

Online Poster Presentation

A Systems Thinking Approach to Algorithmic Fairness

Chris Lam, Epistamai

Introduction

To build fair machine learning systems in highly regulated domains, we need to translate fairness into a *complex systems* problem by "thinking outside of the black box."

Application	Protected Attribute A	Mediator W	Data X	Decision Ŷ	Outcome Y
Credit scoring	Race, gender	Creditworthiness	Income, credit history	Deny loan?	Loan default?
Resume screening	Race, gender	Qualifications	Experience, education	Screen out resume?	Employee turnover?
College admissions	Race, gender	Merit	Grades, test scores	Reject applicant?	Student failure?

Modeling Fairness as a Linear System

We can use *causal Bayesian networks* to visualize bias in a machine learning model, understand how the model causes discrimination, and perform interventions to make fair decisions.

Fairness through supremacism (Far-right politics)

Fairness through unawareness (Right-wing politics)

Covert discrimination (e.g. Disparate impact)

Fairness through affirmative action (Left-wing politics)

Fairness through lottery (Far-left politics)

"No" discrimination

Modeling Fairness as a Nonlinear System

We can use *causal loop diagrams* to model bias from the data generating process and to identify counterintuitive behavior using system archetypes.

Let's say that there are two groups. Group A has historically had more resources and success than Group B, which leads to the following:

Fairness throug	h unawareness	Fairness through affirmative action		
Success to the successful (R1/R2) Limits to success (R1/B1 and R2/B2)		Shifting the burden / Addiction (R1/B3/R3 and R2/B4/R4)		
Group A's historical success means more	As Group A receives more resources	As Group B receives fewer resources	But the external intervention may create	

Group A's historical success means more resources are allocated towards Group A (R1) over Group B (R2), thus reinforcing Group A's success over Group B.

As Group A receives more resources (R1), it may face a limiting action due to some constraint. This reduces their success which results in less resources being allocated to Group A (B1).

As Group B receives fewer resources (R2), there is greater demand for an external intervention to allocate more resources towards Group B (B4).

But the external intervention may create a dependence that harms the success of Group B. This decreased success causes less resources to be allocated to Group B (R4).

Modeling Fairness as a Complex System

We can model the sociotechnical nature of the fairness problem using a **systems map**. On the left, we can model the social aspect of fairness as a **connection circle**. On the right, we can model the technical aspect of fairness as an **hierarchy**.

