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Abstract 

 

This study focuses on AI platform firms that, since the commercialization of deep 

learning with big data, have positioned and used the computational power of artificial 

intelligence (AI) as a core business function or mainstream product or service. This 

study argues for a cyclical structure that increases the scale and scope of data, enabling 

the exponential growth of AI platform firms. Therefore, we develop qualitative and 

dynamic models based on the scale and scope of data and investigate the mechanism of 

the exponential growth of AI platform firms. First, the simulation of AI platform firms 

was executed using a set of Julia packages, and the reproducibility of the execution 

results was verified using Vensim, a system dynamics development environment. 

Second, the sensitivity analysis of the dynamic model of AI platform firms was 

performed using the data network effect strength and the data sharing rate as 

parameters, and contour plots of the data boundary rate values as indexes of the scale 

and scope of the data were generated. Furthermore, through linear/nonlinear regression 

estimation that approximates the results of sensitivity analysis, we attempt to gain a 

qualitative and quantitative understanding of the feature balance between the scale and 

scope of data. 
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Introduction 

 

According to OpenAI, which launched an artificial intelligence (AI) service (ChatGPT) 

using large-scale language models in June 2020, "generative pre-trained transformers 

(GPTs) are general-purpose technologies" (Eloundou et al., 2023). General-purpose 

technologies can affect the entire economy, including printing, steam engines, and 

electricity, and are characterized by widespread diffusion, continuous improvement, and 

generation of complementary innovations (Gambardella and McGahan, 2010).  

Machine learning as a broad category is likely to be considered a general-purpose 

technology (Goldfarb et al., 2023). This study focuses on AI platform firms that 

positioned and used the computational power of AI as a core business function or 

mainstream product or service after 2016, when deep learning with big data became a 

practical application. AI platform firms develop and operate platforms with AI 

capabilities (Agrawal et al., 2022; Iansiti, 2021; Gregory et al., 2021) that can create 

value from the speed and accuracy of predictions based on collected user data. Such AI 

platform firms also serve as exponential growth organizations (Ismail et al., 2014) that 

can create a large order of magnitude (at least 10x) of value and impact compared to 

their competitors using new ways of operating organizations based on accelerating and 

evolving technologies. This study argues for a cyclical structure that increases the scale 

and scope of data, enabling the exponential growth of AI platform firms. Therefore, we 

develop qualitative and dynamic models based on the scale and scope of data and 

investigate the mechanism of the exponential growth of AI platform firms. Furthermore, 

through linear/nonlinear regression estimation that approximates the simulation results 

of the dynamic model of AI platform firms, we attempt to gain a qualitative and 

quantitative understanding of the feature balance between the scale and scope of data. 

The twentieth century has highlighted the importance of direct network effects (Katz 

and Shapiro, 1985, 1994): the more people remain connected to a network, the more 

valuable the network becomes. Stucke and Grunes (2016) indicate that data-driven firms 

working with big data are subject to multiple types of network effects: "(1) traditional 

network effects, including social networks such as Facebook; (2) network effects related 

to the scale of data; (3) network effects related to the scope of data; and (4) network 

effects where the scale and scope of data on one side of the market affect the other side 

(indirect network effects or cross-side network effects)." Meanwhile, Mayer-

Schönberger and Ramge (2019) proposed the emergence of data capitalism and data-

rich markets, where the driving factors of market behavior replace money with digital 

data. They presented data feedback effects as a new concept operating in data-rich 
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markets. In such markets, the combination of machine learning systems and matching 

algorithms in the processing of big data on product attributes and customer preferences 

improve experience value through customer decision support and transaction decision 

automation and enable product and service innovation (machine-based innovation) in 

addition to increasing customer data volume (data feedback effects). Iansiti (2021) also 

presents data quality, scale and scope, and uniqueness as key data value factors that 

firms can extract. 

In this study, the perspective on scale and scope of data relates to other abstract concepts 

and terminologies (see Table 1). Clough and Wu (2022) indicated that data is a strategic 

resource within firms, and that firms should strategically decide whether to perform 

more value creation or value capture with data. Heimburg et al. (2023) also note that 

data sharing between competing platforms inhibits innovation. Conversely, Gregory et 

al. (2022), who proposed data network effects in AI-enabled platforms, emphasized the 

duality of value creation and value capture with data. Based on the arguments of these 

studies, the two categories of primary and secondary data, and the network effects of 

scale and scope of data in AI platform firms are addressed. This study focuses on closed 

data, such as customer data and trade secrets, as the scale of data for AI platform firms. 

Specifically, we treat the volume of primary data, which is the most important factor in 

AI platform firms, as the scale of data. Second, we focus on publicly-available open 

data or data shared with other firms as the scope of data for AI platform firms. Ⅰ 

treated the size and type of secondary data to support the use of primary data in AI 

platform firms as the scope of data. The scale and scope of data in AI platform firms 

distinguished in this manner can be mapped to strategic dimensions of platform 

competition (Cennamo, 2021), which is the subject of previous research, and the 

concept of data network effects (Gregory et al., 2021, 2022), which are discussed in the 

next section. 

 

Table 1. Concepts of scale and scope of data in this study 

 

Cyclic logic of AI 
platform firm 

Scale of data Scope of data 

Data type Closed data Open data (shared data) 
Data Priority Primary data Secondary data 
Key indicator of data Data network effects strength Data sharing rate 
Model formulation Adopters 

×  Individual customer data 
AI platform capabilities 

×  Process innovation 
Strategic dimension 
of platform 

Platform identity Platform size 
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competition 
(Cennamo, 2021) 
Main mechanism of 
data network effects 
(Gregory et al., 2022a) 

User-centric design 
Data stewardship 
Platform legitimation 

AI capability 
Data stewardship 
Platform legitimation 

 

The remainder of this paper is organized as follows. First, we examine a qualitative 

model that visually illustrates how both the scale and scope of data in AI platform firms 

progress and how both prediction accuracy and platform value increase. Second, we 

develop a quantitative (dynamic) model based on the qualitative model of AI platform 

firms. From the set of parameters in this dynamic model, data network effects strength 

is selected as a key indicator of the scale of data, and data sharing rate is selected as a 

key indicator of the scope of data. The scale of data in this dynamic model is formulated 

as the product of the number of adopters (customers) of the AI platform company and 

the amount of data for each customer. The formulation of scope of data is a product of 

the AI platform capability and process innovation. The feature balance of the scale and 

scope of data for AI platform firms was examined through simulations using a dynamic 

model. 

In this study, the data boundary rate is set as a measure of the feature balance of the 

scale and scope of data in AI platform firms. The data boundary rate is the proportion of 

the scope of data to the sum of the scale and scope of data. If the data boundary rate is 

greater than 
1

2
, the scope of data is prioritized and the shared data constitute the majority 

of the total data volume of the AI platform firm. If the data boundary rate is lower than 

1

2
, the scale of data is prioritized and the customer's proprietary data comprise the 

majority of the total data volume of the AI platform firm. We then simulate a dynamic 

model of the AI platform firms with the data network effects strength and data sharing 

rate as parameters, and create a contour map of the data boundary rate values from the 

calculated values. General linear and nonlinear regression equations are estimated to 

approximate these contours. Finally, by examining the properties of these regression 

equations, we attempt to gain a qualitative and quantitative understanding of the feature 

balance between the scale and scope of data for AI platform firms. 

 

Previous studies related to this research 

 

Data-enabled learning and data network effects 
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Hagiu and Wright (2020) presented the possibility that a virtuous cycle in which 

learning with customer-generated data (data-enabled learning) leads to customer 

benefits is a barrier to entry, which serves as a competitive advantage for existing firms. 

They also pointed out that if data-enabled learning improves products and services not 

only for individual users, but also for others, a data-enabled learning network effect will 

emerge and tend to strengthen traditional network effects. They also argued that data-

enabled learning is possible even for firms that are unable to manifest network effects 

and that it can help reduce the churn rate of existing customers. 

 Gregory et al. (2021, p. 535) state that "a platform exhibits data network effects if, the 

more the platform learns from the data it collects on users, the more valuable the 

platform becomes to each user." According to them, the basic mechanism of the data 

network effect is that the platform's use of AI increases the scale of learning from the 

user data collected, thereby influencing the network through the platform and leading to 

an increase in user value. Specifically, user value from AI-enabled platforms is a 

function of the scale of AI-driven data learning and improvement. Their data network 

effects model was based on a positive direct relationship between the platform's AI 

capability and users’ perceived platform value, which is a function of data stewardship, 

user-centered design, and platform legitimacy. Using this model, Gregory et al. argued 

that the relationship between platform quality, indirect network effects, and customer 

expectations in platform-based markets discussed by Zhu and Iansiti (2012) can also be 

explained using indirect and data network effect concepts. However, their model is 

similar in structure to a fishbone diagram, rather than the cyclical structure model used 

to explain network effects in the past. This can be a barrier to understanding data-

network effects. 

 

Dynamic model of data-driven firms 

 

Prüfer and Schottmüller (2021) analyzed the equilibrium conditions of a dynamic model 

that considers the indirect network effects of data-driven user demand in R&D 

competition between two firms, and discussed monopoly avoidance through a firm 

monopoly and user data sharing. However, it did not consider differences in data types 

or a detailed study of simulation with parameter settings. 

System dynamics (SD) is a system modeling and simulation technique proposed by 

Forrester (1961) that graphically models stock variables (accumulated variables), input 

and output flow variables acting on them, and feedback (cyclical action), among others, 

and simulation of time variation of variables (Sterman, 2000). 
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Ruutu et al. (2017) developed an SD model that includes platform development, indirect 

network effects, data network effects, and competitive efforts as explanatory variables 

and derived multiple scenarios of digital service platform competition through 

simulation. Their research interest differs from that of this study, which is the impact of 

user platform migration costs and user decision delays on accumulated data and 

platform financial resources. In addition, the SD model they developed only sets the 

presence or absence of data sharing among competing platforms as a policy flag and 

does not simulate a wide range of possibilities with the data sharing rate as a parameter. 

In this study, we support the definition formula for data network effects presented by 

Ruutu et al. and consider data network strength and data sharing rate constants as 

parameters for performing simulations and sensitivity analysis. 

 

Qualitative model of AI platform firms 

 

This section examines a qualitative model of AI platform firms using causal loop 

diagrams (Anderson and Johnson, 1997) that incorporate network effects related to the 

scale and scope of data. A causal loop diagram shows the behavior of a system in a 

circular structure, in which the relationships among the components of the system 

(among variables) are regarded as a chain of cause and effect, and the variables are 

connected to each other with arrows. This circular structure can be modeled as a 

combination of a virtuous circle of data-enabled learning on a platform (Hagiu and 

Wright, 2020) for network effects related to the scale of data and interface expansion 

(Gawer, 2021), an option for expanding platform boundaries, for network effects related 

to the scope of data. It also includes an AI algorithm update cycle, which is a software 

update in AI platform firms. Essentially, the qualitative model of AI platform firms can 

be expressed as a multiple cycle combining the virtuous cycles of data-enabled learning, 

data sharing through interface expansion, and AI algorithm update (see Fig. 1). 
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Fig.1 Qualitative model of AI platform firms 

 

The data-enabled learning loop shows the cyclical logic of increasing the volume of 

individual customer data, opportunities for machine learning and value creation of 

complementary products and services through improved AI predictive accuracy. When 

customer data are licensed for individual customers only, customization improves 

customer experience under the terms of license. Customization improves customer 

satisfaction and increases the volume of individual customer data. By contrast, when 

customer data are licensed to other customers in addition to individual customers, the AI 

platform capability is improved through the realization of machine-based innovation 

under the license conditions of data sharing management. 

AI platform firms can distinguish between machine-based innovation, which is the 

product of development and commercialization, and process innovation, which is the 

process adopted and commercialized by other firms. Not only the advancement of 

machine-based innovation through the expansion of the scale of data but also process 

innovation generated by the expansion of the scope of data may be the driving factor for 

the exponential growth of AI platform firms. In this qualitative model, we characterize 

the process innovation loop as a chain of process innovations realized through data 

sharing using interface expansion for expanding the scope of data. When AI platform 

firms decide to expand the boundaries of the AI platform, interface expansion and data 

sharing with other platforms and/or businesses will lead to process innovation. Owing to 
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process innovation, the total volume of data on AI platform firms increases further, 

enhancing AI platform customers' usage opportunities. An increase in customer usage 

opportunities in turn augments individual customer data. The process innovation loop 

expands the scope of data and process innovation in AI-platform firms. The AI 

algorithm update loop reinforces each of the above loops. 

 

Dynamic model of AI platform firms 

 

The growth and/or decline of AI platform firms appears to be a dynamic and complex 

phenomenon, resulting from multiple causal relationships. Simulations using a dynamic 

model are a natural choice as a theory-building method to explain such dynamic and 

longitudinal phenomena (Davis et al., 2007). SD is a dynamic modeling technique that 

allows graphical modeling and seamless simulation of multiple interacting processes, 

feedback loops, time delays, and other nonlinear phenomena (Sterman, 2000). Sterman 

proposed a formulation of expectation formation based on bounded rationality using the 

components of SD such as input flows, output flows, and the stock of accumulated 

differences between these flows. Using a modified formulation of expectation 

formation, this section develops a dynamic model based on a qualitative model of AI 

platform firms. Ruutu et al. (2017) developed an SD model of R&D and competition on 

digital service platforms that incorporated data network effects. In this paper, we utilize 

the formula for defining data network effects presented by Ruutu et al. to develop a 

dynamic model that can treat the constants of data network effect strength and data 

sharing rate as parameters. 

 

Components of the dynamic model 

 

The qualitative model of AI platform firms contains many components, whose causal 

and mechanistic formulations are difficult to identify. Examples include AI platform 

customer data accumulation, AI platform quality through machine learning 

opportunities for customer data, machine-based innovation for customer value creation, 

AI platform capabilities through machine-based innovation, and process innovation 

through data sharing. We formulate the dynamic changes in these variables as 

extrapolative expectations through first-order smoothing and link them to develop a 

dynamic model for AI platform firms. 
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Fig.2 Dynamic model of AI platform firms 

 

Dynamic changes in the scale of the data 

 

We formulate the time series of the number of adopters owing to the diffusion of AI 

platforms based on the Bass model (Bass, 1969; Mahajan et al., 1990, 1995) (see Table 

2). The Bass model uses external and internal influence coefficients that assume that 

potential adopters receive two types of communication: external influence through mass 

media and internal influence through word of mouth. The scale of the data is obtained as 

the product of the amount of individual customer data and the number of adopters. 

 

Table 2. Scale of data 
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+

+
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+

+

Data

Sharing

+

AI Platform
Capabilities

Change

Machine Based
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Total
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of AI Platform
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Depletion
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Individual
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Data Objects
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Process Innovation
Process

Change

Platform
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Rate

Name  Formula/parameter 
Potential Adopters 𝑃𝐴(𝑡) 

− ∫ 𝑁𝐴(𝑡) 𝑑𝑡 

 𝑃𝐴(0) 𝑇𝑃 
Adopters 𝐴(𝑡) 

∫[𝑁𝐴(𝑡) − 𝑃𝐸(𝑡)] 𝑑t 

 𝐴(0) 100 
New Adopters 𝑁𝐴(𝑡) 𝐴𝐸(𝑡) + 𝑊𝐸(𝑡) 

 
Platform Exit 𝑃𝐸(𝑡) 𝑝𝑒𝑓 × 𝐴(𝑡) × 𝑒𝑟

𝑎𝑟𝑡
 

𝐼𝑓 𝑡 < 𝑎𝑠𝑡, 0 
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Individual customer data learning loop 

 

The equations defining the variables and constants included in the individual customer 

data learning loops are listed in Table 3. As opportunities to use an AI platform increase, 

the amount of individual customer data also increases, and the individual quality of the 

AI platform will improve through machine learning. The individual customer data value 

proposition leads to machine-based innovation through value creation opportunities for 

complements. Improving customer experience through value creation opportunities for 

complements will further increase the volume of individual customer data. 

 

Table 3. Individual data enabled learning 

 

Name  Formula/parameter 
AI Platform Use 
Opportunities 

𝐴𝑃𝑈(𝑡) 𝐴𝑃𝐷(𝑡)

𝐴(𝑡)
 

Individual Customer 
Data 

𝐼𝐶𝐷(𝑡) 
∫[𝐼𝐷𝐴(𝑡) − 𝐼𝐷𝐷(𝑡)]𝑑𝑡 

 𝐼𝐶𝐷(0) 0 
Individual Data 
Accumulation 

𝐼𝐷𝐴(𝑡) 

𝑚𝑎𝑥 [
𝐴𝑃𝑈(𝑡) − 𝐼𝐶𝐷(𝑡)

𝑖𝑑𝑡
+ 𝐶𝐸𝐼(𝑡), 𝐶𝐸𝐼(𝑡)] 

Advertising Effects 
 

𝐴𝐸(𝑡) 𝐼𝑓 𝑡 ≧ 𝑎𝑠𝑡, 𝑃𝐴(𝑡) × 𝑎𝑒𝑠 
𝐼𝑓 𝑡 ≧ 𝑎𝑒𝑡, 0 

Word of Mouth 
Effects 

𝑊𝐸(𝑡) 𝑐𝑟 × 𝑃𝐴(𝑡) × 𝐴(𝑡)

𝑇𝑃
 

Total Diffusion Rate 𝑇𝐷𝑅(𝑡) 𝐴(𝑡)

𝑇𝑃
 

Scale of Data 𝑆𝐶𝐴𝐷(𝑡) 𝐴(𝑡) × 𝐼𝐶𝐷(𝑡) 
Advertising 
Effectiveness 

𝑎𝑒𝑠 

 
0.0001 

Advertising Start 
Time 
Adopters Response 
Time 
Advertising End Time 
Exit Rate 
Contact Rate 

𝑎𝑠𝑡 

 

art 
 

𝑎𝑒𝑡 

𝑒𝑟 

𝑐𝑟 

0 
 
2 
 
6 
0.01 
0.7 

Total Population 𝑇𝑃 1e+6 
Platform Exit Flag pef 1 



11 

Individual Data 
Depletion 

𝐼𝐷𝐷(𝑡) 𝐼𝐶𝐷(𝑡) × 𝑖𝑑𝑟 

Individual Quality of 
AI Platform 

𝐼𝑄(𝑡) 
∫[𝑀𝐿(𝑡) − 𝐼𝑄𝐷(𝑡)] 𝑑𝑡 

 𝐼𝑄(0) 0 
Machine Learning 𝑀𝐿(𝑡) 

 𝑚𝑎𝑥 [
𝐼𝐶𝐷(𝑡) × 𝑖𝑙𝑒 − 𝐼𝑄(𝑡)

𝑖𝑙𝑡
, 0] 

Individual Quality 
Depletion 

𝐼𝑄𝐷(𝑡) 𝐼𝑄(𝑡) × 𝑖𝑞𝑑𝑟 

Data Value 
Proposition for 
Customer 

𝐷𝑉𝑃(𝑡) 

𝐼𝑄(𝑡) × [1 +
𝐼𝐶𝐷(𝑡)

𝑟𝑑𝑢
]

𝑑𝑛𝑠

 

Machine-Based 
Innovation 

𝑀𝐵𝐼(𝑡) 
 
𝑀𝐵𝐼(0) 

∫ 𝑉𝐶𝑂(𝑡) 𝑑𝑡 

0 
Value Creation 
Opportunities for 
Complements 

𝑉𝐶𝑂(𝑡) 
𝑚𝑎𝑥 [

𝐷𝑉𝑃(𝑡) − 𝑀𝐵𝐼(𝑡)

𝑣𝑐𝑡
, 0] 

 
Customer Experience 
Improvement 

𝐶𝐸𝐼(𝑡) 𝑉𝐶𝑂(𝑡) × 𝑟𝑑𝑖 

Data Network Effects 
Strength 

dns 0.7 

Individual Data 
Depletion Rate 

𝑖𝑑𝑟 0.01 

Individual Data 
Transformation Time 
Individual Learning 
Efficiency 
Individual Learning 
Time 

𝑖𝑑𝑡 

 

𝑖𝑙𝑒 

 
𝑖𝑙𝑡 

1 
 
0.05 
 
1 
 

Individual Quality 
Depletion Rate 

𝑖𝑞𝑑𝑟 

 
0.01 

Reference Data per 
User 
Reference Data for 
Improvement  
Value Creation Time 

𝑟𝑑𝑢 

 
rdi 
 
𝑣𝑐𝑡 

100 
 
10 
 
2 

 

 

Dynamic change in the scope of data 

 

The equations that define the variables and constants included in the process innovation 
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loop through data sharing are listed in Table 4. The AI platform capabilities increase 

through machine-based innovation. Data unions (objects) are accumulated by sharing 

data from the entire volume of AI platform data. Process innovation occurs through 

process changes using data objects. The scope of data expanded as a product of process 

innovation and AI platform capabilities. Furthermore, the total volume of AI platform 

data is expected to increase. 

 

Table 4. Scope of data 

 

Name  Formula/parameter 
AI Platform 
Capabilities 

𝐴𝑃𝐶(𝑡) 
 

𝐴𝑃𝐶(0) 

∫ 𝐴𝑃𝐶𝐶(𝑡) 𝑑𝑡 

1 
AI Platform 
Capabilities Change 

𝐴𝑃𝐶𝐶(𝑡) 

𝑚𝑎𝑥 [
𝑀𝐵𝐼(𝑡) × 𝐴(𝑡) − 𝐴𝑃𝐶(𝑡)

𝑎𝑝𝑡
, 0] 

AI Platform Data 𝐴𝑃𝐷(𝑡) 
 

𝐴𝑃𝐷(0) 

∫[𝐷𝐴(𝑡) − 𝐷𝐷(𝑡)] 𝑑𝑡 

1 

Data Resource 
Accumulation 

𝐷𝐴(𝑡) [𝑆𝐶𝐴𝐷(𝑡) + 𝑆𝐶𝑂𝐷(𝑡)] × 𝑑𝑡𝑟 

Data Resource 
Depletion 

𝐷𝐷(𝑡) 𝐴𝑃𝐷(𝑡) × 𝑑𝑑𝑟 

Scope of Data 𝑆𝐶𝑂𝐷(𝑡) 𝐴𝑃𝐶(𝑡) × 𝑃𝐼(𝑡) 
AI Platform Value 𝐴𝑃𝑉(𝑡) 

[1 +
𝐴𝑃𝐷(𝑡)

𝑟𝑑𝑎𝑝
]

𝑑𝑛𝑠

 

Data Sharing 𝐷𝑆(𝑡) 𝑖𝑒𝑓 × 𝐴𝑃𝑉(𝑡) × 𝑑𝑠𝑟 
Data Objects 𝐷𝑂(𝑡) 

 

𝐷𝑂(0) 

∫[𝐷𝑂𝐴(𝑡) − 𝐷𝑂𝑃(𝑡)] 𝑑𝑡 

1 
Data Objects 
Accumulation 

𝐷𝑂𝐴(𝑡) 
𝑚𝑎𝑥 [

𝐷𝑆(𝑡) − 𝐷𝑂(𝑡)

𝑑𝑜𝑡
, 0] 

Data Objects 
Depletion 

𝐷𝑂𝑃(𝑡) 𝐷𝑂(𝑡) × 𝑑𝑜𝑑𝑟 

Process Innovation 𝑃𝐼(𝑡) 
 
𝑃𝐼(0) 

∫ 𝑃𝐶(𝑡) 𝑑𝑡 

0 
Process Change 𝑃𝐶(𝑡) 

𝑚𝑎𝑥 [
𝑝𝑖𝑓 × [𝐷𝑂(𝑡) − 𝑃𝐼(𝑡)]

𝑝𝑐𝑡
, 0] 

Data Boundary Rate 𝐷𝐵𝑅(𝑡) 𝑆𝐶𝑂𝐷(𝑡)

𝑆𝐶𝐴𝐷(𝑡) + 𝑆𝐶𝑂𝐷(𝑡)
 

AI Platform 
Coordination Time 

𝑎𝑝𝑡 1 
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Data Depletion Rate 
Data Transfer Rate 
Reference Data 
Resource for AI 
Platform  

𝑑𝑑𝑟 

𝑑𝑡𝑟 

𝑟𝑑𝑎𝑝 

 

0.1 
0.75 
10000 

Data Sharing Rate  𝑑𝑠𝑟 0.25 
Data Objects 
Coordination Time 
Data Objects 
Depletion Rate 
Process Coordination 
Time 
Interface Expansion 
Flag  

𝑑𝑜𝑡 

 

𝑑𝑜𝑑𝑟 

 

𝑝𝑐𝑡 

 

𝑖𝑒𝑓 

1 
 
0.01 
 
2 
 
1 

 

Calculation of an index of feature balance of AI platform firms 

 

As an index of feature balance for AI platform firms, the data boundary rate is calculated 

as the proportion of the sum of the scale and scope of data to the scope of data. The 

definition equations are as follows: 

 

ScaleofData =  𝑆𝐶𝐴𝐷(𝑡)  = 𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠(𝑡) × 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝐷𝑎𝑡𝑎(𝑡)  (1) 

ScopeofData =  𝑆𝐶𝑂𝐷(𝑡)  = 𝐴𝐼𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑡) ×

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛(𝑡)                                              (2) 

DataBoundaryRate(t) =
𝑆𝐶𝑂𝐷(𝑡)

𝑆𝐶𝐴𝐷(𝑡)+𝑆𝐶𝑂𝐷(𝑡)
                               (3) 

 

The scale of data is the total volume of individual customer data generated and used 

within AI platform firms. Increasing the scale of data enhances machine learning 

opportunities for AI platforms, improves the AI platform quality for individual 

customers, and improves customer experience. This variable can also be seen as an 

indicator of the competitive advantage of AI platform firms based on proprietary data 

resources. The scope of data is the total volume of data, comprising the product of AI 

platform capabilities and processes using data objects that can be shared between AI 

platform companies and other operators. This variable can also be viewed as an 

indicator of the diversity of processes through which AI platform firms can collaborate 

with other businesses. The data boundary rate values ranged from 0 to 1. 

A data boundary rate greater than 0.5 can be interpreted as high and lower than 0.5 as 

low. When the data boundary rate is high, the scope of data is prioritized, and shared 
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data account for the majority of the AI platform firm's total data volume. If the data 

boundary rate is low, the scale of data is prioritized and customers' proprietary data 

account for the majority of the total data volume of the AI platform firm. 

 

Simulation results 

 

Julia code generation using generative AI 

 

The simulation results of SD-based dynamic models are constrained by the analysis and 

output capabilities that are the specifications of SD tools, SD model development, and 

execution environments. The restriction of SD modeling to the specifications of SD 

tools may prevent the use of the most advanced analytical and visualization tools 

developed in the academic fields of AI, mathematics, and data science, where 

significant progress has been achieved in recent years. Meanwhile, converting SD 

models into other programming language codes requires significant learning time and 

trial and error. However, this effort can be largely avoided by using newly-available 

generative AI. In this paper, we used ChatGPT (GPT-4) (OpenAI, 2023) to convert the 

SD model of the AI platform firm into Julia code. The following conversion guidelines 

were set in the prompts (see Table 5): 

 

Table 5. Prompts to convert Julia code from SD definition formula 

 

Convert the system dynamics definition formula into Julia code that meets the 
following requirements 

#Set each parameter to a global variable. 
#Convert and organize all variable names without omitting them. 
#Rearrange the order of the Julia code arrangement to enable sequential 

computation. 
#Perform time integration on all variables set in INTEG(). 
#Use the DifferentialEquations package 

 

In this section, we present simulation results using the latest analysis/visualization tools 

(a set of application packages released as open source) on a set of differential equations 

that are the building blocks of the dynamic model of AI platform firms generated by the 

Julia code through ChatGPT (GPT-4). 

 

Initial values and reference model 
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For simulation using the dynamic model of the AI platform firm, the initial values were 

set to 1 million potential adopters (market size) and a maximum elapsed time (TMAX) 

of 24 months. Within this period, a dynamic model was used as a reference model with 

each parameter set to allow time variation to be observed within the range where the 

maximum time-integral variable (stock variable) does not overflow. In this reference 

model, the data network effects strength of the AI platform firm was fixed at 0.7. The 

reference model run results in an adoption rate of 200,000 (20% market penetration) in 

10 months and over 800,000 (80% market penetration) in 15 months. The time-series 

change graphs of the stock variables in the reference model were compared by varying 

the percentage of available data sharing (DataSharingRate) and extending the interface of 

the AI platform firm to six different levels (0.1, 0.2, 0.4, 0.6, 0.8, 1.0) (see Fig. 3). The 

results of the reference model execution show that the higher the DataSharingRate, the 

more noticeable the exponential growth of the time-integrated variables (stock variables) 

from 15 months later. In particular, data objects shared with other platforms (DataObjects) 

and process innovations that use them (ProcessInnovation), owing to the expansion of the 

interfaces of the AI platform firm, show growth of the same magnitude. 

ProcessInnovation leads the growth, followed by exponential growth of other stock 

variables, AI platform data resources (AIPlatformData), and AI platform capabilities 

(AIPlatformCapabilities). 

 

 

Fig. 3 Graph of time-series changes in stock variables 
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Fig. 4 Data boundary rate graph 

 

Figure 4 shows a time-series graph of DataBoundarygRate, which is the proportion of 

the scope of the data to the sum of the scale and scope of the data. The 

DataBoundarygRate is 0.08 (8%) after the maximum elapsed time (TMAX) when the 

reference model is executed with DataSharingRate set to 0.1. When DataSharingRate 

was set to 1, DataBoundarygRate reached 0.49 (49%). DataBoundaryRate ≈ 
1

2
 can be 

interpreted as an equilibrium between the scale and scope of data in the AI platform 

firm. 

 

Contour plots of variables at maximum elapsed time 

 

Contour plots of the simulation results are useful for understanding the trend (change 

direction), density, and pattern of a variable. Changes in density can be either dense or 

relaxed. Tight contour intervals indicate abrupt changes in values. Conversely, the 

relaxed contour intervals indicate a gradual change of value. There may also be a 

pattern in the shape of the contour map. This pattern provides insights into the overall 

characteristics of simulation results. Contour plots for the stock variable values and the 

data boundary rate values at the maximum elapsed time (TMAX) are generated from 
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simulations that vary combinations of the AI platform firm parameters, data sharing rate 

(0.1 ≤ DataSharingRate ≤ 1) and data network effects strength (0.1 ≤ 

DataNetworkEffectsStrength ≤ 1) (see Fig. 5). 

For each stock variable, a significant change (increase) in its value from 0.4 ≤ 

DataSharingRate or greater and 0.7 ≤ DataNetworkEffectsStrength is confirmed. The 

contour map of DataBoundaryRate values quantifies the degree of balance between the 

scale and scope of data in the AI platform firm. The blue areas in the contour map 

indicate that the scale of data is dominant, whereas the red areas indicate that the scope 

of data is dominant. The yellow–green line in the contour map is the data boundary ratio 

(0.5), which can be interpreted as the region of equilibrium between the scale and scope 

of data.  

The change (increase) in the data boundary ratio becomes noticeable when the 

DataNetworkEffectsStrength is 0.6 or higher. For example, the data boundary rate is 

approximately 0.5 when the data network effects strength is 0.8 and data sharing ratio is 

0.6, which nearly balances the size and scope of the data.  
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Fig. 5 Contour maps of variables at TMAX 
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General linear regression for data boundary rate 

 

Regression analysis was performed using Julia's GLM, Statistics, and StatsBase 

packages to obtain the estimated data boundary rate (DataBoundaryRate) equations 

from the simulation. Four general linear regression models (linear, interaction, 

exponential, and power) were used. 

Linear and interaction models account for simple additive and interaction effects, 

respectively. Exponential and power models account for multiplier effects. AIC (Akaike 

information criterion), mean square error (MSE), and R2 (coefficient of determination) 

were used as evaluation indices to indicate the predictive performance, error, and 

goodness-of-fit of each regression model (see Table 6). 

AIC is an evaluation index of the balance between goodness-of-fit and complexity of 

the model; the smaller the value, the better the model (Akaike, 1974). From the AIC, the 

interaction model has a better fit to the data, while MSE is a measure of the prediction 

error of the model; the smaller the value, the better the prediction accuracy of the 

model. 

However, the prediction accuracy and data fit of the interaction model are almost 

identical to those of the power model. In the interaction model, DataSharingRate alone 

has a negative impact. The interaction between DataSharingRate and DataNetwork 

EffectsStrength has a positive impact.  

The power model is exponentially transformed into the following estimation equation 

(DataSharingRate is abbreviated as DSR and DataNetworkEffectsStrength is 

abbreviated as DNES): 

𝐷𝑎𝑡𝑎𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅𝑎𝑡𝑒 = 𝑒−0.073423 × 𝐷𝑆𝑅0.74899 × 𝐷𝑁𝐸𝑆1.78237          (4) 

In the power model, both DataSharingRate and DataNetworkEffects variables have 

positive exponential effects. In particular, changes in the DataNetworkEffectsStrength 

affect the Data Boundary Rate. 

 

Table 6. Linear Regression Models for DataBoundaryRate(TMAX) 

 

 Linear 

Model 

Interaction 

Model 

Exponential 

Model 

Power 

Model 

(Intercept) Coef. 0.366*** 

(0.006) 

-0.139*** 

(0.009) 

-5.229*** 

(0.012) 

0.073*** 

(0.014) 

DataSharingRate 0.295*** 

(0.007) 

-0.116*** 

(0.014) 

1.651*** 

(0.014) 

 

DataNetworkEffectsStrength  0.838*** 0.426*** 4.259***  
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(0.007) (0.014) (0.014) 

Interaction Term   0.749*** 

(0.024) 

  

log(DataSharingRate)|    0.749*** 

(0.011) 

log(DataNetworkEffectsStrength)     1.782*** 

(0.011) 

AIC -4508.66 -5355.02 -1252.29 1822.26 

MSE 0.00961 0.00685 0.0122 0.00659 

R-Squared 0.8523 0.8948 0.8126 0.8987 

Standard errors are indicated in parentheses. * p<0.05, ** p<0.01, *** p<0.001 

 

Nonlinear regression for data boundary rate 

 

We also attempt to estimate the DataBoundaryRate using a nonlinear regression model. 

For this purpose, a nonlinear regression model was formulated by parameter optimization 

with nonlinear least squares fitting, using the curvefit function from the LsqFit package 

of the Julia code. 

The nonlinear regression model for DataBoundaryRate shows dependence on the data 

sharing rate, the data network effects strength and its square, the quadratic term, and 

interaction term. Similar to the general linear model, AIC, MSE, and R2 were used as 

evaluation indices to assess the goodness-of-fit and predictive accuracy of the nonlinear 

regression model (see Table 7). 

The nonlinear regression model has a high AIC but the lowest MSE and fits the data well 

(the coefficient of determination is closest to 1). 

In the nonlinear regression model, the first-order term in DataSharingRate is positive, and 

the second-order term is negative. Conversely, DataNetworkEffectsStrength had a 

negative first-order term and a positive second-order term. The absolute values of these 

coefficients are larger for the quadratic terms. The interaction term is positive and its 

coefficient values are comparable to those of the interaction model. Essentially, when 

DataSharingRate is microvalued, it has a positive impact on DataBoundaryRate. However, 

as DataSharingRate increases, the positive effect decreases and reverses to a negative 

effect. 

When the value of DataNetworkEffectsStrength is minor, it negatively affects 

DataBoundaryRate. As the DataNetworkEffectsStrength increases, the negative impact 

decreases and reverses to a positive impact. The interaction between DataSharingRate 

and DataNetworkEffects Strength also has a positive impact on DataBoundaryRate. 
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The nonlinear regression model for DataBoundaryRate described above is nonlinear (1), 

which may output negative values. 

Nonlinear model (2) is a nonlinear regression model that forcibly replaces the negative 

value of DataBoundaryRate with a zero value when a negative value is obtained, and the 

following estimation equation: 

𝐷𝑎𝑡𝑎𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅𝑎𝑡𝑒 = 𝑚𝑎𝑥(0, 0.10484 + 0.10632 × 𝐷𝑆𝑅 − 0.95293 × 𝐷𝑁𝐸𝑆 −

0.20241 × 𝐷𝑆𝑅2 + 1.25398 × 𝐷𝑁𝐸𝑆2 + 0.74867 × 𝐷𝑆𝑅 × 𝐷𝑁𝐸𝑆)          (5) 

 

Table 7 Nonlinear Regression Models for DataBoundaryRate(TMAX) 

 
 Interaction 

Model 

Power 

Model 

Nonlinear 

Model(1) 

Nonlinear 

Model(2) 

(Intercept) Coef. -0.139*** 

(0.009) 

0.073*** 

(0.014) 

0.1048 0.1048 

DataSharingRate     -0.116*** 

(0.014) 

 0.1048 0.1048 

DataNetworkEffectsStrength 0.426*** 

(0.014) 

 -0.9529 -0.9529 

Interaction Term  0.749*** 

(0.024) 

 0.7487 0.7487 

log(DataSharingRate)|  0.749*** 

(0.011) 

  

log(DataNetworkEffectsStrength)  1.782*** 

(0.011) 

  

DataSharingRate2   -0.2024 -0.2024 

DataNetworkEffectsStrength2   1.254 1.254 

AIC -5355.02 1822.26 -3.266 -3.4479 

MSE 0.00685 0.00659 0.00048 0.00044 

R-Squared 0.8948 0.8987 0.99256 0.99321 

Standard errors are indicated in parentheses. * p<0.05, ** p<0.01, *** p<0.001 

 

Comparison of contour plots by general linear regression models 
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Fig. 6 Contour plots of DataBoundaryRate by the interaction/power models 

 

In this section, we use simulation results and the general linear regression model to 

compare the maximum elapsed time (TMAX) contour plots of AI platform firms (see 

Fig. 6) and the data boundary rate (DataBoundaryRate) contour plots of AI platform 

firms. First, we compare the contour plots of DataBoundaryRate using the interaction 

and power models, which are highly accurate as general linear regression models. The 

MSE and coefficient of determination, which are regression estimation indices, indicate 

that the difference in accuracy between the two models is minimal. The first (left side) 

contour plot is based on the calculated DataBoundaryRate at TMAX obtained from the 

simulation. The second (middle) contour plot is based on the predictions of the 

interaction model, and the third is based on the power model predictions. However, as 

can be seen from this comparison of contour plots, in the case of the interaction model 

prediction, for DataNetworkEffectsStrength ≤0.2, negative influences based on negative 

coefficients are at work, resulting in negative values of DataBoundaryRate. 

In the power model, only positive influences based on positive coefficients act and only 

positive values of DataBoundaryRate are obtained. 

In the power model, the data sharing effects indicated by DataSharingRate and data 

network effects indicated by DataNetworkEffectsStrength are multiplicative, suggesting 

that the transition in DataBoundaryRate is nonlinear. 

 

Comparison of contour plots by general linear and nonlinear regression models 
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Fig. 7 Contour plots of DataBoundaryRate by nonlinear models  

 

Contour plots of the DataBoundaryRate simulation results, nonlinear model (1) 

predictions, and nonlinear model (2) predictions were generated (see Fig. 7). Comparing 

the contour plots of nonlinear model (1) and nonlinear model (2), in nonlinear model 

(1), when DateSharingRate is lower than 0.2, the data boundary rate is negative in the 

range 0.2 ≤ DataNetworkEffectsStrength ≤ 0.5. Since negative rates are not realistic, 

nonlinear regression model (2) is adopted as the nonlinear regression model. 

 

 

Fig. 8 Contour plots of DataBoundaryRate by the power/nonlinear models  

 

The first (left) contour plot in Fig. 8 shows the values calculated from the simulation 

results, the second (middle) contour plot shows the predictions of the power model, and 

the third (right) contour plot shows the predictions of the nonlinear model (2). Based on 

the evaluation of the predictions by both models (see Tables 6 and 7) and the 

comparison of the contour patterns, nonlinear model (2) was selected as the estimating 

equation for the DataSharingRate. 

 

Three areas of data boundary rates 
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Fig. 9 Three areas within the DataBoundaryRate contour map 

 

The data boundary rate (DataBoundaryRate) was set as an indicator of the feature 

balance between the size and scope of data in AI platform firms, and nonlinear model 

(2) was used as its estimating equation. Nonlinear model (2) was used to draw the three 

areas of the data boundary rate (Fig. 9). The data boundary rate is the proportion of the 

scope of the data to the sum of the scale and scope of data, and its value ranges from 0 

to 1: Fig. 9 shows the three areas of the DataBoundarygRate contour map created using 

the nonlinear model (2). The areas of data boundary rate can be categorized into three 

areas based on the scale and scope of data perspectives: the scale of data-dominant area, 

the scale and scope equilibrium area, and the scope of data-dominant area. Within the 

contour map obtained on the plane generated from the value ranges of the 

DataNetworkEffectsStrength and DataSharingRate, the scale of data-dominant area is 

the largest, accounting for approximately 80% of the total area. The equilibrium area of 

scale and scope of data was obtained as an equilibrium line from the contour map 

obtained in this study. The scope of data-dominant area is the remaining area divided by 

the scope and scale of data equilibrium line, which tends to have a larger 

DataNetworkEffectsStrength. On the scope and scale of data equilibrium line, the 

maximum value of DataNetworkEffectsStrength (1.0) corresponds to the minimum 

value of DataSharingRate (0.10). When DataSharingRate reaches its maximum value 

(1.0), DataNetworkEffectStrength is 7.125. 

Basically, DataNetworkEffectStrength is characterized by a linear decrease as 
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DataSharingRate increases. 

 

Discussion and conclusions 

 

In this study, the scale of data in AI platform firms focuses on closed data, such as 

customer data and trade secrets. Essentially, the scale of data is treated as the amount of 

primary data, which is the most important data in AI platform firms. The scope of data 

in AI platform firms focuses on publicly-available open data or data shared with other 

firms. Specifically, we treat the volume of secondary data and the types that support the 

use of primary data in AI platform firms as the scope of data. From the perspective of 

the aforementioned scale and scope of data, this paper develops qualitative and 

quantitative models (dynamic model) of AI platform firms. This implies that the 

qualitative model of AI platform firms is based on three virtuous cycles through data 

network effects: autonomous data-enabled learning over time, the level of AI algorithm 

updates, and the expansion of business areas with process innovation from data sharing 

are interdependent and reinforcing, suggesting that they lead to the exponential growth 

of AI platform firms. Through simulated results using a dynamic model of AI platform 

firms, we quantitatively confirmed the exponential growth driven by the scale and scope 

of data. 

 

Feature balance of scale and scope of data as an indicator 

 

In this study, we set the data boundary rate (DataBoundaryRate) as an indicator of the 

feature balance of the scale and scope of data of AI platform firms. The indicator value 

is the proportion of the scope of data to the sum of the scale and scope of data. 

Using the simulation results of the AI platform firms, a contour map of the 

DataBoundaryRate was generated on a plane with features of the 

DataNetworkEffectsStrength and DataSharingRate set along the two axes. 

General linear and nonlinear regression equations approximating DataBoundaryRate 

values in this plane were estimated. By examining the properties of these regression 

equations, we investigated the feature balance between the scale and scope of data in AI 

platform firms. We focus on the case of DataBoundaryRate=1/2 as the domain where 

the scale and scope of data in AI platform firms grow in equilibrium. This equilibrium 

can be interpreted as the volume of primary data that is closed within the firm and the 

volume of secondary data (open data and data shared with other firms) that supports the 

use of primary data being equal in size, and this equilibrium growth increases the total 

data volume of AI platform firms. In the equilibrium area (on the line) of the scale and 
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scope of data, a linear relationship was observed, where the data network effects 

strength decreased as the data sharing rate increased. This equilibrium between the scale 

and scope of data in AI platform firms can be interpreted in terms of the strategic 

dimension of platform competition proposed by Cennamo (2021), which corresponds to 

platform identity and platform size. This suggests that the volume of primary data and 

the predictions and improvements based on it are considered the identity of AI platform 

firms, and that the total volume of data, including process innovation using shared data, 

is considered the size of AI platform firms (see Table 1). Essentially, this feature balance 

can be used as a key performance indicator for AI platform firms' business policy 

formulation, that is, strategic decision making. 

 

Study limitations and future directions 

 

This study has both theoretical and empirical limitations. First, from a theoretical 

perspective, the study examines AI platform firms based on only the scale and scope of 

data. We present a qualitative model that focuses only on data network effects as a 

mechanism acting on the exponential growth of AI platform firms. It does not consider 

the impacts of direct or cross-side network effects. 

Moreover, the qualitative model has a multiple causal loop structure; however, the 

causal relationships between each component are based on logical reasoning, and their 

validity has not been verified. Based on this qualitative model, we develop a dynamic 

model for AI platform firms. The structure of this dynamic model and the set of 

parameter values are logical possibilities, but the validity of the simulation results has 

not yet been verified. The simulation results suggest only the possibility of exponential 

growth of AI platform firms based on the feature balance of scale and scope of data. 

The future research agenda includes the interpretation and evaluation of the case 

study analysis using the qualitative model of AI platform firms as a framework, the 

calibration of the parameters of the dynamic model based on the quantitative data 

obtained from the case study, and the validation of the simulation results. 

Furthermore, theoretical extensions of the qualitative and dynamic models of AI 

platform firms that consider the interaction of data network effects and other network 

effects and study the patterns of balancing characteristics in the scale and scope of data 

through simulations are also important research topics.  
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