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Table 1. Summary of Data Types Collected for Policymakers in Treatment Group (N = 140). 
Data Type Number of Policymakers Number of Tweets or 

Meeting Transcripts 
Tweets 
(3-months pre to post intervention) 139 70,391 

Climate change-related Tweets 
(3-months pre to post intervention) 139 2593 

Committee Meeting Text 
(1-year pre to post intervention) 95 661 

Sociodemographic and Constituency 
Information 140  

 
Table 2. Summary of Data Types Collected for Policymakers in Control Group (N = 140). 
Data Type Number of 

Policymakers 
Sample Size of 
Texts (ie tweets) 

Tweets (3-months pre to post intervention of matched 
treated policymaker) 116 31,380 

Climate change-related Tweets (3-months pre to post 
intervention) 116 736 

Sociodemographic and Constituency Information 140  

 
Table 3. Results from Independent Samples T-tests Comparing Pre- to Post-Intervention Sentiment 
Measures of Climate-related Tweets (N=2593) from Treatment Group (N=139). 
Measure Pre Mean Post Mean p-value 

Frequency of cc-related1 tweets 0.031 0.0267 >0.05 

Analytic Terms  
(terms related to logical and formal thinking) 74.0 77.0 0.0007** 

Politics-related Terms  
(i.e., united states, congress, senate) 1.9 2.4 <0.0001*** 

Money-related Terms 
(i.e., business, pay, price, market) 1.1 1.5 <0.0001*** 

Reward Motive Terms 
(i.e., opportunity, win, gain, benefit) 0.16 0.26 0.002** 

Insight-oriented Terms 
(i.e., know, how, think, feel) 1.6 1.6 >0.05 

Emotional Tone 
(i.e., higher value means more positive tone) 27.8 29.4 >0.05 

Future-oriented Terms 1.6 1.4 >0.05 
1 Note that ‘cc-related’ refers to climate change-related. 
 



 
 
 
 
 

Table 4. Comparison of Results from Two Diff-in-Diff Linear Regression Models Estimating Effect of 
Intervention Treatment on Climate-related Tweet Rate, with Model 1 Including No Other 
Independent Variables and Model 2 Including Binary Variables for Gender, Party, and Race. 
Variable / Value Types Model 1 Model 2 
Intercept   
    Beta Parameter Estimate (B0) 0.0213 0.0286 
    Standard Error 0.00368 0.00408 
    p-value <0.001*** <0.001*** 
Treat – Treatment Group (B1)   
    Beta Parameter Estimate 0.0109 0.0101 
    Standard Error 0.004 0.00484 
    p-value 0.0287* 0.038* 
Post – Post-intervention (B2)   
    Beta Parameter Estimate 0.00120 0.00116 
    Standard Error 0.00520 0.00506 
    p-value 0.818 0.819 
Treat:Post – DID Interaction Variable (B3) 
(post-intervention tweets in treatment group) 

  

    Beta Parameter Estimate -0.00480 -0.00473 
    Standard Error 0.00702 0.00684 
    p-value 0.495 0.490 
Is_Female (B4)   
    Beta Parameter Estimate  -0.00257 
    Standard Error  0.00385 
    p-value  0.505 
Is_Republican (B5)   
    Beta Parameter Estimate  -0.0225 
    Standard Error  0.00410 
    p-value  <0.001*** 
Is_NonWhite (B6)   
    Beta Parameter Estimate  -0.0073 
    Standard Error  0.00684 
    p-value  0.545 
Global Model   
    Residual Standard Error 0.0393 on 502 DF 0.03827 on 499 DF 
    Adjusted R-squared 0.006886 0.05883 
    F-statistic 2.167 on 3 and 502 DF 6.261 on 6 and 499 DF 
    p-value 0.091 < 0.001*** 



Table 5. Sample of Climate Change-related Tweets with High Analytic Tone and Tweets with 
High Reward-motivated Terms. 

Text Analytic Reward-
motivated 

Emotional 
Tone 

From committing to 100 percent renewable energy, to 
embracing a carbon neutral economy, Hawaii has taken 
aggressive action to combat climate change because of the 
threat it poses to our way of life. 

99 0 1 

The process of withdrawing from the Paris climate 
agreement begins today. The process of returning begins 
on election day next year.  

99 0 1 

The transportation sector accounts for nearly 30% of the 
carbon emissions. Electric vehicles are of critical 
importance for reduction of greenhouse gases. The US 
cannot afford to get behind in innovation and technology. 

99 0 20.23 

Grateful for this opportunity to see firsthand the 
opportunities we have to protect #Florida and the rest of 
our beautiful country through our work at the Select 
Committee on the @ClimateCrisis. 

98.94 5.56 99 

Climate change is intensifying inequality, but fighting it is 
an historic opportunity to deliver economic justice for all, 
especially the most vulnerable. Creating a truly healthy, 
livable planet requires commitment to both goals. They are 
inseparable. 

81.21 4.88 58.42 

With this training infrastructure, students + trade workers 
will gain the skills and knowledge necessary to be a part of 
the growing sector of Massachusetts’ nation-leading clean 
energy industry and can take advantage of the highly-
skilled jobs created by this emerging industry. 

95.99 4.35 20.23 
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