
Locality enhances consensus in
opinion dynamics

Abstract

Social dynamics is a multidisciplinary field that encompasses a wide range of fields.
Opinion dynamics, one of the fields of social dynamics, is investigated to understand
how individual opinions shape the whole society. Some of the common models of
opinion dynamics include discrete and continuous models. For the discrete opinion
dynamics, the majority rule model and voter model are introduced. For the continuous
opinion dynamics, the Deffuant model and Hegselmann-Krause model are introduced.
In this work, the Deffuant model was the primary focus.

Past literature in the Deffuant model assumed a two-dimensional grid (square lattice), a
complete graph, a random graph and a scale-free graph. These graphs do not cover the
effect of local connectivity. A graph between a square lattice and a complete graph is
proposed to hypothesize how local interactions may influence the whole population.
Therefore the spatial parameter of “globality” is introduced into the model.

It was found by numerical stochastic simulations that the degree of globality and
confidence bound have an impact on the thresholds for reaching “almost consensus”. In
addition to the previous findings that larger confidence bound increases the probability
of the population attaining a state of “almost consensus”, it was found that smaller
number of neighbors, or “low globality” in other words, increased the likelihood of
attaining “almost consensus”, regardless of the value of the confidence bound.

As a population capable of attaining “almost consensus” evolves toward this state,
agglomerations of centrists were found to appear and grow in size until the whole
population is covered. There may be minority agents with outlying opinions scattered
across the two-dimensional space, but the overall trend is not affected.

It was hypothesized that conversion of agents to centrist agents occur at the interface of
growing agglomeration of centrists. It was also hypothesized that small confidence
bound and large globality prevents nucleation of centrist agglomerations, resulting in
polarization of the population. It must be noted that polarization of opinion occurs
without spatial polarization.



As the next step, the spatially defined phenomenon such as the growth of centrist
agglomerations can be quantified and investigated in more detail. This can be achieved
by employing image processing methods such as clustering algorithms and
dimensionality reduction. These techniques may allow us to identify properties of
nucleation phenomena, give us insights into what local agent clusters might qualify as a
nucleus to agglomeration, and to help us gain a deeper understanding of the underlying
dynamics of opinion formation.
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1. Introduction
1.1. Social dynamics

Social dynamics is a broad and multifaceted field that encompasses a wide range of
topics and phenomena, including group formation and cohesion, leadership,
communication, conflict and cooperation, power dynamics, and social
influence.(Fortunato 2005; Castellano, Fortunato, and Loreto 2009)(Edmonds 2006)
(Helbing 2010)(Stauffer 2009)

Researchers in this field use a variety of methods and approaches, including
experimental studies, field observations, and computational simulations, to understand
the ways in which individuals influence each other and how these interactions shape
group behavior.(Figure 1) (Castellano, Fortunato, and Loreto 2009)(Castellano 2012)

One key aspect of social dynamics is the study of how group behavior can emerge from
the interactions of individual group members. This is often referred to as "emergent
behavior," and it occurs when the behavior of a group as a whole cannot be fully
explained by the individual behavior of its members. This can occur in a variety of
contexts, such as when people are participating in social media networks, engaging in
political activism, or working together in a team.

Another important aspect of social dynamics is the study of how group behavior
changes over time.(Castellano, Fortunato, and Loreto 2009) This can include examining
how groups form and dissolve, how group norms and values evolve, and how group
members adapt to changes in their social environment. By understanding the ways in
which group behavior changes and develops over time, we can shed light on important
questions about how social structures and institutions emerge and function.

Figure 1 : Categories within social dynamics

1.2. Opinion dynamics
The discussions over a concerned agenda among the members of a society is a crucial
process in maintaining a functioning community or society. Opinion dynamics is a field
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that examines how the opinion “landscape” of a society is shaped through individual
interactions of its members. Opinion dynamics was first conceptualized by Weidlich in
1971.(Weidlich 1971)

Opinion dynamics usually employ agent-based modeling methods, a methodology that
describes social phenomena numerically and analytically. The opinions of each agent
are quantified, representing the fact that each person in a given society has a specific
viewpoint on a particular topic.(Kozitsin 2022) Then, the agents are allowed to interact
with other agents according to a certain update rule.

Through interactions with others in society, individuals may update their opinions or
maintain their current viewpoints. These interactions and opinion updates can be
analyzed at both macroscopic and microscopic levels, to elucidate how microscopic
interactions evolve into a macroscopic opinion "landscape".(Figure 2)

Some of the early examples of opinion dynamics include the use of the Ising model to
simulate how opinions evolve and change within a population of individual agents. The
spin-spin coupling in the Ising model represents the pairwise interaction between
agents, for example, the influence that one individual's opinion has on another's. The
magnetic field in the model represents external factors such as cultural majority or
propaganda, which can exert a powerful influence on the opinions of the individuals
within the population.(Serge Galam, (Feigenblat), and Shapir 1982)(Serge Galam and
Moscovici 1991)(Castellano, Fortunato, and Loreto 2009)(Li et al. 2019)

Figure 2: General scheme of modeling in opinion dynamics - opinion dynamics
quantifies the opinions of each agent and models what happens to society as a
collection of agents.

One application of this field is the use of simulations to study hypothetical elections.
These simulations can help researchers investigate how different factors, such as
campaign strategies or the influence of media, may impact the outcome of an
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election.(Bail et al. 2018) Effectively, we gain insights into how collective
decision-making processes work.

Using these models several major real political events were successfully predicted
including the victory of the French extreme right party in the 2000 first round of French
presidential elections, the voting at fifty-fifty in several democratic countries (Germany,
Italy, Mexico), and the victory of the no to the 2005 French referendum on the European
constitution.(Serge Galam 2011)

Another application is the study of opinion polarization in social networks.(Loy, Raviola,
and Tosin 2022)(Matakos, Terzi, and Tsaparas 2017) By creating simulations of how
opinions may spread and evolve within a social network, we can gain a deeper
understanding of how and why opinions may become more extreme or divisive over
time. These simulations can provide valuable insights to identify potential interventions
that may be effective in reducing polarization.(Prasetya and Murata 2020)

1.3. Models of opinion dynamics
Some of the common models of opinion dynamics include discrete and continuous
models. In discrete opinion dynamics, opinions are either 0 or 1, such as in the case of
political party affiliation (e.g., Republican or Democrat). Examples of discrete models
include the majority rule model, the voter model, social impact theory, and the Sznajd
model.(Castellano, Fortunato, and Loreto 2009) These models differ in how agents
interact and update their opinion to form a macroscopic opinion landscape.(Figure
3)(Sîrbu et al. 2017) The Social Impact Theory and the Sznajd model are outside the
scope of this work.

In continuous opinion dynamics, opinions can take any value from 0 to 1, such as in the
case of tolerance for tax rates. Continuous opinion dynamics was first studied in 1977
by Chatterjee et al.(Chatterjee and Seneta 1977) Some of the common examples of
continuous models include the Deffuant model and the HK model.(Deffuant et al.
2000)(Hegselmann and Krause 2002)(Lorenz 2007)

In addition, all models of opinion dynamics assume a certain network structure, which is
simply a collection of connected objects. It is often depicted by mathematical equations
or visual graphs.

A network structure depicted by a graph consists of N vertices that represent each
agent, and the edges between the vertices represent connections that allow for
connected agents to interact. Any opinion updates in opinion dynamics occur by the
edges.(Castellano, Fortunato, and Loreto 2009)
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Figure 3 : Examples of opinion dynamics in literature

In a real society, out of all possible connections, only a limited number of connections
actually exist. (i.e., not all 8 billion people in the world are friends with each other.) In
opinion dynamics that models a real society, the topology of such limited connections
determines the spread of opinion and the resulting opinion landscape.(Prettejohn and
McDonnell 2011)(Stern and Livan 2021)

1.4. Scope of this research
In Chapter 1, the field of social dynamics, a broad and multifaceted field that
encompasses a wide range of topics and phenomena, is introduced, with a particular
focus on opinion dynamics. Opinion dynamics is a field that examines how the opinion
“landscape” of a population is shaped through individual interactions of the population’s
members.

In chapter 2, some discrete opinion dynamics models, namely the majority rule model
and the Voter model are introduced. In the majority rule model, the final configuration is
solely dependent on the initial proportion of agents, as the model is based on the
majority rule.

In chapter 3, some continuous opinion dynamics models, namely the Deffuant model
and the HK model, are introduced, with a particular focus on the Deffuant model that
can be based on either a complete graph or a two-dimensional grid. For each of these
cases, we examine the opinion dynamics under different values of the confidence
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bound, an internal parameter of agents that determines the outcome of an agent’s
opinion update. Previous works examined the value of confidence bound at which
complete consensus is obtained. This work also takes a closer look at these states.

In chapter 4, the Deffuant model in a two-dimensional grid is modified to account for
local interactions that are not limited to the ones with the immediate neighbors. This
range of interaction beyond the immediate neighbors is termed “globality”. Along with
other terms of the Deffuant model such as the confidence bound, the effect of these
parameters to the opinion dynamics is explored.

Chapter 5 describes how the degree of globality and confidence bound impact the
thresholds for reaching "almost consensus." One of the key findings is that small
globality increases the likelihood of reaching “almost consensus”, regardless of the
value of confidence bound.

2. Discrete models of opinion dynamics
The two most known models in discrete opinion dynamics that assume binary opinion,
in the majority rule model and the Voter model. Both models introduce similar
properties, but they differ in their opinion update rules. While the majority rule is
introduced in the majority rule model, the Voter model is based on the rule that agents
update their opinion to that of one of their neighbors.(Redner 2019)

The majority rule model is based on the idea that individuals make decisions based on
both their own opinions and the opinions of the group they are interacting with.(Serge
Galam 2011) The Voter model is based on the idea that their opinions change to align
with those of their neighbors such that each agent votes for one of its neighbors'
opinions.(Fernández-Gracia et al. 2014)

2.1. Majority rule model

Figure 4: An illustration of how opinions are updated in a group by the majority
rule
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The model is based on a group-based majority rule. The majority rule is a means for
making decisions in a group of people.(Figure 4) Individuals are influenced by the
opinions of those around them, and they are more likely to adopt the opinion of the
majority within their social network.(Krapivsky and Redner 2003)(S. Galam 2002)

2.1.1. Properties and definition
The majority rule model assumes a group of agents with a total size of N. Each agent
within the group holds either opinion A or opinion B. The number of agents that support
opinion A at a given time step is represented by , while the number of agents that𝑁

+
(𝑡)

support opinion B is represented by . It is stated that the total number of people𝑁
−

(𝑡)

supporting either opinion A or B at any given time must equal N, meaning that
.𝑁

+
(𝑡) + 𝑁

−
(𝑡) = 𝑁

The proportions of people supporting each opinion at a given time step are represented
by and , respectively. These proportions are calculated by dividing the𝑝

+
(𝑡) 𝑝

−
(𝑡)

number of people supporting each opinion by the total size of the group . It is also𝑁
stated that the sum of the proportions of people supporting each opinion must equal 1,
meaning that .𝑝

+
(𝑡) + 𝑝

−
(𝑡) = 1

The majority rule model is implemented on a complete graph, which means that every
agent is connected to every other agent and can interact with them. The model can be
applied to situations where individuals can interact with others regardless of physical
distance, such as in the case of a large-scale online community.

In this model, a “floater” behavior is assumed in all agents. A floater is not fully
committed to a particular opinion and is open to persuasion from others. It listens to the
opinions of others and may change its initial opinion.

2.1.2. Opinion update procedure
In the majority rule model, all N agents have an opinion on a particular topic. Opinions
are binary represented by or . In a political context, this could represent+ 1 − 1
support for the Republican Party or the Democratic Party. The proportion of agents
having opinion is represented as , while the proportion of agents holding opinion+ 1 𝑝

+

is represented as .− 1 𝑝
−

In this model, the agents update their opinion through interactions with others. The
process starts with selecting a group of agents randomly from a population of size N. 𝑟
Then the majority rule is applied to update the individual opinions of the selected
agents. We chose as an odd number, typically =3, so that the majority rule can 𝑟  𝑟
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decide a winner. Under the majority rule, agents adopt the majority opinion of the group
they are with, regardless of their own initial opinion. Then finally, the agents are
reshuffled back into the population for the next random selection. This process is
iterated until a stable configuration is reached.

A stable configuration refers to a state in which the opinions of the agents in the system
are no longer changing. This can occur when all agents settle on the same opinion, or
the agents distribute themselves in multiple distinct groups with different opinions.

The majority rule model is considered global because it picks agents entirely randomly
from the whole population. The model is simple, but it is capable of describing how
different initial conditions lead to different outcomes such as consensus or polarization.

2.1.3. Empirical results
The convergence of opinion is determined solely by the initial state, as it is the only
variable. Specifically, the population is more likely to converge towards an opinion with
more than agents with the opinion, where is the population size. This tendency is𝑁

2 𝑁

stronger when the initial number of agents is significantly bigger than .𝑁
2

If the initial number is only marginally bigger than , there is still a non-negligible𝑁
2

probability of the population’s opinion converging toward the side that started as the
minority (but only marginally). The probability of such happening nears zero as the initial
value departs from .𝑁

2

The initial values also play a role in determining the speed at which the population
reaches equilibrium. It has been observed that the farther the initial values are from N/2,
the faster the convergence rate becomes. Understanding these relationships can be
crucial in predicting and controlling the behavior of a given population.
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Figure 5: Number of agents with opinion A changing over time in the majority rule
model at N=1000, with 500 initial opinion A supporters(left) and 400 initial opinion
A supporters (right).

2.1.4. Majority rule model with contrarians
In a particular community, the majority of people hold a certain belief or follow a certain
trend. However, some individuals always strongly disagree with the majority and actively
oppose the majority’s beliefs and actions. Agents with such a psychological feature are
called a contrarian.(Serge Galam and Cheon 2019)

When contrarians are present within the community, they can have substantial effects
on the dynamics.(Serge Galam and Cheon 2019) For example, it may become difficult
for an opinion to spread and gain acceptance.

The majority rule model was modified to incorporate contrarians to investigate how their
presence influences the spread and evolution of opinions and the overall opinion
dynamics.(Serge Galam and Cheon 2019)

The proportion of contrarians within the group is denoted by the time-independent
variable " ".(Serge Galam and Cheon 2019) In this model, the number of contrarians in𝑎
a given group is assumed to be constant over time. All non-contrarian agents are
assumed as floaters as defined in the original majority rule model.

Figure 6: Number of agents with opinion A changing over time in the majority rule
model in a population consisting of 900 floaters and 100 contrarians - in a case
with 500 initial opinion A supporters(left) and in a case with only one initial
supporter(right)

A contrarian shifts their opinion to oppose the local majority once it has been revealed.
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The contrarian shift is independent of whether the majority opinion is A or B. Contrarian
behavior is activated randomly with probability , which represents the proportion of𝑎
contrarian behavior within a social group. Contrarian behavior can be constant for some
agents and temporary for others. However, at any given time, a proportion of𝑎
individuals exhibit contrarian behavior. The value is a given fixed external parameter,𝑎
independent of the dynamics, and satisfies 0 ≤ ≤ 1.(Serge Galam and Cheon 2019)𝑎

2.1.5. Spatial majority rule model
The spatial majority rule model is different from the majority rule model in a way that
while agents are allocated in a complete graph in the majority rule model, the spatial
majority rule model assumes agents to be distributed in a two-dimensional grid. The
majority rule model is based on the global majority rule and assumes interactions
between agents held at a global scale, but it does not model interactions occurring at a
local scale. In the spatial majority rule model, interactions occur locally by letting agents
interact only with its adjacent four neighbors.

🟦 The number of opinion A supporters
🟧 The number of active interfaces
🟩 The number of active interfaces × log t

Figure 7: A spatial majority rule model simulation of a population of 200*200
agents at a cyclic boundary condition - the number of agents with each opinion
and the number of active interfaces (left), and the spatial distribution of opinions
before (top right) and after (bottom right) 30,630,000 opinion update procedures.

In this model, the update procedure starts with selecting one agent and other agents𝑟
out of its four neighbors randomly. After picking agents, the majority rule is(1 + 𝑟)
applied to update the agents’ opinions. Since agents are spatially fixed, opinion
changes occur only when agents with different opinions are adjacent to each other.
Hence, it can be said that opinion updates occur only at such an “active interface”.
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Figure 7 shows the initial state and the result of running a simulation according to the
spatial majority rule model. The number of supporters fluctuates slower than in the
original majority rule model. This is possibly caused by coarse graining, the decrease in
the amount of active interfaces where opinion updates actually occur. (Figure 7 left)

2.2. Voter model
The Voter model established in 1973 is a simple model based on the idea of social
influence, where individuals are influenced by the opinions of those around
them.(Clifford and Sudbury 1973)(Holley and Liggett 1975)

In the Voter model, each agent is assigned an opinion that can be represented by a𝑥
binary variable as in the majority rule model. Agents with opinions of either 0 or 1 are
randomly assigned in the initial configuration. At each time step, an agent is randomly𝑖 
selected and its opinion is updated to match that of one of its neighbors , also chosen𝑗
at random. .𝑥

𝑖
= 𝑥

𝑗

This process is repeated until a stable configuration is reached, at which point the
opinions of the agents are no longer changing.

2.2.1. Spatial Voter model
In the spatial Voter model, agents are distributed in a two-dimensional grid, as opposed
to the Voter model based on a complete graph. The opinion update rule is common
between the two models. Every agent interacts with one of its four neighbors. This
implies, interactions between agents are held locally.

The opinion update procedure starts with selecting one agent and one of its four
neighbors randomly. After selection, the first chosen agent takes the opinion of the
second chosen agent as in Figure 8.

Figure 8: Step 1 and 2 of the opinion update rule of the Voter model - the first
randomly selected agent takes the opinion of the second chosen agent.
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Figure 9 shows the initial state and the result of running a simulation according to the
Voter model. Compared to the majority rule model, while the number of active interfaces
similarly decreases, the coarse graining appears less distinct in the spatial Voter model.

🟦 The number of opinion A supporters
🟧 The number of active interfaces
🟩 The number of active interfaces × log t

Figure 9: A spatial Voter model simulation of a population of 200*200 agents at a
cyclic boundary condition - the number of agents with each opinion and the
number of active interfaces (left), and the spatial distribution of opinions before
(top right) and after (bottom right) 30,540,000 opinion update procedures.

3. Continuous models of opinion dynamics
The continuous opinion dynamics models including the Deffuant model and the HK
model assume the opinions of individuals to take a value on a continuous opinion range
rather than a binary.(Chatterjee and Seneta 1977) For example, an opinion range from
0 to 1 may be mapped between “conservative” and “liberal” to define a person’s
“liberal-ness” or “conservative-ness” by a value like 0.23. An update to the opinion
means a change in this value.

A density histogram can be drawn by taking the opinion value on the horizontal axis and
the number of agents on the vertical axis. Such a histogram would feature a single
cluster if the population has reached a consensus. It would be a representation of the
majority holding a “centrist” opinion near 0.5 on the opinion range.
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In continuous opinion dynamics, all individuals usually start with different opinions. The
possible outcomes are often more complex than in discrete opinion dynamics. The final
stable configuration may include one or more opinion agglomerations, which represent
consensus, polarization, or fragmentation.(Castellano, Fortunato, and Loreto 2009)

3.1. Deffuant model
The Deffuant model is a continuous opinion dynamics model that was proposed by
Deffuant, Neau, Amblard, and Weisbuch in 2000.(Deffuant et al. 2000) It has been used
to study the formation and evolution of group opinions, as well as the emergence of
social polarization, fragmentation, and consensus in populations.

3.1.1. Properties and definition
In this model, each agent holds an opinion on a particular topic, which is in the interval
[0,1].(Castellano, Fortunato, and Loreto 2009) The initial opinions of the agents are
randomly assigned values uniformly between 0 and 1. The agents are willing to
compromise and can be influenced by the opinions of others, but only if they are not too
far apart in opinion range.

Here, the model introduces the concept of confidence bound ε that represents the
degree of tolerance of agents for letting opinion updates occur. We take ε∈(0,1).

The agents in this model are assumed to interact with each other only if the absolute
difference between their opinions is less than ε. Therefore, two people having opinions
far different from each other are assumed to give up on making compromises.

To be more precise, let and denotes the opinion of a pair of interacting agents𝑠
𝑖
(𝑡) 𝑠

𝑗
(𝑡) 

and at time t. Then the update rule is characterized as follows:𝑖 𝑗

If ,then:𝑠
𝑖

− 𝑠
𝑗| | ≤ ε

𝑠
𝑖
(𝑡 + 1) = 𝑠

𝑖
(𝑡) + µ 𝑠

𝑗
(𝑡) − 𝑠

𝑖
(𝑡)[ ]

𝑠
𝑗
(𝑡 + 1) = 𝑠

𝑗
(𝑡) + µ 𝑠

𝑖
(𝑡) − 𝑠

𝑗
(𝑡)[ ]

When , opinion updates do not occur.𝑠
𝑖

− 𝑠
𝑗| | > ε

The convergence parameter, represented by μ, determines how much weight an agent
gives to the opinions of others upon an opinion update. In other words, it determines the
“stickiness” of “individuals’ opinions. The value of the convergence parameter lies in the
interval [0, ½].(Castellano, Fortunato, and Loreto 2009)

When an opinion update occurs, the interacting agents update their opinions to take the
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middle ground according to the two opinions and the value of μ. When μ=0.5 and the
opinions of two agents are within the confidence bound, they take the average of their
opinions and adopt the new averaged opinion. Since they are only taking their average,
the sum of all opinions remains constant throughout this process. The convergence
parameter affects how fast stable configurations are reached and also determines the
final outcome of the opinion dynamics.(Laguna, Abramson, and Zanette 2004)(Porfiri,
Bollt, and Stilwell 2007)

The distribution of opinions can be illustrated by the histogram that takes the opinion
range from 0 to 1 as the horizontal axis and the number or density of agents on the
vertical axis. A localized mass in the histogram is termed a “cluster”.(Figure 10)

3.1.2. Network structure
Network structures in opinion dynamics models result in different patterns of opinion
formation and convergence. There are two types of networks that have been
implemented into the Deffuant model - a complete graph and a two-dimensional grid.

A complete graph is a network in which every pair of vertices (representing agents) is
connected by an edge. This means that every agent is connected to every other agent
in the network.

A two-dimensional grid is a network in which the vertices are arranged on a square
lattice and the vertices are connected to their nearest neighbors on the lattice, forming a
regular grid structure. A periodic boundary condition is often employed for such a
grid.(Fortunato 2004)

3.1.3. Empirical results in a complete graph
In a complete graph, all agents are connected and “next to each other” by definition.
Therefore, spatial distribution is not defined and only the histogram of opinions is
concerned.

Initially, the agents in the population have randomly distributed opinions ranging from 0
to 1. The opinion update process is iterated until a stable configuration is reached. In
this state, opinion distribution clusters appear to no longer influence each other. This is
called “stable configuration”. Such a state is reached when the opinions of agents are all
in a single cluster, or in clusters that are at least ε away from other clusters on the
opinion space. At this state, the clusters appear independent from each other and static
except for some microscopic internal fluctuations.

The evolution of opinion distribution starts with the agents near the edges updating their
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opinions toward the center. As more agents take centrist opinions, the histogram
exhibits a propagation of higher concentration toward the center of the opinion space.
This is especially evident when . Under this condition, the centrist clusterε > 0. 5
appears from the first and becomes sharper over time. Finally, the histogram reaches
the state of “complete consensus”, which is defined as all agents in the population
being in a single cluster.(Figure 10)(Laguna, Abramson, and Zanette 2004)(Fortunato
2004)(Lorenz and Urbig 2007)

Figure 10: Deffuant model in a complete graph with 40000 agents at ,ε = 0. 5
simulated for 60 iterations of 5000 updates when - blue represents theε > 0. 5
whole histogram and green indicates the distribution of agents in the opinion
space 0-0.2 and 0.8-1.0. A single cluster emerges from the first and becomes
larger and sharper as more agents join. Over time, a complete consensus is
obtained. All agents held opinions within the range of 0.4 and 0.6 after 60
iterations of 5000 updates.(Fortunato 2004)

Figure 11 : The relations between the confidence bound and the probability of
reaching a complete consensus in the Deffuant model in the complete graph
(Fortunato 2005) - the probability tends to zero by ε=0.45.
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As the value of ε becomes smaller than 0.5, the population starts failing to reach a
complete consensus, meaning that not all agents join the final centrist cluster. Works by
Fortunato shows that when ε shrinks to below 0.5, the possibility of failing to reach a
complete consensus arises and by ε=0.45, the such possibility becomes practically
nil.(Figure 11) Figure 12 shows an example of such a state, where there is a major
centrist cluster but also some outlying agents, whose opinions are at least ε away from
the centrist cluster.(Fortunato 2004; Laguna, Abramson, and Zanette 2004)

Figure 12 : Deffuant model in a complete graph with 40,000 agents at ε＝0.48,
simulated for 2000 iterations of 5000 updates, leaving 4 outlying agents outside
the centrist cluster - compared to the case of ε=0.5 (Figure 10), a complete
consensus is not reached even after 2000 iterations of 5000 updates as opposed
to 60 iterations of 5000 updates. (Figure 10)

Figure 13: The development of the histogram of the opinions of agents in a
complete graph of 40000 agents, over 600 iterations of 5000 updates with ε=0.28
by the Deffuant model - The twin clusters initially appear and then merge into a
centrist cluster. In the final state, agents in the centrist cluster do not interact with
outlying agents as their opinions are further than ε.
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It is notable that as ε becomes smaller than 0.5, the histogram starts exhibiting a
different dynamics. In this condition, the initial opinion updates by agents toward the
center results in formation of a twin cluster in the opinion distribution histogram.
Nevertheless, the clusters eventually merge into a single cluster. (Figure 13)

When , the initial twin cluster feature becomes permanent and a single clusterε < 0. 28
distribution is not observed even after a prolonged simulation time.(Figure 14(b)) When
the clusters are separated by distances above ε, the difference of opinions between
agents in different clusters would always exceed ε. At this state, only agents within the
same cluster can interact with each other.

Figure 14: Deffuant model in a complete graph with 40,000 agents at ε＝0.2,
simulated for 4,000 iterations of 5,000 updates, shows that the initial twin clusters
are a permanent feature.

As mentioned above, the average opinion of the agents within a pair remains
unchanged before and after their interaction for any given values of the confidence
bound and the convergence parameter. As a result, the global average opinion of the
entire population is invariant of the Deffuant model dynamics, throughout the whole
process of opinion updates to reach a stable configuration. This is expressed by the
equation:

𝑖=1

𝑁

∑ 𝑥
𝑖

= 𝑁
2

While the sum of all opinions stays constant, local distribution clusters can occur.
When the threshold value is greater than a critical value , it results in all agentsε ε

𝑐

converging to a shared opinion of , meaning that there is complete consensus among1
2

them. (Fortunato, 2004; Lorenz and Urbig, 2007). This is true for a complete graph,
regular lattice, random graph, and a scale-free network.(Fortunato, 2004; Lorenz and
Urbig, 2007).
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There are cases when multiple clusters occur. Monte Carlo simulations have shown that
the number of agglomerations, , in the final configuration can be approximated by the𝑛

𝑐

expression .(Fortunato 2004) Because the opinions of each agglomeration need to1
2ε

be separated by the distance at least 2ε to its neighboring agglomerations. As a result,
no other agglomerations can exist within an interval of 2ε around any given
agglomeration.

The convergence parameter is known to affect the time it takes for an opinion
landscape to change.(Laguna, Abramson, and Zanette 2004) When the value of the
convergence parameter is small, agents resist updating their own opinions, resulting in
a slower change of the opinion landscape. When it is high, individuals are more willing
to update their opinions, leading to faster opinion dynamics.(Gargiulo and Huet 2010)

Figure 15: The positions of cluster peaks across different values of the
confidence bound u, under the cases of 3 different values of the convergence
parameter μ. Empty dots indicate minor clusters and full dots indicate major
clusters with a population larger than 1000 agents, i.e. than 10% of the total
population. Any agents within the pair of lines are absorbed into the major cluster
at x=0.5 to leave an empty space.(Laguna, Abramson, and Zanette 2004)
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3.1.4. Empirical results in a two-dimensional grid graph
Unlike in a complete graph, the physical location of agents is clearly defined in a
two-dimensional grid graph. This makes both the histogram and spatial opinion
distribution important properties of the two-dimensional Deffuant model.

A spatial opinion distribution shows how opinion clusters emerge in a two-dimensional
grid. This allows us to understand how geographic proximity can influence the formation
of clusters of similar opinions, and how these clusters can contribute to attainment of
consensus over time. We define the group of agents that have similar opinions and are
physically close in the spatial opinion distribution as an agglomeration.

In the same manner as in the complete graph, the agents in the population have
randomly distributed opinions ranging from 0 to 1. The opinion update process is
iterated until a state, where opinion distribution clusters appear to no longer influence
each other.

When ε>0.51, the evolution of opinion distribution starts with the agents near the edges
updating their opinions toward the center. As more agents update their opinions, the
histogram exhibits a propagation of density toward the center to make the centrist peak
sharper. Finally, the histogram reaches the state of “complete consensus”.(Figure 16) In
such a state, the two-dimensional distribution appears nearly featureless without any
blips, with agents in all locations holding similar opinions near 0.5.

When the value of ε becomes smaller than 0.51, the population starts failing to reach a
complete consensus, meaning that not all agents join the final centrist cluster. The initial
two clusters appearing immediately after the start of simulation become more evident as
ε goes below 0.51. When ε shrinks to below 0.51, it becomes harder for a population to
reach a complete consensus. In general, smaller populations are more likely to reach a
complete consensus even with a smaller value of ε. Nonetheless, the chances of
reaching a complete consensus drops to practically nil even for a smaller population like
N=2500 when ε=0.47.(Figure 18)

Under the condition of ε<0.51, an overwhelming majority of agents join the centrist
cluster as the simulation progresses. Yet this time, some outliers close to 0 or 1 on the
opinion space are observed.(Figure 17) In the spatial distribution, this appears as
scattered blips representing the outliers in the sea of agents with centrist
opinions.(Figure 17)
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(a) (b)
Figure 16: Deffuant model in a two-dimensional grid graph with 200*200 agents
in a cyclic boundary condition at ε＝0.51, before (a) and after (b) the simulation
for 1300 iterations of 5000 updates - the histogram reaches a complete
consensus with all agents holding opinions near 0.5. No blips are found in the
two-dimensional distribution.

Figure 17: Opinion distribution with 200*200 agents with ε＝0.50 in a two-
dimensional grid at a cyclic boundary condition, before (top left) and after (bottom
left) simulation for 2000 iterations of 5000 updates - some agents stay outside
the centrist major cluster, appearing as blips in the spatial distribution (right).
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Figure 18: The relations between the confidence bound and the complete
consensus in the Deffuant model in the two-dimensional grid.(Fortunato 2005)

The outlying agents that did not settle inside the centrist cluster locate themselves on
the histogram ε away from the centrist cluster. This means when ε decreases, the
distance between the centrist major cluster and the small satellite clusters also
decreases. Additionally, as the centrist major cluster absorbs fewer agents with
decreasing ε, more agents join the satellite clusters.(Figure 19 bottom) Similar property
is also observed in the complete graph.(Figure 15)

Figure 19: The histogram and spatial distribution from a population with ε=0.3
over 10,000 iterations of 5,000 updates, showing the emergence of scattered
agents with non-centrist opinions (top) and those from a population with ε=0.23,
showing more agents joining the scattered non-centrist agglomerations.(bottom)

On the spatial opinion distribution, two types of non-centrist agents are visible.(Figure
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19) In general, the number of non-centrists are dependent on the value of ε, and at a
given value of ε, the number of agents with opinions between 0 and 0.25 appear
comparable to the number of agents with opinions between 0.75 and 1. They both
appear randomly scattered in the spatial distribution.(Figure 19)

3.2. HK model
The HK model is a discrete opinion dynamics model that was proposed by Hegselmann
and Krause in 2002. In this model, opinions take real values on an interval . The0, 1[ ]
agent i, with opinion xi, interacts with neighboring agents whose opinions lie within the
range , where represents the degree of the confidence𝑥

𝑖
+ ε,  𝑥

𝑖
− ε[ ] ε

bound.(Hegselmann and Krause 2002)

The update rule differs from the Deffuant model in that agent interact with others one𝑖
by one, but all at once. The Deffuant model is suitable for describing the opinion
dynamics of large populations where people meet in small groups, like pairs, whereas
the HK rule is intended to describe formal meetings where there is an effective
interaction involving a large population at the same time.(Hegselmann and Krause
2002)

In this model, the opinion of agent at time is denoted:𝑖 𝑡 

𝑥
𝑖
(𝑡 + 1) =

Σ
𝑗: 𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)| |<ε

𝑎
𝑖𝑗

𝑥
𝑖𝑗

(𝑡)

Σ
𝑗: 𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)| |<ε

𝑎
𝑖𝑗

where is the adjacency matrix of the graph. The HK model is fully determined by the𝑎
𝑖𝑗

confidence bound Unlike the Deffuant model, the agent takes the average opinion ofε. 𝑖
its compatible neighbors. As the model calculates the averages of opinions upon every
opinion update, it is computational expensive and simulation times tend to be longer.

The dynamics in the HK model are similar to those in the Deffuant model at the
stationary state. As increases, the number of final clusters decreases until exceedsε ε
the threshold , at which point only one agglomeration emerges in the finalε

𝑐

configuration.

The agents in the HK model adopt the average opinion of their group, resulting in a final
configuration that is symmetric with 0.5 as the center of symmetry.(Fortunato 2005)
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Figure 20: The positions of clusters over different confidence bound (top) and the
time to reach a state in which clusters appear static(bottom)(Fortunato et al.
2005)

4. Spatial continuous Deffuant model
In addition, past literature assumed a two-dimensional grid (square lattice), a complete
graph, a random graph a la Erdos and Renyi, and a scale-free graph a la
Barabasi-Albert for the internal connectivity of the population.(Fortunato 2004)
Realistically speaking, limiting the possibility of opinion updates to the neighboring 4
agents as assumed by the square lattice model, is hardly an accurate representation of
modern society. Likewise, an agent listening to every single member of the society as
assumed by a complete graph is equally unrealistic. Here we aim to assume a graph
that falls somewhere in between these two extremes.

4.1. Introduction of “globality” - a spatial parameter
A spatial Deffuant model, which assumes a two-dimensional grid, but with a different
opinion update model, is introduced to better represent the reality. In this model, an
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agent interacts with not only the immediate neighbors of a square lattice but also with
the agents at a distance which represents “globality”.𝑅

The opinion update rule starts with randomly selecting an agent from the(𝑗, 𝑘)
population of N agents. Next, another agent within a specified two-dimensional vector

is randomly selected.||𝑣|| = 𝑚𝑎𝑥(|𝑥|, |𝑦|)

The length of the two-dimensional vector is defined by the maximum of the absolute
values of the vector, denoted as . The length of this vector is||𝑣|| = 𝑚𝑎𝑥(|𝑥|, |𝑦|)
assumed to satisfy , where represents “globality”.||𝑣|| < 𝑅  𝑅

Figure 21: The definition of globality R on a two-dimensional lattice

Setting the distance vector allows us to model a local community to describe intimate
relationships. For example, when , an agent interacts with another agent existing𝑅＝1
within the difference vector of 1. This means an agent can interact with one of the 8
candidates within its vicinity.

A larger value of allows an agent to interact with another agent further away in the𝑅
two-dimensional grid. When =2, the agent can interact with one of 24 agents selected𝑅
within a two-grid radius in all directions, or in other words, one of 24 candidates existing
within the difference vector of 2. To put it in a general term, an agent selects one of the

candidates to interact. When , an agent can interact with any other(2𝑅 + 1)2 − 1 𝑅→ ∞
agents in the population, equalling the state of a complete graph.
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4.2. Redefinition of consensus
Most studies of the Deffuant model in the past defined “consensus” as 100% of the
population holding the same opinion.(Fortunato 2004) Although, the distribution of
opinions often converges to a state without significant changes long before the
“consensus” is reached. Therefore, it is possible to assume the attainment of consensus
before taking extremely long simulation times. In addition, the real society does not
expect all members to have exactly the same opinion to declare a consensus.

Therefore in this study, we define “almost consensus” as 80% of the population
belonging to the same cluster on the histogram. Still, it is often the case that reaching
“almost consensus” requires long simulation times.

Figure 22 shows some of the examples of a population reaching “almost consensus”. In
these cases, a centrist cluster in which more than 80% of all agents belong to, and the
satellite clusters in which the remaining less than 20% of all agents belong to, are
observed. The distance between these clusters are close to the value of the confidence
bound.

Figure 22: Deffuant model in a square lattice with ε=0.25, over 40 iterations of
5,000,000 updates.

Depending on the value of ε and R, the population may reach a stable configuration at a
polarized state, in which the clusters do not move or widen over long simulation times.
At such a state, we are likely to observe a twin roughly identical major clusters
accompanied with some outlying agents near the edges of opinion space and in
between the twin clusters. This means any polarized state would not qualify as “almost
consensus”, since its condition of “more than 80% of all agents in the same cluster”
would not be satisfied.

4.3. Opinion update procedure
In the spatial Deffuant model, all agents are assumed to be distributed on a
two-dimensional grid under periodic boundary conditions, which effectively makes it a
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toroidal graph. On the histogram, initially, the agents have opinions randomly distributed
within 0 and 1.

The opinion update rule starts with randomly selecting one agent from the(𝑗, 𝑘)
population of N agents. Next, another agent within a specified two-dimensional vector

is randomly selected.||𝑣|| = 𝑚𝑎𝑥(|𝑥|, |𝑦|)

The length of this vector is assumed to satisfy , where represents||𝑣|| < 𝑅  𝑅
“globality”. When the value of , the globality is large, an agent can interact with another𝑅
agent in a further distance in the two-dimensional grid.

Setting the distance vector allows us to model a local community to describe intimate
relationships. For example, if the value of is two, an agent can interact with another𝑅
agent selected within a two-grid radius in all directions. After selecting these two agents,
the Deffuant rule is applied as described.

The conditions and threshold of reaching “almost consensus” over a range of and ε in𝑅
this spatial continuous Deffuant model were investigated by running a number of
simulations.

4.4. Empirical results
Work by Laguna et al on the Deffuant model has identified that when the confidence
bound ε is larger than 0.3, the population always reaches an “almost consensus” state
with a single centrist peak on the histogram. Likewise, when ε is smaller than 0.2, the
population tends to exhibit a fragmented state.(Figure 10) Therefore, the scope of this
work was set to the dynamics when the confidence bound ε is between 0.2 and 0.3.

For all values of confidence bound ε and globality R, it was found that both values affect
the speed at which “almost consensus” is reached.

When ε is small, such as ε=0.2, it is harder for two agents with different opinions to
agree. Then, it takes more iterations to exit a labile state in which fast or significant
changes in the distribution occur. Figure 23 and Figure 24 show the opinion distributions
when ε=0.2 and ε=0.25 with the same globality . The population reaches almost𝑅 = 1
consensus after 300 iterations when ε=0.25, but the population does not yet reach such
a state even after 300 iterations when ε=0.20.
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Figure 23: The histogram at , ε=0.2 over 20000 iterations of 5000 updates -𝑅 = 1
the time to “almost consensus” is markedly different from the case when ε=0.25
shown in Figure 24.

Similarly, a small value of makes it harder for agents to exit a labile state. This is𝑅
because if the number of neighbors that surround an agent is small, fewer opportunities
for opinion exchanges occur. Figure 24 and Figure 25 show the opinion distributions
where and respectively when ε=0.25. After 700 iterations of 5000𝑅 = 1 𝑅 = 6
updates, the population with R=6 has exited the labile state while the population with
R=1 has not.

Figure 24: The histogram at , ε=0.25 over 3000 iterations of 5000 updates -𝑅 = 1
larger confidence bound ε appear to reduce the time to “almost consensus”.

Overall, longer simulation times are necessary to reach stable configurations in the
Deffuant models when both ε and R are small. In these cases, larger numbers of
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updates or iterations and therefore longer simulation times are needed to exit a labile
state and observe an “almost consensus” state, polarization state, or any other opinion
patterns.

Figure 25: The histogram at , ε=0.25 over 700 iterations of 5000 updates -𝑅 = 6
larger globality appears to reduce the time to “almost consensus”.

4.4.1. Thresholds for convergence
The probabilities of reaching “almost consensus” for different values of globality R and
confidence bound ε were calculated from ten instances of simulation runs. The time
required until reaching “almost consensus” was significantly longer for smaller values of
ε and R as mentioned earlier. The number of iterations was increased tenfold for these
cases.(Figure 26 top) The constructed map of probabilities indicated that the likelihood
of reaching "almost consensus" is strongly dependent on the values of R and ε. (Figure
26 bottom)

The population is more likely to reach “almost consensus” when the confidence bound
is high, regardless of the globality. On the other hand, if ε<0.27, the population may not
always reach “almost consensus”. In this case, the possibility of reaching “almost
consensus” depends on the value of R and at a given value of ε, the population is more
likely to reach “almost consensus” when R is smaller. In addition, the “threshold” of R for
reaching consensus is dependent on ε, and the threshold tends to occur at a smaller
value of R when ε is smaller. The “steepness” of the threshold does not appear to vary
significantly over ε.
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Figure 26: The map of probabilities of reaching “almost consensus” across
different values of R and ε - while most instances of simulation was done at 50
iterations of 500000 updates, the number of updates was increased by tenfold for
cases painted in orange, when the values of R and ε are small. (top) A heatmap
constructed on the map of probability of reaching “almost consensus”, elucidating
a certain threshold of R over different values of ε.(bottom)

4.4.2. Opinion distribution
In the spatial Deffuant model, the final opinion distribution relies on both the confidence
bound ε and the globality R.

When ε<0.5, the population initially splits into two clusters regardless of the value of R.
This includes the cases when the value of ε is between 0.2 and 0.3. In such cases, the
histogram features initial formation of a twin cluster, followed by formation of a large
centrist cluster around 0.5 accompanied by smaller satellite clusters.(Figure 25) The
majority agents with opinions around 0.5 form the centrist cluster and the minority
agents with opinions near 0 or 1 form the satellite clusters. This minority usually makes
up less than 20% of the total population.(Figure 25)
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Figure 27: Evolution of clusters at ε=0.25, R=5 over 600 iterations of 5000
updates

Figure 28 looks at this phenomenon in more detail. The initial twin clusters are distinctly
visible after 120 iterations. Then, a centrist cluster appears around the 180th iteration.
Over time, the centrist cluster grows while the initial twin cluster shrinks. The twin
clusters do not appear to move during the process. After around 500 iterations, the
population reaches “almost consensus” and by 600th interaction, it further resembles
the state of a complete consensus.

At a fixed value of ε, larger globality appears to entail a deeper initial trench between the
initial twin clusters, as evident from Figure 28 and Figure 29. Around the 100th iteration
of 5000 updates, the initial twin clusters are the most distinct. At this state, a large value
of R results in fewer agents in the middle that would have otherwise bridged the two
clusters, and a smaller value of R results in more agents to be found in the middle. Yet
in both cases, the agents in the middle that bridge the twin clusters eventually form a
third cluster, which ultimately absorbs the initial twin clusters to become the main and
only cluster. This process appears more distinct in cases where the values of R and ε
are close to the threshold illustrated in Figure 26.
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Figure 28: Evolution of clusters at ε=0.27, R=10 over 300 iterations of 5000
updates

Figure 29: Evolution of clusters at ε=0.27, R=1 over 600 iterations of 5000
updates.

When the value of ε is low such as 0.2 but R is high, the population does not reach the
state of “almost consensus”, but a state of multiple clusters such as polarization. These
clusters position themselves at a distance approximately 2ε from each other. Most
agents are found in these clusters, except a few that are close to the edge of 0 or 1, or
in between the clusters.(Figure 30)

It is also observed that as long as the values of ε and R stays on the side of threshold,
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in which “almost consensus” does not occur (Figure 26), the dynamics are relatively
unaffected by the values of ε and R.

Figure 30 and Figure 31 compare the dynamics at a fixed value of ε but different values
of R, and Figure 31 and Figure 32 compare the dynamics at a fixed value of R but a
different value of ε. In all of the above cases, the dynamics, more specifically the order
of events, shape of histogram features, and the number of iterations required to reach a
certain state, are not distinctively different.

Figure 30: Evolution of clusters at ε=0.20, R=6 over 300 iterations of 5000
updates

Figure 31: Evolution of clusters at ε=0.20, R=10 over 300 iterations of 5000
updates
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Figure 32: Evolution of clusters at ε=0.24, R=10 over 300 iterations of 5000
updates

4.4.3. Spatial Opinion distribution
The spatial component of the spatial Deffuant model reveals which agent plays what
role in the opinion dynamics under what circumstances. For example, the spatial
component reveals if opinion polarization is geometrically dependent or not. The
histogram and map of spatial distribution at different confidence bound ε, globality R,
and the number of iterations were compared to establish how the evolution of spatial
distribution determines the outcome.

Figure 33 shows the evolution of histogram and its corresponding spatial distribution of
opinions that are represented using a color gradient. The lighter colors represent
opinions closer to 0 and the darker colors represent the opinions closer to 1. In the initial
configuration, agents holding their opinion are randomly distributed in a two-dimensional
space. In this state, different colors representing a diverse range of opinions are found
in any locality.

For populations that are expected to reach “almost consensus” (the values of ε and R
marked in red in Figure 27), the opinion formation process follows the same pattern
regardless of the value of ε and R - initial twin cluster, formation of centrist peak,
followed by attainment of “almost consensus” with centrist opinions.

Meanwhile on the spatial distribution, no distinct spatial pattern is observed while the
twin clusters initially form on the histogram. In this state, the population’s opinions are
polarized, but spatial clustering of opinions is not happening.

Then as the centrist cluster starts growing on histogram, small agglomerations of agents
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with centrist opinions emerge in the population. As the small agglomerations grow, they
sometimes merge with nearby agglomerations, until they cover the entire population.
This phenomenon may be compared to nucleation of crystals when liquid freezes. The
same process appears to be followed regardless of the value of ε and R. Nonetheless,
the details of this process, such as the number of agglomeration nuclei, may be
different.

Two populations, one with ε=0.24, R=1 (Figure 34) and the other with ε=0.24, R=5
(Figure 35), are compared to the difference in the details of the process.

Figure 33: The histogram and spatial distribution after 3300 iterations of 5000
updates at ε=0.24, R=1 - the “nuclei” of agglomerations appear to be scattered
across the map.

Around the 300th iteration, the spatial agglomerations are not distinct in either
populations. Then as simulations continue, the number of centrist agents between the
initial twin cluster increases on the histogram. At the same time, spatial agglomerations
of agents with centrist opinions become clearly visible in the spatial opinion distribution.
These agglomerations often lose their circular shape over their growth and merger with
other agglomerations. (Figure 33) (Figure 34)
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By 4000th to 5000th interactions and the population moves toward a consensus, the
small agglomerations grow and merge with each other to form a larger agglomeration of
centrists. When “almost consensus” is reached, the spatial opinion distribution is mostly
occupied by the single majority agglomeration of centrists represented by similar colors.

There are some agents with non-centrist opinions represented with different colors
scattered across the distribution, but as previously mentioned, the presence of such
agents with outlying opinions is a typical feature of populations with ε<0.5. Their
opinions are outside the confidence bound of the majority centrists, and are not
influenced by the surrounding agglomeration.

Figure 34: The histogram and spatial distribution after 880 iterations of 5000
updates at ε=0.24, R=5 - fewer “nuclei” of agglomerations were found compared
to the case of ε=0.24, R=1(Figure 33)

When the cases of ε=0.24, R=1 and ε=0.24, R=5 (Figure 34 and Figure 35) are
compared, we see more outliers when ε=0.24, R=1. This is a reproduction of the result
visible from the comparison of Figure 25 and Figure 26. There, a smaller value of R
results in more outliers to occur in the state of “almost consensus”.
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We also find that the growth of agglomerations starts from fewer locations when ε=0.24,
R=5. It may be explained that a larger value of R results in deeper trench between the
initial twin clusters, and that leads to fewer chances of nucleation by centrists to occur.
But even with fewer nuclei of centrists, the agglomeration of centrists grows until the
attainment of “almost consensus”.

Figure 35: The histogram and spatial distribution after 220 iterations of 5000
updates at ε=0.3, R=5 - the “nuclei” of agglomerations appear to be evenly
scattered across the map, and such nuclei are not as distinct as in Figure 33 and
Figure 34.

It is hypothesized that nucleation of centrists in the spatial distribution is the cause of
the transition from an initial twin cluster to an “almost consensus” state with a single
centrist cluster. To further investigate this hypothesis, the value of ε was changed so
that the histogram exhibits shallower trench between the initial twin cluster and the
population having more nuclei of centrists.

The dynamics of a population with ε=0.24, R=5 (Figure 34) is compared with that with
ε=0.30, R=5 (Figure 35). The nucleation events in Figure 35 occur in numerous
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locations across the spatial distribution. These agglomerations merge during the early
phase of growth. While in Figure 34, the nucleation events occur in fewer locations and
agglomerations merge during their later phase of growth.

It is observed that a deeper trench between the initial twin clusters results in nucleation
of centrists occurring from fewer locations. This may be a characteristic phenomenon of
populations with values of ε and R close to the threshold shown on Figure 26.

When ε is small but R is large, the population becomes polarized on the histogram.
(Figure 26) Even though the histogram shows a distinctly polarized pattern, no distinct
spatial patterns are observed in the spatial opinion distribution.(Figure 36) In addition, it
is already shown that a population in the initial transient twin clusters do not show
spatial polarization either.(Figure 33, Figure 34 and Figure 35)

Figure 36: Evolution of clusters and spatial distribution at ε=0.24, R=10 over 220
iterations of 5000 updates

To summarize, polarization of opinions on the histogram does not induce spatial
polarization of opinions.
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5. Discussion
5.1. The mechanism of reaching a consensus

The results from simulations of populations with different confidence bound ε and
globality R indicate that achieving "almost consensus” is actually dependent on the
likelihood of nucleation of spatial agglomerations of centrists. Also, the likelihood of
nucleation is determined by the depth of trench between the initial transient twin cluster
on the histogram. When the depth reaches a level that spatial nucleations of centrists
cease to occur, the population ends in polarization. This polarization occurs without
spatial polarization.

It is observed that the evolution of a population from the initial transient twin clusters to
the growth of a new centrist cluster, is accompanied by the growth of centrist
agglomerations on the spatial distribution. It may be hypothesized that agents
unidirectionally updating their opinions to the centrist direction occurs primarily at the
active interfaces of growing centrist agglomerations. This also explains why initial twin
clusters do not move toward each other to merge at the center, but instead form a new
centrist cluster that “sucks” agents from the twin peaks.(Figure 25) The small number of
agents found between the new centrist cluster and the initial twin cluster act as a
conduit for agents to become centrists.

The opinion updates may be occurring at different locations where there is no
agglomeration, but pulled by the polarized opinions of the initial twin clusters, updates
occur bidirectionally. This puts the agents in an equilibrium and therefore do not show
up on the spatial distribution.

On the contrary, the population reaching a stable configuration with a polarized opinion
is actually a case where the sequence of events started by nucleation of centrist
agglomeration failed to happen and the initial twin cluster is preserved.

In addition, it is generally observed that time taken to reach a stable configuration is
independent of whether the population reaches consensus. Meanwhile, higher values of
the confidence bound ε or globality R appear to result in quicker attainment of stable
configuration. Further confirmation of the relationship between the time it takes to reach
a stable configuration and the values of ε and R needs to be investigated further.

5.2. Agents outside clusters
Some agents remain outside of the major clusters or in between the clusters even after
a stable configuration is reached. Their opinions are at least away from the majorε 
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clusters. We shall call these agents not belonging to any major clusters as "remainders."

The number of the remainders is found to be affected by the confidence bound and the
globality. As the confidence bound increases, the number of the remainders also
increases until a certain threshold is reached. However, after crossing that threshold,
the number of the outlying agents starts to decrease.(Figure 37)

Figure 37: The relation between the value of ε and the number of agents in
non-centrist satellite clusters at “almost consensus” states, showing a certain
minimum - a population of 200*200 agents and R=3 was assumed.

5.3. Potential real world application
To apply the above studies to the real world, we have to examine the real world
meaning of the confidence bounds and the globality.

Like how the majority rule model successfully predicted the result of several political
events, the Deffuant model could also be applied to simulate the opinions dynamics in
real-world scenarios. For example, the political parties in the United States and Japan
could be used to illustrate the concepts of the confidence bound and the globality by the
application of this study.

In the United States, the political model is bipartisan between the Republican Party and
the Democratic Party. It may be hypothesized that the political opinion distribution and
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landscape is actively shaped by influential vocal citizens, and as they often have very
established political positions and opinions that they equate to agents with small
confidence bound. From our study, we find that the small value of the confidence bound
leads to polarization of opinions.(Figure 32)

Conversely, Japan's post-WW2 political landscape has been characterized by the
dominance of the Liberal Democratic Party winning most of the elections. This could
also be hypothesized by people’s tendency to follow the surrounding opinions and their
general indifference toward politics, resulting in large confidence bound. A population
with a large confidence bound is more likely to converge into a consensus than ending
in polarization.(Figure 29)

Another possible example is the impact of social networks on opinion dynamics.
Polarization of opinions in modern nations, possibly caused by the use of social
networks, is actively discussed.(Casal Bértoa and Rama 2021) Before the age of social
networks, interactions between agents were more local and limited to a smaller group of
individuals. This may be represented as a small value of globality, but the recent
introduction of social network services may have greatly increased the value of globality
by establishing lines of influence between large numbers of individuals with a wider
range of opinions. This increased globality may be leading to the polarization of
opinions.

6. Conclusion
In this work, the two-dimensional Deffuant model was modified to include the local
connectivity of agents. The dynamics were visualized by the opinion distribution
histogram and the map of spatial opinion distribution. Such visualizations allowed for a
clearer understanding of the spatial effect on opinion dynamics. This was achieved by
introducing a new parameter of “globality”, the distance within which an agent can
interact with neighbors. The existing parameters included the confidence bound and the
convergence parameter. In addition, the state of “almost consensus” was newly defined
to save computational resources and better represent a real society, in which 100%
exact consensus is not required.

It was found that the degree of globality and confidence bound have an impact on the
thresholds for reaching “almost consensus”. In addition to the previous findings that
larger confidence bound increases the probability of the population attaining a state of
“almost consensus”, it was found that smaller number of neighbors, or “low globality” in
other words, increased the likelihood of attaining “almost consensus”, regardless of the
value of the confidence bound.
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As a population capable of attaining “almost consensus” evolves toward this state,
agglomerations of centrists were found to appear and grow in size until the whole
population is covered. There may be minority agents with outlying opinions scattered
across the two-dimensional space, but the overall trend is not affected.

It was hypothesized that conversion of agents to centrist agents occur at the interface of
growing agglomeration of centrists. It was also hypothesized that small confidence
bound and large globality prevents nucleation of centrist agglomerations, resulting in
polarization of the population. It must be noted that polarization of opinion occurs
without spatial polarization.

As the next step, the spatially defined phenomenon such as the growth of centrist
agglomerations can be quantified and investigated in more detail. This can be achieved
by employing image processing methods such as clustering algorithms and
dimensionality reduction. These techniques may allow us to identify properties of
nucleation phenomena, give us insights into what local agent clusters might qualify as a
nucleus to agglomeration, and to help us gain a deeper understanding of the underlying
dynamics of opinion formation.

7. References

Bail, Christopher A., Lisa P. Argyle, Taylor W. Brown, John P. Bumpus, Haohan Chen,
M. B. Fallin Hunzaker, Jaemin Lee, Marcus Mann, Friedolin Merhout, and
Alexander Volfovsky. 2018. “Exposure to Opposing Views on Social Media Can
Increase Political Polarization.” Proceedings of the National Academy of Sciences
of the United States of America 115 (37): 9216–21.

Casal Bértoa, Fernando, and José Rama. 2021. “Polarization: What Do We Know and
What Can We Do About It?” Frontiers in Political Science 3 (June).
https://doi.org/10.3389/fpos.2021.687695.

Castellano, Claudio. 2012. “Social Influence and the Dynamics of Opinions: The
Approach of Statistical Physics.” Managerial and Decision Economics.
https://doi.org/10.1002/mde.2555.

Castellano, Claudio, Santo Fortunato, and Vittorio Loreto. 2009. “Statistical Physics of
Social Dynamics.” Reviews of Modern Physics 81 (2): 591.

Chatterjee, S., and E. Seneta. 1977. “Towards Consensus: Some Convergence
Theorems on Repeated Averaging.” Journal of Applied Probability 14 (1): 89–97.

Clifford, Peter, and Aidan Sudbury. 1973. “A Model for Spatial Conflict.” Biometrika 60
(3): 581–88.

Deffuant, Guillaume, David Neau, Frederic Amblard, and Gérard Weisbuch. 2000.
“Mixing Beliefs among Interacting Agents.” Advances in Complex Systems. A
Multidisciplinary Journal. https://doi.org/10.1142/S0219525900000078.

42

http://paperpile.com/b/JTZBUp/sqdW
http://paperpile.com/b/JTZBUp/sqdW
http://paperpile.com/b/JTZBUp/sqdW
http://paperpile.com/b/JTZBUp/sqdW
http://paperpile.com/b/JTZBUp/sqdW
http://paperpile.com/b/JTZBUp/Vio5
http://paperpile.com/b/JTZBUp/Vio5
http://paperpile.com/b/JTZBUp/Vio5
http://dx.doi.org/10.3389/fpos.2021.687695
http://paperpile.com/b/JTZBUp/Vio5
http://paperpile.com/b/JTZBUp/y8V5
http://paperpile.com/b/JTZBUp/y8V5
http://paperpile.com/b/JTZBUp/y8V5
http://dx.doi.org/10.1002/mde.2555
http://paperpile.com/b/JTZBUp/y8V5
http://paperpile.com/b/JTZBUp/U8UF
http://paperpile.com/b/JTZBUp/U8UF
http://paperpile.com/b/JTZBUp/T9YV
http://paperpile.com/b/JTZBUp/T9YV
http://paperpile.com/b/JTZBUp/6hB0
http://paperpile.com/b/JTZBUp/6hB0
http://paperpile.com/b/JTZBUp/FUGp
http://paperpile.com/b/JTZBUp/FUGp
http://paperpile.com/b/JTZBUp/FUGp
http://dx.doi.org/10.1142/S0219525900000078
http://paperpile.com/b/JTZBUp/FUGp


Edmonds, Bruce. 2006. “Review of Critical Mass: How One Thing Leads to Another.”
https://www.jasss.org/9/3/reviews/edmonds.html.

Fernández-Gracia, Juan, Krzysztof Suchecki, José J. Ramasco, Maxi San Miguel, and
Víctor M. Eguíluz. 2014. “Is the Voter Model a Model for Voters?” Physical Review
Letters 112 (15): 158701.

Fortunato, Santo. 2004. “UNIVERSALITY OF THE THRESHOLD FOR COMPLETE
CONSENSUS FOR THE OPINION DYNAMICS OF DEFFUANT et Al.”
International Journal of Modern Physics C.
https://doi.org/10.1142/s0129183104006728.

Fortunato, Santo, Vito Latora, Alessandro Pluchino, and Andrea Rapisarda. 2005.
“VECTOR OPINION DYNAMICS IN A BOUNDED CONFIDENCE CONSENSUS
MODEL.” International Journal of Modern Physics C.
https://doi.org/10.1142/s0129183105008126.

Galam, S. 2002. “Minority Opinion Spreading in Random Geometry.” The European
Physical Journal B. https://doi.org/10.1140/epjb/e20020045.

Galam, Serge. 2011. “SOCIOPHYSICS: A REVIEW OF GALAM MODELS.”
International Journal of Modern Physics C, November.
https://doi.org/10.1142/S0129183108012297.

Galam, Serge, and Taksu Cheon. 2019. “Asymmetric Contrarians in Opinion Dynamics.”
Entropy 22 (1). https://doi.org/10.3390/e22010025.

Galam, Serge, Yuval Gefen (Feigenblat), and Yonathan Shapir. 1982. “Sociophysics: A
New Approach of Sociological Collective Behaviour. I. Mean‐behaviour Description
of a Strike.” The Journal of Mathematical Sociology.
https://doi.org/10.1080/0022250x.1982.9989929.

Galam, Serge, and Serge Moscovici. 1991. “Towards a Theory of Collective
Phenomena: Consensus and Attitude Changes in Groups.” European Journal of
Social Psychology. https://doi.org/10.1002/ejsp.2420210105.

Gargiulo, F., and S. Huet. 2010. “Opinion Dynamics in a Group-Based Society.” EPL
(Europhysics Letters). https://doi.org/10.1209/0295-5075/91/58004.

Hegselmann, Rainer, and Ulrich Krause. 2002. “Opinion Dynamics and Bounded
Confidence Models, Analysis and Simulation,” June.
https://www.jasss.org/5/3/2.html.

Helbing, Dirk. 2010. Quantitative Sociodynamics: Stochastic Methods and Models of
Social Interaction Processes. PDF. 2nd ed. Berlin, Germany: Springer.

Holley, Richard A., and Thomas M. Liggett. 1975. “Ergodic Theorems for Weakly
Interacting Infinite Systems and the Voter Model.” The Annals of Probability 3 (4):
643–63.

Kozitsin, Ivan V. 2022. “A General Framework to Link Theory and Empirics in Opinion
Formation Models.” Scientific Reports 12 (1): 5543.

Krapivsky, P. L., and S. Redner. 2003. “Dynamics of Majority Rule in Two-State
Interacting Spin Systems.” Physical Review Letters 90 (23): 238701.

Laguna, M. F., Guillermo Abramson, and Damian H. Zanette. 2004. “Minorities in a
Model for Opinion Formation.” Complexity. https://doi.org/10.1002/cplx.20018.

Li, Lingbo, Ying Fan, An Zeng, and Zengru Di. 2019. “Binary Opinion Dynamics on
Signed Networks Based on Ising Model.” Physica A: Statistical Mechanics and Its
Applications. https://doi.org/10.1016/j.physa.2019.03.011.

43

http://paperpile.com/b/JTZBUp/Nzj9
https://www.jasss.org/9/3/reviews/edmonds.html
http://paperpile.com/b/JTZBUp/Nzj9
http://paperpile.com/b/JTZBUp/WpuM
http://paperpile.com/b/JTZBUp/WpuM
http://paperpile.com/b/JTZBUp/WpuM
http://paperpile.com/b/JTZBUp/9DzD
http://paperpile.com/b/JTZBUp/9DzD
http://paperpile.com/b/JTZBUp/9DzD
http://paperpile.com/b/JTZBUp/9DzD
http://dx.doi.org/10.1142/s0129183104006728
http://paperpile.com/b/JTZBUp/9DzD
http://paperpile.com/b/JTZBUp/h8hj
http://paperpile.com/b/JTZBUp/h8hj
http://paperpile.com/b/JTZBUp/h8hj
http://paperpile.com/b/JTZBUp/h8hj
http://dx.doi.org/10.1142/s0129183105008126
http://paperpile.com/b/JTZBUp/h8hj
http://paperpile.com/b/JTZBUp/oT0h
http://paperpile.com/b/JTZBUp/oT0h
http://dx.doi.org/10.1140/epjb/e20020045
http://paperpile.com/b/JTZBUp/oT0h
http://paperpile.com/b/JTZBUp/AtLS
http://paperpile.com/b/JTZBUp/AtLS
http://paperpile.com/b/JTZBUp/AtLS
http://dx.doi.org/10.1142/S0129183108012297
http://paperpile.com/b/JTZBUp/AtLS
http://paperpile.com/b/JTZBUp/w9er
http://paperpile.com/b/JTZBUp/w9er
http://dx.doi.org/10.3390/e22010025
http://paperpile.com/b/JTZBUp/w9er
http://paperpile.com/b/JTZBUp/nXuW
http://paperpile.com/b/JTZBUp/nXuW
http://paperpile.com/b/JTZBUp/nXuW
http://paperpile.com/b/JTZBUp/nXuW
http://dx.doi.org/10.1080/0022250x.1982.9989929
http://paperpile.com/b/JTZBUp/nXuW
http://paperpile.com/b/JTZBUp/4IzI
http://paperpile.com/b/JTZBUp/4IzI
http://paperpile.com/b/JTZBUp/4IzI
http://dx.doi.org/10.1002/ejsp.2420210105
http://paperpile.com/b/JTZBUp/4IzI
http://paperpile.com/b/JTZBUp/LxqS
http://paperpile.com/b/JTZBUp/LxqS
http://dx.doi.org/10.1209/0295-5075/91/58004
http://paperpile.com/b/JTZBUp/LxqS
http://paperpile.com/b/JTZBUp/qSEk
http://paperpile.com/b/JTZBUp/qSEk
https://www.jasss.org/5/3/2.html
http://paperpile.com/b/JTZBUp/qSEk
http://paperpile.com/b/JTZBUp/pLa3
http://paperpile.com/b/JTZBUp/pLa3
http://paperpile.com/b/JTZBUp/JCGu
http://paperpile.com/b/JTZBUp/JCGu
http://paperpile.com/b/JTZBUp/JCGu
http://paperpile.com/b/JTZBUp/aOcc
http://paperpile.com/b/JTZBUp/aOcc
http://paperpile.com/b/JTZBUp/eHYQ
http://paperpile.com/b/JTZBUp/eHYQ
http://paperpile.com/b/JTZBUp/jGWn
http://paperpile.com/b/JTZBUp/jGWn
http://dx.doi.org/10.1002/cplx.20018
http://paperpile.com/b/JTZBUp/jGWn
http://paperpile.com/b/JTZBUp/P4yw
http://paperpile.com/b/JTZBUp/P4yw
http://paperpile.com/b/JTZBUp/P4yw
http://dx.doi.org/10.1016/j.physa.2019.03.011
http://paperpile.com/b/JTZBUp/P4yw


Lorenz, Jan. 2007. “CONTINUOUS OPINION DYNAMICS UNDER BOUNDED
CONFIDENCE: A SURVEY.” International Journal of Modern Physics C.
https://doi.org/10.1142/s0129183107011789.

Lorenz, Jan, and Diemo Urbig. 2007. “ABOUT THE POWER TO ENFORCE AND
PREVENT CONSENSUS BY MANIPULATING COMMUNICATION RULES.”
Advances in Complex Systems. https://doi.org/10.1142/s0219525907000982.

Loy, Nadia, Matteo Raviola, and Andrea Tosin. 2022. “Opinion Polarization in Social
Networks.” Philosophical Transactions. Series A, Mathematical, Physical, and
Engineering Sciences 380 (2224): 20210158.

Matakos, Antonis, Evimaria Terzi, and Panayiotis Tsaparas. 2017. “Measuring and
Moderating Opinion Polarization in Social Networks.” Data Mining and Knowledge
Discovery. https://doi.org/10.1007/s10618-017-0527-9.

Porfiri, M., E. M. Bollt, and D. J. Stilwell. 2007. “Decline of Minorities in Stubborn
Societies.” The European Physical Journal B.
https://doi.org/10.1140/epjb/e2007-00186-3.

Prasetya, Hafizh A., and Tsuyoshi Murata. 2020. “A Model of Opinion and Propagation
Structure Polarization in Social Media.” Computational Social Networks.
https://doi.org/10.1186/s40649-019-0076-z.

Prettejohn, Brenton J., and Mark D. McDonnell. 2011. “Effect of Network Topology in
Opinion Formation Models.” Collaborative Agents - Research and Development,
114–24.

Redner, Sidney. 2019. “Reality-Inspired Voter Models: A Mini-Review.” Comptes Rendus
Physique. https://doi.org/10.1016/j.crhy.2019.05.004.

Sîrbu, Alina, Vittorio Loreto, Vito D. P. Servedio, and Francesca Tria. 2017. “Opinion
Dynamics: Models, Extensions and External Effects.” Understanding Complex
Systems. https://doi.org/10.1007/978-3-319-25658-0_17.

Stauffer, Dietrich. 2009. “Opinion Dynamics and Sociophysics.” In Encyclopedia of
Complexity and Systems Science, 6380–88. New York, NY: Springer New York.

Stern, Samuel, and Giacomo Livan. 2021. “The Impact of Noise and Topology on
Opinion Dynamics in Social Networks.” Royal Society Open Science 8 (4): 201943.

Weidlich, W. 1971. “THE STATISTICAL DESCRIPTION OF POLARIZATION
PHENOMENA IN SOCIETY†.” British Journal of Mathematical and Statistical
Psychology. https://doi.org/10.1111/j.2044-8317.1971.tb00470.x.

Porfiri, M., E. M. Bollt, and D. J. Stilwell. 2007. “Decline of Minorities in Stubborn
Societies.” The European Physical Journal B.
https://doi.org/10.1140/epjb/e2007-00186-3

44

http://paperpile.com/b/JTZBUp/glcR
http://paperpile.com/b/JTZBUp/glcR
http://paperpile.com/b/JTZBUp/glcR
http://dx.doi.org/10.1142/s0129183107011789
http://paperpile.com/b/JTZBUp/glcR
http://paperpile.com/b/JTZBUp/iNeV
http://paperpile.com/b/JTZBUp/iNeV
http://paperpile.com/b/JTZBUp/iNeV
http://dx.doi.org/10.1142/s0219525907000982
http://paperpile.com/b/JTZBUp/iNeV
http://paperpile.com/b/JTZBUp/qZSw
http://paperpile.com/b/JTZBUp/qZSw
http://paperpile.com/b/JTZBUp/qZSw
http://paperpile.com/b/JTZBUp/PHZZ
http://paperpile.com/b/JTZBUp/PHZZ
http://paperpile.com/b/JTZBUp/PHZZ
http://dx.doi.org/10.1007/s10618-017-0527-9
http://paperpile.com/b/JTZBUp/PHZZ
http://paperpile.com/b/JTZBUp/yf1k
http://paperpile.com/b/JTZBUp/yf1k
http://paperpile.com/b/JTZBUp/yf1k
http://dx.doi.org/10.1140/epjb/e2007-00186-3
http://paperpile.com/b/JTZBUp/yf1k
http://paperpile.com/b/JTZBUp/8bO9
http://paperpile.com/b/JTZBUp/8bO9
http://paperpile.com/b/JTZBUp/8bO9
http://dx.doi.org/10.1186/s40649-019-0076-z
http://paperpile.com/b/JTZBUp/8bO9
http://paperpile.com/b/JTZBUp/vLHd
http://paperpile.com/b/JTZBUp/vLHd
http://paperpile.com/b/JTZBUp/vLHd
http://paperpile.com/b/JTZBUp/E0pu
http://paperpile.com/b/JTZBUp/E0pu
http://dx.doi.org/10.1016/j.crhy.2019.05.004
http://paperpile.com/b/JTZBUp/E0pu
http://paperpile.com/b/JTZBUp/R93J
http://paperpile.com/b/JTZBUp/R93J
http://paperpile.com/b/JTZBUp/R93J
http://dx.doi.org/10.1007/978-3-319-25658-0_17
http://paperpile.com/b/JTZBUp/R93J
http://paperpile.com/b/JTZBUp/FGye
http://paperpile.com/b/JTZBUp/FGye
http://paperpile.com/b/JTZBUp/6Huq
http://paperpile.com/b/JTZBUp/6Huq
http://paperpile.com/b/JTZBUp/GN1v
http://paperpile.com/b/JTZBUp/GN1v
http://paperpile.com/b/JTZBUp/GN1v
http://dx.doi.org/10.1111/j.2044-8317.1971.tb00470.x
http://paperpile.com/b/JTZBUp/GN1v
http://dx.doi.org/10.1140/epjb/e2007-00186-3

