analysis, which would require 

adjusted delivery of laboratory materials. 
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An increase in the number of weeks with maximum workload is observed for category 4 

laboratories. The increase can be explained by the fact that these laboratory categories have a low 

workload buffer due to their high performance. Interruptions in material supply, with a constant 

delivery of samples, initially decrease the workload due to the lack of materials. Upon material 

delivery, the backlog is also processed, leading to an increase in workload and consequently 

explaining the slope of the number of weeks with maximum workload. 

 

Figure 9: Diagram of Available Machine and Number Analyst for modelled laboratory behavior regarding maximal 

number of week’s laboratories working to capacity 

 The variable Available Machines in Figure 9 is considered to analyze the effects of machine 

availability on the number of weeks with maximum workload. The results generally show that as 

machine availability decreases, the number of weeks where category 4 laboratories are fully 

utilized increases. It is important to note that categories 1, 2, and 3, where laboratories are almost 

fully utilized in all 17 weeks, can hardly be further utilized. The results indicate that laboratories 

in categories 1, 2, and 3 consistently have high utilization, even though about half of the PCR 

tests are analyzed by category 4 laboratories. Therefore, capacity reductions, such as machine 

failures, particularly exacerbate resource overload in small laboratories because they have little 

spare capacity.  

As a result, capacity reductions, such as machine failures, particularly exacerbate resource 

overload in small laboratories because they have little spare capacity. 

It can be inferred that reducing workload, especially in laboratories of categories 1, 2, and 3, 

increases flexibility or generates the ability to respond to unforeseen disruptions. This ability is 

essential for small laboratories to comply with legal TAT requirements. 

Increasing machine availability does not lead to a reduction in weeks with maximum laboratory 

workload for laboratories in categories 1, 2, and 3. It can be concluded that machine availability 

is not the determining factor for True Daily Capacity in the simulation. 
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To analyze the effects of changing the number of available analysts while keeping the shift system 

or shift duration constant, the value of the variable Number Analyst is varied in Figure 9. The 

results show a similar trend in weeks with maximum laboratory workload as when reducing 

machine availability. A significant impact of reducing available analysts can be observed, 

especially in large category 4 laboratories, as this laboratory category has a higher number of 

machines compared to analysts in the model. Increasing the number of available analysts does not 

show an impact in any laboratory category. 

In line with Figure 6 and Figure 9, it can be assumed that only arranging additional working hours, 

for example, in the form of overtime, can lead to relief for the laboratories. 

 

Figure 10: Diagram of Available Workinghours for modelled laboratory behavior regarding maximal number of 

week’s laboratories working to capacity 

Figure 10 illustrates the impact of reducing or increasing available working hours. It is evident 

that with an increasing number of available working hours per day, a significant reduction in 

weeks with maximum workload is achieved in all categories. Increasing working hours can 

involve measures such as introducing additional shifts or arranging overtime, significantly 

enhancing the responsiveness of laboratories in categories 1, 2, and 3 to unforeseen deviations.  

Changes in Transport Time aim to determine the effects of both shortening and extending the 

required transport time between the sampling site and the laboratory on the performance of the 

laboratories. For instance, it can be assumed that a long transport time reduces the existing 

workload in laboratories. Consequently, temporary shutdowns may occur, increasing the number 

of days with maximum utilization while the workload remains constant. Shortening the transport 

time may lead to an excessive workload in the laboratories or increase the number of days with 

maximum workload if transport acts as a bottleneck for laboratory utilization. 
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As shown in Figure 12, there are hardly any changes in the workload of laboratories in categories 

1, 2, and 3 when Transport Time is reduced or multiplied. The number of days where laboratories 

are maximally utilized remains unaffected by Transport Time. 

 

Figure 11: Diagram of Transport Time for modelled laboratory behavior regarding maximal number of week’s 

laboratories working to capacity 

The lack of effect of varying the duration of transport time on the utilization in categories 1, 2, 

and 3 is attributed to the quantity of PCR samples present in the laboratories. For instance, if PCR 

samples are delivered late, it has no impact on the workload because laboratories have a sufficient 

number of PCR samples for analysis, and the laboratory's resources remain utilized even with 

delayed delivery of PCR samples. 

Only in the case of laboratories in category 4 does delayed delivery lead to a reduction in workload 

and a decrease in the number of weeks with maximum workload. This reduction can be explained 

by the high workload of category 4 laboratories compared to laboratories in categories 1, 2, and 

3. A higher number of samples can be analyzed in the extended time span between the two 

deliveries, resulting in a smaller backlog and consequently inducing a more homogeneous 

resource utilization. 

Restrictions and limitations 

The developed model was only used for a specific use case and was not additionally tested or 

validated in another context. Therefore, the model can be enriched with additional details as part 

of further research activities. For example, the reinfection of individuals as well as the influence 

of the timing of the transmission of infectious positive PCR test results on the pandemic situation 

or on infection strategies could be included. 

Furthermore, using an average laboratory represents a significant limitation of the modeling 

approach and leads to differences between the modeled and actual laboratory utilization. In 

addition, no size limitation is considered for Inventory Of Diagnostic Tests. 
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Another limitation is that the time between sampling and the notification of the result is not 

defined as a variable. Therefore, only the effects on influencing this time and the resulting 

workload are described and analyzed. It may be of interest in future research to analyze up to 

what pandemic demand, for example, determined by the reproduction number, a laboratory 

situation and characterization are feasible. Similarly, it could be interesting to analyze the impact 

of pooling strategies, for example, on laboratory utilization. This too has not been investigated 

and remains the subject of further research. 

Summary 

The present study proposes a System Dynamics model that illustrates the effects of changing 

various factors, such as the availability of analytical resources, on the workload of laboratories in 

a pandemic scenario. The model focuses on PCR tests due to their importance in selecting an 

intervention strategy in a pandemic situation. 

Therefore, the developed model builds upon the SEIR model and the laboratory order processing 

model. The SEIR model describes the pandemic demand for PCR tests, and the laboratory order 

processing model describes the general PCR test order management in laboratories. 

While research works on aspects of testing strategy could be identified, research works regarding 

the process of PCR sample analysis for the testing strategy and regarding the operational level of 

analytical laboratories could not be identified in the course of the research. This research aims to 

contribute to closing this gap. It is demonstrated that a simplified PCR sample analysis process 

can be described using an SD approach and compared with real data from a pandemic situation. 

While there are noticeable differences when comparing the modeled results with real data, these 

are attributable to the definition and limitations of the SD model. Therefore, possibilities to 

minimize them, for example, by considering the second wave of the pandemic, can be investigated 

in subsequent work. 

It is evident that the results of the model significantly depend on the characteristics of the analysis 

laboratories used in the analysis. It is shown that the effects of a change in technological 

availability influence the workload of laboratories differently. 

With the developed model, the authors show decision-makers in the healthcare system, based on 

Figure 10, that especially the availability of analysts during a pandemic is a crucial factor for 

small and medium-sized laboratories to comply with statutory requirements regarding TAT. 

Solely increasing machine availability proves not to be effective in this context. In Figure 8, 

decision-makers are shown that the supply of auxiliary materials, such as test kits, should also be 

considered as a decision factor. Therefore, PCR samples should not only be distributed to analysis 
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laboratories considering technological availability and workload, especially of large laboratories, 

but also ensuring the availability of auxiliary materials. 

Limitations and boundaries of the approach exist and are discussed. However, the developed 

model represents the first System Dynamics model for investigating influencing factors in 

laboratories during a pandemic situation.  
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A Appendix 

 

Figure 12: Developed SEIR – model 
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Table 2: Functions of rates and auxiliaries 

Type Name Function 

Rate  Exposed Rate  Actual Infectious * Reproduction Number * 

Susceptible / Total Population 

Rate Infectious Rate Exposed / Average Incubation Time 

Rate Infectious Rate Actual Infectious Rate 

Rate Infectious Testing Rate Infectious * (1 - Under Coverage) 

Rate  Infectious Non Testing 

Rate 

Infectious * Under Coverage 

Rate Non Infectious Testing 

Rate 

(Infectious Testing Rate / Positivity Rate) * (1 - 

Positivity Rate) 

Rate Recovery Rate Actual Actual Infectious / Average Illness Duration 

Rate Order Arrival Rate min (Testing, Max Transport) / Transport Time 

Rate  Order Analysis Rate True Daily Capacity * Unit Day 

Rate Order Feedback Rate Order Analysed / Feedback Time 

Rate Shipment Rate Ordered Tests / (Shipment Time + Shipment Delay) 

Rate Test Usage Rate Order Analysis Rate 

Auxiliary Max Transport Transport Capacity * Daily Transport * Number 

Labs 

Auxiliary True Daily Capacity min (Daily Analysis Capacity, Order Inventory) 

Auxiliary Workload True Daily Capacity / Daily Analysis Capacity 

Auxiliary Daily Analysis Capacity min (Inventory Of Diagnostic Tests); min (Daily 

Analysis Capacity Analyst * Number Labs; Daily 

Analysis Capacity Machine * Number Labs)) * 

Factor Capacity 

Auxiliary Daily Analysis Capacity 

Analyst 

Number Daily Analysis * Analysis Capacity 

Analyst 

Auxiliary Daily Analysis Capacity 

Machine 

Analysis Capacity Machine * Number Daily 

Analysis 

Auxiliary Number Daily Analysis Available Workinghours / Analysis Time 

Auxiliary Analysis Capacity 

Machine 

Machine Capacity * Available Machines 

Auxiliary Analysis Capacity Analyst Machine Capacity * Machine Per Analyst * Number 

Analyst 

Auxiliary Expected Tests max (Order Inventory * (Order Time + Shipment 

Time) * Unit Day - Inventory Of Diagnostic Tests; 

0) 

Auxiliary Ordered Tests delay (Expected Tests, Order Time) 
 

 

Table 3: Overview of model constants for categories 

category Number Labs Workinghours Available Machines 

1 62.952 16 0.971 

2 60.024 18 2.716 

3 43.92 20 6.235 

4 16.104 24 26.316 
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