Appendix 1A: SD model Formula

Abstainers[Gender,Age15]= INTEG (

Abstainers becoming 15[Gender]-Abstainers aging[Gender,Age15]-Abstainers becoming drinkers
[Gender,Age15],
Abstainers 0[Gender,Age15])
Abstainers[Gender,All but 15]= INTEG (
Abstainers aging[Gender,pAge]-Abstainers aging[Gender,All but 15]+Drinkers becoming abstainers
[Gender,pAge]-Abstainers becoming drinkers
[Gender,All but 15],
Abstainers 0[Gender,All but 15])
Units: Person
Abstainers 0[Gender,Age]=
Frac abstainers 1982[Gender,Age]*Population 1982[Gender,Age]
Units: Person
Abstainers 18=
Sum(Abstainers[Gender!,Age18])
Units: Person
"Abstainers 19-20"=
Sum(Abstainers[Gender!,Age19]) + Sum(Abstainers[Gender!,Age20])
Units: Person
"Abstainers 21-22"=
Sum(Abstainers[Gender!,Age21]) + Sum(Abstainers[Gender!,Age22])
Units: Person
"Abstainers 23-24"=
Sum(Abstainers[Gender!,Age23]) + Sum(Abstainers[Gender!,Age24])
Units: Person

Abstainers aging[Gender,Age]=

(1-frac of Abstainers becoming drinkers[Gender,Age])*Abstainers[Gender,Age
]/Cohort length
Units: Person/Year
Abstainers becoming 15[Male]:INTERPOLATE::=
GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B49')
Abstainers becoming 15[Female]:INTERPOLATE::=
GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B51')
Units: Person/Year
Abstainers becoming drinkers[Gender,Age]=
frac of Abstainers becoming drinkers[Gender,Age]*Abstainers[Gender,Age]/Cohort length Units: Person/Year

```
Alcohol impaired drivers 0[Gender,Age]=
    Population 1982[Gender,Age]*Frac Alcohol impaired drivers 1982[Gender,Age]
    - Never DWI again O[Gender,Age]
Units: Person
Alcohol impaired drivers aging[Gender,Age]=
    max(0,(Drinkers who drive after drinking[Gender,Age]/Cohort length - Drinkers stopping DWI
after arrest
[Gender,Age])*(1-frac of DWIs stopping DWI[Gender,Age]))
Units: Person/Year
Alcohol impaired drivers becoming 15[Male]:INTERPOLATE::=
    GET XLS DATA( 'DataAgeGender.xlsx' , 'Population' , 'B1' , 'B64' )
Alcohol impaired drivers becoming 15[Female]:INTERPOLATE::=
        GET XLS DATA( 'DataAgeGender.xlsx' , 'Population' , 'B1' , 'B65' )
    Units: Person/Year
Alcohol truth campaign=
    1+RAMP(-0.1, 2025,2027 )
Units: Dmnl
1-0.2*PULSE(2023, 5 )
"Alcohol-impaired driving laws"= INTEG (
    new DWI laws,
        37)
Units: Law
Alternative transportation=
    1+RAMP(-r, 2025,2027 )
Units: Dmnl
Average number of riders per DWI trips[Male,Age]=
    1.22,1.3,1.23,1.11,0.97,0.91,0.82,0.76,0.7,0.66
Average number of riders per DWI trips[Female,Age]=
            1.57,1.37,1.19,1.05,0.93,0.83,0.75,0.76,0.7,0.67
    Units: RWI trip/Trip
Cohort length=
    1
Units: Year
Crash DWI trips[Gender,Age]=
    DWI trips[Gender,Age]*fraction of DWI trips resulting in crash[Gender,Age]
Units: Trip/Year
Current frac DWI trips Caught by parents[Male,Age]=
    0.3,0.2,0.1,0.05,0.04,0.03,0.02,0.01,0.01,0.01
Current frac DWI trips Caught by parents[Female,Age]=
            0.3,0.2,0.1,0.05,0.04,0.03,0.02,0.01,0.01,0.01
        Units: Dmnl
```

Desired DWI laws=
DWI laws*Pressure to legislate DWI laws + Switch laws*new laws campaign*DWI laws
*Pressure to legislate DWI laws
Units: Law
Discrepancy=
Desired DWI laws-"Alcohol-impaired driving laws"
Units: Law
Drinkers becoming abstainers[Gender,Age]=
frac becoming Abstainers[Gender,Age]*Drinkers who do not drive after drinking
[Gender,Age]/Cohort length
Units: Person/Year
Drinkers becoming DWI[Gender,Age]=
Drinkers who do not drive after drinking[Gender,Age]*"frac of non-DWI drinkers becoming
DWI"
[Gender,Age]/Cohort length
Units: Person/Year
Drinkers stopping DWI after arrest[Gender,Age]= $\min (D W I$ arrests[Gender,Age]*Fraction stopping DWI after arrest,Drinkers who drive after drinking
[Gender,Age]/Cohort length)
Units: Person/Year
max(0,DWI arrests[Gender,Age]*Fraction stopping DWI after arrest)
Drinkers who do not drive after drinking[Gender,Age15]= INTEG (
"Non-DWI drinkers becoming 15"[Gender]-"Non-DWI drinkers aging"[Gender,Age15
]-Drinkers becoming abstainers[Gender,Age15]-Drinkers becoming DWI[Gender,Age15],
"Non-DWI drinkers 0"[Gender,Age15])
Drinkers who do not drive after drinking[Gender,All but 15]= INTEG (
"Non-DWI drinkers aging"[Gender,pAge]+Abstainers becoming drinkers[Gender ,pAge]+DWIs stopping DWI[Gender,pAge]-"Non-DWI drinkers aging"[Gender,All but 15]-Drinkers becoming abstainers[Gender,All but 15]-Drinkers becoming DWI[Gender ,All but 15],
"Non-DWI drinkers 0"[Gender,All but 15])
Units: Person
Drinkers who drive after drinking[Gender,Age15]= INTEG (
Alcohol impaired drivers becoming 15[Gender]-Alcohol impaired drivers aging
[Gender,Age15]-DWIs stopping DWI[Gender,Age15
]-Drinkers stopping DWI after arrest[Gender,Age15],
Alcohol impaired drivers 0[Gender,Age15])
Drinkers who drive after drinking[Gender,All but 15]= INTEG (
Alcohol impaired drivers aging[Gender,pAge]-Alcohol impaired drivers aging [Gender,All but 15]+Drinkers becoming DWI[Gender
,pAge]-DWIs stopping DWI[Gender,All but 15]-Drinkers stopping DWI after arrest [Gender,All but 15],

Alcohol impaired drivers 0[Gender,All but 15])
Units: Person
Driver per trip=
1
Units: Person/Trip
DWI arrests[Gender,Age]=
Probability of arrest[Gender,Age]*DWI trips[Gender,Age]*Driver per trip
Units: Person/Year
DWI laws=
86
Units: Law
DWI trips[Gender,Age]=
Frequency of DWI[Gender,Age]*Drinkers who drive after drinking[Gender,Age]
Units: Trip/Year
"DWI trips 16-20"=
Sum(DWI trips[Gender!,Age16]) + Sum(DWI trips[Gender!,Age17]) + Sum(DWI trips
[Gender!,Age18]) + Sum(DWI trips[Gender!,Age19]) + Sum(DWI trips[Gender!,Age20])
Units: Trip/Year
"DWI trips 21-24"=
Sum(DWI trips[Gender!,Age21]) + Sum(DWI trips[Gender!,Age22]) + Sum(DWI trips
[Gender!,Age23]) + Sum(DWI trips[Gender!,Age24])
Units: Trip/Year
DWI trips caught by parent[Gender,Age]=
frac DWI trips caught by parents[Male,Age]*DWI trips[Gender,Age]
Units: Trip/Year
DWIs stopping DWI[Gender,Age]=
$\max (0$,(Drinkers who drive after drinking[Gender,Age]/Cohort length-Drinkers stopping DWI

after arrest

[Gender,Age])*frac of DWIs stopping DWI[Gender,Age])
Units: Person/Year
Effect of alcohol consumption on frequency of DWI[Gender,Age]= WITH LOOKUP
(
Ratio of current to normal alcohol consumtion[Gender,Age], ([(0,0)-(4,3)],(0,0.001),(0.1,0.05),(0.25,0.1),(0.5,0.5),(0.7,0.7),(1,1),
(1.5,1.5),(2,2),(3,3),(4,3)))

Units: Dmnl
([(0,0)-(3,1.5)], (0,0.1),(0.1,0.7),(0.25,0.9),(0.5,0.93),(1,1),(1
.5,1.07),(2,1.14),(3,1.14))
([(0,0)-(3,1.5)],(0,0.1),(0.1,0.1),(0.2,0.3),(0.5,0.6),(0.9,0.9),
(1,1),(1.1,1.1),(1.5,1.2),(2,1.3),(3,1.3))
effect of alcohol marketing on abstainers starting drinking= WITH LOOKUP (
Discrepancy between normal and current movie alcohol exposure, ([(-7,0)-(5,2)],(-7,0.75),(-1,0.92),(0,1),(1,1.15),(2,1.3),(3,1.45),(4,1.45
))
Units: Dmnl
Sargent reported crude OR=1.33, adjusted OR=1.14
Effect of binge drinking on fraction who start DWI[Male,Age]= WITH LOOKUP (
"Frac of non-DWI who binge"[Male,Age], ([(0,0)-(10,10)],(0,0.5),(0.1,0.6),(0.2,0.8),(0.3,1),(0.4,1),(0.5,1),(0.6
,1.05),(0.7,1.1)))
Effect of binge drinking on fraction who start DWI[Female,Age]= WITH LOOKUP
(
"Frac of non-DWI who binge"[Female,Age], ([(0,0)-(10,10)],(0,0.5),(0.1,0.6),(0.2,0.9),(0.3,1),(0.4,1)))
Units: Dmnl
Effect of binge drinking on frequency of DWI[Male,Age]= WITH LOOKUP (
Frac of DWI drinkers who binge[Male,Age],
([(0,0)-(1,2)],(0,0.7),(0.1,0.7),(0.2,0.75),(0.3,0.8),(0.4,0.85),(0.5,0.9
),(0.6,1),(0.7,1.1),(0.8,1.15),(1,1.2)))
Effect of binge drinking on frequency of DWI[Female,Age]= WITH LOOKUP (Frac of DWI drinkers who binge[Female,Age], ([(0,0)-(1,2)],(0,0.7),(0.1,0.75),(0.2,0.85),(0.3,1),(0.4,1.05),(0.5,1.1
),(0.6,1.2),(0.7,1.25),(0.8,1.3),(1,1.3)))
Units: Dmnl
Effect of DWI laws on DWI[Gender,Age]=
$0.2+0.8 /(1+E X P($ Impact of age on law effectiveness[Age]*Frac of legislated DWI laws
-5))
Units: Dmnl
Effect of enforcement visibility on starting DWI= WITH LOOKUP (
Perception will get caught, ([(0,0)-(1,2)],(0,1.5),(0.3,1.5),(0.5,1.4),(0.8,1.2),(1,1)))
Units: Dmnl
Effect of enforcement visibility on stopping DWI= WITH LOOKUP (
Perception will get caught, ([(0,0)-(3,5)],(0,0.5),(0.3,0.5),(0.5,0.65),(0.7,0.8),(1,1),(2,2),(3,2))
)
Units: Dmnl
Effect of fatality statistics on legislation= WITH LOOKUP (
Proportion of DWI fatalities, $([(0,0)-(0.5,10)],(0,1),(0.25,1),(0.3,1.2),(0.35,3),(0.45,4.5),(0.5,5)))$
Units: Dmnl

Effect of near crashes[Gender,Age]= WITH LOOKUP (

Near crash ratio[Gender,Age], ([(0,0)-(4,2)],(0,0.7),(0.5,0.8),(1,1),(2,1.3),(4,1.3)))

Units: Dmnl
Effect of parental monitoring on starting DWI[Gender,Age]= WITH LOOKUP (
Parental influence not to DWI[Gender,Age],
([(0,0)-(4,2)],(0,1.1),(0.2,1.1),(0.5,1.02),(1,1),(2,0.88),(4,0.75)))
Units: Dmnl
Effect of parental monitoring on stopping DWI[Gender,Age]= WITH LOOKUP (
Parental influence not to DWI[Gender,Age],
([(0,0)-(4,2)],(0,0.67),(0.5,0.83),(1,1),(2,1.28),(4,1.42)))
Units: Dmnl
Effect of peer drinking on frac becoming drinkers[Gender,Age]=
Ratio of perceived peer drinking to reference peer drinking[Age]^^Strenght of peer influence on alcohol initiation
[Age]
Units: Dmnl
Enforcement intervention=
1+RAMP(0.25, 2025, 2027)
Units: Dmnl
Fatal DWI trips[Gender,Age]= 1000*Fraction of Crash DWI trips fatal[Gender,Age]*Crash DWI trips[Gender,
Age]
Units: Trip/Year
This is Drivers in fatal crashes
"Female Abstainers aged 19-22"=
Abstainers[Female,Age19] + Abstainers[Female,Age20] + Abstainers[Female,Age21
] + Abstainers[Female,Age22]
Units: Person
"Female Abstainers aged 23-24"=
Abstainers[Female,Age23] + Abstainers[Female,Age24]
Units: Person
Frac abstainers 1982[Male,Age]= $0.34,0.3,0.26,0.22,0.18,0.18,0.18,0.18,0.18,0.18$
Frac abstainers 1982[Female,Age]= $0.41,0.38,0.35,0.3,0.26,0.26,0.26,0.26,0.29,0.29$
Units: Dmnl [0.1,1,0.05]
The fractions were obtained from Monitoring the Future.
Assumptions: For 14 years old, I used average of 13 and 15; For 15 to 17 years old, I estimated values 1982 using 1991 (see the spreadsheet). 19 to 22 and 23 to 26 were reported together.

Frac Alcohol impaired drivers 1982[Male,Age]=
$0.14,0.161,0.23,0.234,0.269,0.31,0.42,0.3,0.32,0.264$
Frac Alcohol impaired drivers 1982[Female,Age]= 0.09,0.08,0.11,0.118,0.165,0.129,0.215,0.232,0.268,0.175

Units: Dmnl [0,1,0.001]

The fractions come from the National Susrvey of Drinking and Driving Attitudes and Behavior (NHTSA 1995-2008). Assumptions: Fractions in 1995 used for 1982 (bad assumption; it needs to be calibrated). NHTSA did not report 15 years old and aggregate them into three age groups.
frac becoming Abstainers[Male,Age]=
$0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1$
frac becoming Abstainers[Female,Age]=
$0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1$
Units: Dmnl [0,1]
$0.04,0,0.03,0,0.07,0,0.08,0.02,0.4,0.060 .08,0,0.37$, $0,0.16,0.03,0.4,0.21,0,0.39$ Optimized female 0.29066 , $3.59724 e-005,0,0,0.2354,0.0996862,0,0.4,0.00793238$, 0.311404 optimized male $0,0,0,0,0,0.2398,0.0304,0.3525$, 7.21662e-005, 0.196528 Version $20.1057,0.1842,0.0644,0.1999$, 0.0531, 0.0126, 0.0179, 0.0814, 0.0397, 0.1415
frac drinking[Male,Age]=
0.198,0.197,0.05,0.17,0.37,0.29,0.17,0.39,0.08,0.4
frac drinking[Female,Age]=
$0.037,0.2,0.076,0.2,0.3,0.3,0.1,0.24,0.2,0.3$
Units: Dmnl [0,1]
$0.25,0.31,0.4,0.52,0.43,0.43,0.43,0.43,0.43,0.43$
$0.18,0.21,0.26,0.3,0.21,0.21,0.21,0.21,0.26,0.260 .08,0.35$, $0.06,0.08,0.37,0.43,0.26,0.1,0.45,0.450 .05,0.27,0.1$, $0.19,0.17,0.23,0.45,0.05,0.07,0.070 .08,0.1,0.14,0.18$, $0.1,0.15,0.15,0.35,0.8,0.80 .05,0.06,0.13,0.17,0.1$, $0.59,0.43,0.1,0.37,0.37$ Next: $0.0843,0.1474,0.2369$, $0.1995,0.3413,0.191,0.0569,0.1582,0.0857,0.0446$
frac DWI[Male,Age]=
0.158,0.13,0.027,0.115,0.1,0.208,0.001,0.126,0.008,0.02
frac DWI[Female,Age]=
0.095,0.058,0.022,0.072,0.001,0.204,0.116,0.037,0.074,0.102

Units: Dmnl
frac DWI trips caught by parents[Gender,Age]=
(1-Switch Parental monitoring)*Current frac DWI trips Caught by parents[Gender ,Age]
$+$
Switch Parental monitoring*Current frac DWI trips Caught by parents[Gender
,Age]*Parental intervention
Units: Dmnl
0.3,0.2,0.1,0.05,0.04,0.03,0.02,0.01,0.01,0.01

Frac near crash=
0.1

Units: Dmnl
"Frac non-DWI drinkers 1982"[Male,Age]=
1-Frac abstainers 1982[Male,Age]-Frac Alcohol impaired drivers 1982[Male,Age]
"Frac non-DWI drinkers 1982"[Female,Age]=
1-Frac abstainers 1982[Female,Age]-Frac Alcohol impaired drivers 1982[Female ,Age]
Units: Dmnl
frac of Abstainers becoming drinkers[Gender,Age]=
min(1,Fraction initiate drinking[Gender,Age]*(1-"switch-peer drinking")*effect of alcohol marketing on abstainers starting drinking
+"switch-peer drinking"*Fraction initiate drinking[Gender,Age]*effect of alcohol marketing on abstainers starting drinking
*Effect of peer drinking on frac becoming drinkers[Gender,Age])
Units: Dmnl
frac of DWIs stopping DWI[Gender,Age]=
frac stopping DWI[Gender,Age]*Effect of parental monitoring on stopping DWI
[Gender,Age]*Effect of near crashes[Gender,Age]*(1-Switch enforcement visibility)+

Switch enforcement visibility*frac stopping DWI[Gender,Age]*Effect of enforcement visibility on stopping DWI
*Effect of parental monitoring on stopping DWI[Gender,Age]*Effect of near crashes [Gender,Age]
Units: Dmnl
Frac of legislated DWI laws=
"Alcohol-impaired driving laws"/Maximum DWI laws
Units: Dmnl
"frac of non-DWI drinkers becoming DWI"[Gender,Age]=
frac DWI[Gender,Age]*Effect of binge drinking on fraction who start DWI[Gender
,Age]*Effect of DWI laws on DWI[Gender,Age
]*Effect of parental monitoring on starting DWI[Gender,Age]*(1-Switch enfo visi)

+ frac DWI[Gender,Age]*Effect of binge drinking on fraction who start DWI
[Gender,Age]*Effect of DWI laws on DWI
[Gender,Age]*Effect of enforcement visibility on starting DWI*Effect of parental monitoring on starting DWI
[Gender,Age]*Switch enfo visi
Units: Dmnl
frac stopping DWI[Gender,Age]=
0.1

Units: Dmnl
$0.2326,0.0034,0.001,0.25,0.232,0.1933,0.25,0.1363$, $0.0872,0.0747$

Fraction initiate drinking[Gender,Age]=
(1-Switch alcohol truth campain)*frac drinking[Gender,Age] + Switch alcohol truth campain
*Alcohol truth campaign*frac drinking[Gender,Age]
Units: Dmnl
Fraction of Crash DWI trips fatal[Male,Age]= 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03

Fraction of Crash DWI trips fatal[Female,Age]= $0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03$
Units: Dmnl
I need to find this from the litretur. Is it affected by age and gender?
fraction of DWI trips resulting in crash[Male,Age]= 0.00156,0.001159,0.00085,0.00064,0.00081,0.00069,0.00076,0.00071,0.00054,0.00056
fraction of DWI trips resulting in crash[Female,Age]= $0.00129,0.0016,0.0011,0.00065,0.00067,0.00059,0.00068,0.00062,0.00055,0.00055$
Units: Dmnl [0.0001,0.004,5e-05]
Zaloshnja, Miller and Blincoe (2013) estimated that 1 crash per 788 impaired driving trips "Estimated crashes at BAC >=. 08 totaled $1,820,094$, with 1 crash per 788 impaired driving trips. "

Fraction stopping DWI after arrest= 0.4^{*} (1-Switch Ignition Interlock)+0.4*Switch Ignition Interlock*Ignition Interlock Units: Dmnl

Freq of DWI[Gender,Age]=

(1-Switch alternative transportation)*Normal Frequency of DWI[Gender,Age]

+ Switch alternative transportation*Alternative transportation*Normal Frequency of DWI [Gender,Age]
Units: Trip/(Person*Year)

Frequency of DWI[Gender,Age]=

Freq of DWI[Gender,Age]*Effect of DWI laws on DWI[Gender,Age]*Effect of binge drinking on frequency of DWI
[Gender,Age]*Effect of alcohol consumption on frequency of DWI[Gender,Age]
Units: Trip/Person/Year
Ignition Interlock= 1+RAMP(0.5, 2025 , 2027)
Units: Dmnl
Impact of age on law effectiveness[Age]=
10.7,13.4,11.7,10.6,9.7,9.6,9.6,10.6,11,11.5

Units: Dmnl
1.4,1.4,1.4,1.4,1.4,0,0,0,0,0

Initial pressure= 1.5

Units: Dmnl
"Male Abstainers aged 19-22"=

> Abstainers[Male,Age19] + Abstainers[Male,Age20] + Abstainers[Male,Age21] + Abstainers[Male,Age22]
Units: Person
"Male Abstainers aged 23-24"= Abstainers[Male,Age23] + Abstainers[Male,Age24]
Units: Person
Maximum DWI laws= 500
Units: Law
Near crash normal[Male,Age]= 106,720,2200,4500,3900,4900,5400,5200,6200,5400
Near crash normal[Female,Age]=
24,123,293,726,807,812,754,768,996,650
Units: Trip/Year
Near crash ratio[Gender,Age]= Near crashes[Gender,Age]/Near crash normal[Gender,Age]
Units: Dmnl
Near crashes[Gender,Age]= Frac near crash*"non-crash DWI trips"[Gender,Age]
Units: Trip/Year
Never DWI again[Gender,Age15]= INTEG (Never DWI becoming 15[Gender]-Never DWI again aging[Gender,Age15],

Never DWI again 0[Gender,Age15])
Never DWI again[Gender,All but 15]= INTEG (
Drinkers stopping DWI after arrest[Gender,pAge]+Never DWI again aging[Gender , pAge]-Never DWI again aging[Gender,All but 15], Never DWI again O[Gender,All but 15])
Units: Person
I think Drinkers stopping DWI after arrest[Gender,pAge] should be for 15 years old and the rest for all but 15, it should not be pAge

Never DWI again O[Male,Age]= 0.293, 1.748, 4.887, 11.823, 17.198, 21.066, 25.92, 26.616, 26.899, 27.21

Never DWI again 0[Female,Age]=
$0.074,0.308,0.657,1.561,2.242,2.832,3.628,3.576,3.738,3.684$
Units: Person
I estimated these from arrest data. Jim Fell told us around 40\% of those who are arrested stop DWI. see Arrest worksheet.

Never DWI again aging[Gender,Age]= Never DWI again[Gender,Age]/Cohort length
Units: Person/Year
Never DWI becoming 15[Male]:=

GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B61')
Never DWI becoming 15[Female]:=
GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B63')
Units: Person/Year
new DWI laws= max(0,Discrepancy/Time to legislate laws)
Units: Law/Year
new laws campaign=
RAMP(0.07, 2023, 2030)
Units: Dmnl
"non-crash DWI trips"[Gender,Age]=
(1-fraction of DWI trips resulting in crash[Gender,Age])*DWI trips[Gender,
Age]
Units: Trip/Year
"Non-DWI drinkers 0"[Gender,Age]=
"Frac non-DWI drinkers 1982"[Gender,Age]*Population 1982[Gender,Age]
Units: Person
"Non-DWI drinkers aging"[Gender,Age]= (1-frac becoming Abstainers[Gender,Age]-"frac of non-DWI drinkers becoming DWI"
[Gender,Age])*Drinkers who do not drive after drinking[Gender,Age]/Cohort length
Units: Person/Year
"Non-DWI drinkers becoming 15"[Male]:= GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B57')
"Non-DWI drinkers becoming 15"[Female]:=
GET XLS DATA('DataAgeGender.xlsx' , 'Population' , 'B1' , 'B59') Units: Person/Year

Normal annual DWI arrests= 460
Units: Person/Year
Normal DWI trips caught by parents[Male,Age]= 320,1400,2200,2300,1500,1500,1000,500,600,540
Normal DWI trips caught by parents[Female,Age]=
73,250,290,360,320,240,150,77,100,65
Units: Trip/Year
Normal Frequency of DWI[Male,Age]= 3.802,22.56,44.2,92.17,69.84,73.36,63.99,77.41,90.38,99.62

Normal Frequency of DWI[Female,Age]=
1.47,7.68,12.97,28.02,22.32,28.63,14.99,14.39,15.03,14.63

Units: Trip/(Year*Person)
2.7, 8.2, 17.9, 47.1, 59.9, 51.3, 66.2, 65.2, 62.8, 57.4 1.3,
$4.1,9,24,30,25,33,32.5,31,29$

```
Normal probability of arrest[Male,Age]=
    0.0007,0.0007,0.0008,0.0009,0.0014,0.0014,0.0016,0.0016,0.0013,0.0014
Normal probability of arrest[Female,Age]=
            0.0008,0.0008,0.0009,0.001,0.0014,0.0013,0.0017,0.0017,0.0015,0.0015
    Units: Dmnl [0.0001,1,0.0001]
    0.0007,0.0007,0.0008,0.0009,0.0014,0.0014,0.0016,0.0016,0.0013,0.
        0 0 1 4
        0.0008,0.0008,0.0009,0.001,0.0014,0.0013,0.0017,0.0017,0.0015,0.0
        0 1 5
Parental influence not to DWI[Gender,Age]=
    SMOOTH(Parental monitoring[Gender,Age], Parental response time )
Units: Dmnl
Parental intervention=
    1+RAMP(0.15, 2023,2030 )
Units: Dmnl
Parental monitoring[Gender,Age]=
    DWI trips caught by parent[Gender,Age]/Normal DWI trips caught by parents[
Gender,Age]
Units: Dmnl
Parental response time=
    1
Units: Year
Passengers of drivers in fatal crashes[Gender,Age]=
    1000*RWI trips[Gender,Age]*Fraction of Crash DWI trips fatal[Gender,Age]*fraction of DWI
trips resulting in crash
[Gender,Age]
Units: **undefined**
Perception will get caught=
    SMOOTH(Visibility of enforcement, Time to create perception of enforcement
)
Units: Dmnl
Population 1982[Male,Age]=
    1833, 1841, 2014, 1990, 1971, 2043, 1913, 2125, 2045, }199
Population 1982[Female,Age]=
    1692, 1854, 1897, 2034, 2028, 2045, 2169, 2134, 2146, 2206
    Units: Person
Population by gender and age[Gender,Age]=
    Abstainers[Gender,Age]+Drinkers who do not drive after drinking[Gender,Age
]+Drinkers who drive after drinking[Gender,Age]+Never DWI again[Gender,Age]
Units: Person
Pressure to legislate DWI laws=
SMOOTH3I(Effect of fatality statistics on legislation, Time to build pressure
```

```
Initial pressure )
Units: Dmnl
Probability of arrest[Gender,Age]=
    (1-Switch enforcement)*Normal probability of arrest[Male,Age] + Switch enforcement
*Enforcement intervention*Normal probability of arrest[Male,Age]
Units: Dmnl [0.0001,0.01,0.0001]
Proportion of DWI fatalities=
    "Total fatal DWI trips 15-24"/("Total fatal DWI trips 15-24"+"Total fatal non-DWI trips 15-24"
)
Units: Dmnl
r=
    0 . 1
Units: **undefined**
RWI trips[Gender,Age]=
    DWI trips[Gender,Age]*Average number of riders per DWI trips[Male,Age]
Units: RWI trip/Year
Switch alcohol truth campain=
    0
Units: Dmnl
Switch alternative transportation=
    0
Units: Dmnl [0,1,1]
Switch enfo visi=
    1
Units: Dmnl [0,1]
Switch enforcement=
        0
Units: Dmnl [0,1,1]
Switch enforcement visibility=
        1
Units: Dmnl [0,1,1]
Switch Ignition Interlock=
    0
Units: Dmnl [0,1,1]
Switch laws=
        0
Units: Dmnl
Switch Parental monitoring=
        O
```

Units: Dmnl
"switch-peer drinking"= 1
Units: Dmnl [0,1,1]
Time to build pressure= 10
Units: Year
Time to create perception of enforcement= 5

Units: Year
Time to legislate laws= 5
Units: Year
Total abstainers= Sum(Abstainers[Gender!,Age!])
Units: Person
"Total annual DWI arrests 15-24"= Sum(DWI arrests[Gender!,Age!])
Units: Person/Year
Total drinkers who drive after drinking= Sum(Drinkers who drive after drinking[Gender!,Age!])
Units: Person
"Total fatal DWI trips 15-24"= Sum(Fatal DWI trips[Gender!,Age!])
Units: Trip/Year
"Total fatal non-DWI trips 15-24":= GET XLS DATA('DataAgeGender.xlsx' , 'Fatality' , 'B1' , 'B25')
Units: Trip/Year
Total Passengers of drivers involved in fatal crashes= Sum(Passengers of drivers in fatal crashes[Gender!,Age!])
Units: **undefined**
Total population=
Sum(Abstainers[Gender!,Age!]) + Sum(Drinkers who do not drive after drinking
[Gender!,Age!]) + Sum(Drinkers who drive after drinking[Gender!,Age!]) + Sum (Never DWI again[Gender!,Age!])
Units: Person
"Total RWI trips with drivers aged 15-24"= Sum(RWI trips[Gender!,Age!])
Units: RWI trip/Year

Visibility of enforcement=
"Total annual DWI arrests 15-24"/Normal annual DWI arrests
Units: Dmnl

Bias tward binge drinking[Gender,Age]= 1.1

Units: Dmnl [0,2,0.01]
Binge drinkers[Gender,Age]=
Binge drinkers who do not drive after drinking[Gender,Age]+Binge drinkers who drive after drinking
[Gender,Age]
Units: Person
Binge drinkers who do not drive after drinking[Gender,Age]=
"Frac of non-DWI who binge"[Gender,Age]*Drinkers who do not drive after drinking [Gender,Age]
Units: Person
Binge drinkers who drive after drinking[Gender,Age]=
Drinkers who drive after drinking[Gender,Age]*Frac of DWI drinkers who binge
[Gender,Age]
Units: Person
Binge reduction campaign=
1+RAMP(-0.1, 2025, 2027)
Units: Dmnl
Current frac of DWI who binge[Gender,Age]=
(1-Switch binge campaign)*Normal frac of DWI who binge[Gender,Age] + Switch binge campaign
*Binge reduction campaign*Normal frac of DWI who binge[Gender,Age]
Units: Dmnl
"Current frac of non-DWI who binge"[Gender,Age]=
(1-Switch binge campaign)*"Normal frac of non-DWI who binge"[Gender,Age] + Switch binge campaign*Binge reduction campaign*"Normal frac of non-DWI who binge" [Gender,Age]
Units: Dmnl
Drinkers who do not drive after drinking[Gender,Age15]= INTEG (
"Non-DWI drinkers becoming 15"[Gender]-"Non-DWI drinkers aging"[Gender,Age15
]-Drinkers becoming abstainers[Gender,Age15]-Drinkers becoming DWI[Gender,Age15
],
"Non-DWI drinkers 0"[Gender,Age15])

Drinkers who do not drive after drinking[Gender,All but 15]= INTEG (
"Non-DWI drinkers aging"[Gender,pAge]+Abstainers becoming drinkers[Gender ,pAge]+DWIs stopping DWI[Gender,pAge]-"Non-DWI drinkers aging"[Gender,All but 15]-Drinkers becoming abstainers[Gender,All but 15]-Drinkers becoming DWI[Gender ,All but 15],
"Non-DWI drinkers 0"[Gender,All but 15])
Units: Person
Drinkers who drive after drinking[Gender,Age15]= INTEG (
Alcohol impaired drivers becoming 15[Gender]-Alcohol impaired drivers aging
[Gender,Age15]-DWIs stopping DWI[Gender,Age15
]-Drinkers stopping DWI after arrest[Gender,Age15],
Alcohol impaired drivers O[Gender,Age15])
Drinkers who drive after drinking[Gender,All but 15]= INTEG (
Alcohol impaired drivers aging[Gender,pAge]-Alcohol impaired drivers aging [Gender,All but 15]+Drinkers becoming DWI[Gender ,pAge]-DWIs stopping DWI[Gender,All but 15]-Drinkers stopping DWI after arrest [Gender,All but 15],

Alcohol impaired drivers 0[Gender,All but 15])
Units: Person
Effect of binge drinking on fraction who start DWI[Male,Age]= WITH LOOKUP (
"Frac of non-DWI who binge"[Male,Age], ([(0,0)-(10,10)],(0,0.5),(0.1,0.6),(0.2,0.8),(0.3,1),(0.4,1),(0.5,1),(0.6
,1.05),(0.7,1.1)))
Effect of binge drinking on fraction who start DWI[Female,Age]= WITH LOOKUP
(
"Frac of non-DWI who binge"[Female,Age], ([(0,0)-(10,10)],(0,0.5),(0.1,0.6),(0.2,0.9),(0.3,1),(0.4,1)))
Units: Dmnl
Effect of binge drinking on frequency of DWI[Male,Age]= WITH LOOKUP (Frac of DWI drinkers who binge[Male,Age], ([(0,0)-(1,2)],(0,0.7),(0.1,0.7),(0.2,0.75),(0.3,0.8),(0.4,0.85),(0.5,0.9
),(0.6,1),(0.7,1.1),(0.8,1.15),(1,1.2)))
Effect of binge drinking on frequency of DWI[Female,Age]= WITH LOOKUP (Frac of DWI drinkers who binge[Female,Age], ([(0,0)-(1,2)],(0,0.7),(0.1,0.75),(0.2,0.85),(0.3,1),(0.4,1.05),(0.5,1.1
),(0.6,1.2),(0.7,1.25),(0.8,1.3),(1,1.3)))
Units: Dmnl
Effect of peer on binge drinking[Gender,Age]= WITH LOOKUP (
Perceived to norm binge drinking[Gender,Age], ([(0,0)-(4,2)],(0.1,0.85),(0.5,0.9),(0.8,0.95),(1,1),(1.2,1.15),(1.5,1.25
),(2,1.4),(2.5,1.7),(3,1.8),(4,1.8)))
Units: Dmnl
Estimated binge drinking[Age,Gender]=
Bias tward binge drinking[Gender,Age]*Ratio of binge drinkers to total population
[Gender,Age]
Units: Dmnl

Frac of DWI drinkers who binge[Gender,Age]=
Current frac of DWI who binge[Gender,Age]*Effect of peer on binge drinking [Gender,Age]
Units: Dmnl
"Frac of non-DWI who binge"[Gender,Age]=
"Current frac of non-DWI who binge"[Gender,Age]*Effect of peer on binge drinking [Gender,Age]
Units: Dmnl
Initial frac[Male]=
0.5

Initial frac[Female]= 0.3

Units: Dmnl
Normal binge drinking[Male,Age]= 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5

Normal binge drinking[Female,Age]=
$0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.25,0.25$
Units: Dmnl
Normal frac of DWI who binge[Male,Age]=
0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7

Normal frac of DWI who binge[Female,Age]=
$0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5$
Units: Dmnl
Based on the NEXT data, DWIers are more likely to binge. For men
1.2 and for women 1.3
"Normal frac of non-DWI who binge"[Male,Age]=
0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5
"Normal frac of non-DWI who binge"[Female,Age]=
$0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3$
Units: Dmnl
Fig 84, Monitoring teh future
Perceived peer binge drinking[Gender,Age]=
SMOOTHI(Estimated binge drinking[Age,Gender], Time to perceive , Initial frac [Gender])
Units: Dmnl
Perceived to norm binge drinking[Gender,Age]=
Perceived peer binge drinking[Gender,Age]/Normal binge drinking[Gender,Age
]
Units: Dmnl
Population by gender and age[Gender,Age]=
Abstainers[Gender,Age]+Drinkers who do not drive after drinking[Gender,Age
]+Drinkers who drive after drinking[Gender,Age]+Never DWI again[Gender,Age]

Units: Person

Ratio of binge drinkers to total population[Gender,Age]= min(1, Binge drinkers[Gender,Age]/Population by gender and age[Gender,Age])
Units: Dmnl
Switch binge campaign= 0
Units: Dmnl
Time to perceive= 2
Units: Year
Total binge drinkers= Sum(Binge drinkers[Gender!,Age!])
Units: Person
Total population= Sum(Abstainers[Gender!,Age!]) + Sum(Drinkers who do not drive after drinking
[Gender!,Age!]) + Sum(Drinkers who drive after drinking[Gender!,Age!]) + Sum
(Never DWI again[Gender!,Age!])
Units: Person
Average perceived peer drinking by age[Age]=
Sum(Perceived peer drinking[Gender!,Age])/2
Units: Dmnl
Bias toward peer drinking= 1

Units: Dmnl
Drinkers by age and gender[Gender,Age]= Drinkers who do not drive after drinking[Gender,Age]+Drinkers who drive after drinking [Gender,Age]+Never DWI again[Gender,Age]
Units: Person
Drinkers who do not drive after drinking[Gender,Age15]= INTEG (
"Non-DWI drinkers becoming 15"[Gender]-"Non-DWI drinkers aging"[Gender,Age15
]-Drinkers becoming abstainers[Gender,Age15]-Drinkers becoming DWI[Gender,Age15
],
"Non-DWI drinkers 0"[Gender,Age15])
Drinkers who do not drive after drinking[Gender,All but 15]= INTEG (
"Non-DWI drinkers aging"[Gender,pAge]+Abstainers becoming drinkers[Gender ,pAge]+DWIs stopping DWI[Gender,pAge]-"Non-DWI drinkers aging"[Gender,All but 15]-Drinkers becoming abstainers[Gender,All but 15]-Drinkers becoming DWI[Gender ,All but 15],
"Non-DWI drinkers 0"[Gender,All but 15])
Units: Person

Drinkers who drive after drinking[Gender,Age15]= INTEG (
Alcohol impaired drivers becoming 15[Gender]-Alcohol impaired drivers aging
[Gender,Age15]-DWIs stopping DWI[Gender,Age15
]-Drinkers stopping DWI after arrest[Gender,Age15],
Alcohol impaired drivers O[Gender,Age15])
Drinkers who drive after drinking[Gender,All but 15]= INTEG (
Alcohol impaired drivers aging[Gender,pAge]-Alcohol impaired drivers aging [Gender,All but 15]+Drinkers becoming DWI[Gender ,pAge]-DWIs stopping DWI[Gender,All but 15]-Drinkers stopping DWI after arrest [Gender,All but 15],

Alcohol impaired drivers 0[Gender,All but 15])
Units: Person
Effect of peer drinking on frac becoming drinkers[Gender,Age]=
Ratio of perceived peer drinking to reference peer drinking[Age] ${ }^{\wedge}$ Strenght of peer influence on alcohol initiation
[Age]
Units: Dmnl
Estimated peer drinking[Gender,Age]=
Bias toward peer drinking*Ratio of drinkers to total population[Gender,Age
]
Units: Dmnl
Initial frac drinking[Male,Age]= 0.6,0.65,0.7,0.8, 0.8,0.8,0.8,0.8,0.8,0.8

Initial frac drinking[Female,Age]=
$0.5,0.55,0.65,0.7,0.7,0.75,0.75,0.75,0.75,0.75$
Units: Dmnl
Never DWI again[Gender,Age15]= INTEG (
Never DWI becoming 15[Gender]-Never DWI again aging[Gender,Age15],
Never DWI again 0[Gender,Age15])
Never DWI again[Gender,All but 15]= INTEG (
Drinkers stopping DWI after arrest[Gender,pAge]+Never DWI again aging[Gender ,pAge]-Never DWI again aging[Gender,All but 15],

Never DWI again O[Gender,All but 15])
Units: Person
I think Drinkers stopping DWI after arrest[Gender,pAge] should be for 15 years old and the rest for all but 15, it should not be pAge

Perceived peer drinking[Gender,Age]=

SMOOTHI(Estimated peer drinking[Gender,Age], Time to perceive peer drinking , Initial frac drinking[Gender,Age])
Units: Dmnl
Population by gender and age[Gender,Age]=
Abstainers[Gender,Age]+Drinkers who do not drive after drinking[Gender,Age
]+Drinkers who drive after drinking[Gender,Age]+Never DWI again[Gender,Age]
Units: Person

Ratio of drinkers 18=
Sum(Drinkers by age and gender[Gender!,Age18])/Sum(Population by gender and age [Gender!,Age18])
Units: Dmnl
Ratio of drinkers to total population[Gender,Age]=
Drinkers by age and gender[Gender,Age]/Population by gender and age[Gender ,Age]
Units: Dmnl
"Ratio of drinkers to total population-19-20"=
(Sum(Drinkers by age and gender[Gender!,Age19]) + Sum(Drinkers by age and gender [Gender!,Age20]))/(Sum(Population by gender and age[Gender!,Age19]) + Sum(Population by gender and age
[Gender!,Age20]))
Units: Dmnl
"Ratio of drinkers to total population-21-22"= (Sum(Drinkers by age and gender[Gender!,Age21]) + Sum(Drinkers by age and gender [Gender!,Age22]))/(Sum(Population by gender and age[Gender!,Age21]) + Sum(Population by gender and age
[Gender!,Age22]))
Units: Dmnl
"Ratio of drinkers to total population-23-24"=
(Sum(Drinkers by age and gender[Gender!,Age23]) + Sum(Drinkers by age and gender [Gender!,Age24]))/(Sum(Population by gender and age[Gender!,Age23]) + Sum(Population by gender and age
[Gender!,Age24]))
Units: Dmnl
"Ratio of female drinkers to total population-19-22"=
(Drinkers by age and gender[Female,Age19]+Drinkers by age and gender[Female
,Age20]+Drinkers by age and gender[Female,Age21]+Drinkers by age and gender
[Female,Age22])/(Population by gender and age[Female,Age19]+Population by gender and age
[Female,Age20]+Population by gender and age[Female,Age21]+Population by gender and age
[Female,Age22])
Units: Dmnl
"Ratio of female drinkers to total population-23-24"=
(Drinkers by age and gender[Female,Age23]+Drinkers by age and gender[Female ,Age24])/(Population by gender and age[Female,Age23]+Population by gender and age
[Female,Age24])
Units: Dmnl
"Ratio of male drinkers to total population-19-22"=
(Drinkers by age and gender[Male,Age19]+Drinkers by age and gender[Male,Age20
]+Drinkers by age and gender[Male,Age21]+Drinkers by age and gender[Male,Age22
])/(Population by gender and age[Male,Age19]+Population by gender and age[Male
,Age20]+Population by gender and age[Male,Age21]+Population by gender and age

[Male,Age22])

Units: Dmnl
"Ratio of male drinkers to total population-23-24"=
(Drinkers by age and gender[Male,Age23]+Drinkers by age and gender[Male,Age24
])/(Population by gender and age[Male,Age23]+Population by gender and age[Male ,Age24])
Units: Dmnl
Ratio of perceived peer drinking to reference peer drinking[Age]=
Average perceived peer drinking by age[Age]/Reference peer drinking[Age]
Units: Dmnl
Reference peer drinking[Age]= 0.5

Units: Dmnl
0.25,0.25,0.37,0.6,0.7,0.4,0.5,0.9,0.9,0.9

Strenght of peer influence on alcohol initiation[Age]=
$1.24,0.6,1.99,0.01,0.01,0.01,0.01,0.01,0.01,0.01$
Units: Dmnl [0,20,0.5]
Time to perceive peer drinking= 1
Units: Year

Additional tax=
STEP(Additional tax size, 2025)
Units: Dollar/Gallon [1,20,1]
Additional tax size= 0
Units: Dollar/Gallon [0,20,2]
Alcohol advertising in films=
"Fraction of marketing expenditure allocated for product placement (films)"
*Alcohol marketing expenditures per year
Units: Dollar/Year
Alcohol consumption per capita[Gender,Age]=
SMOOTHI(Indicated alcohol consumption per capita[Gender,Age], Time to change alcohol consumption
, alcohol cumsumption per capita uner 25[Gender,Age])
Units: Gallon/(Year*Person)
"alcohol consumption per capita 25+"=
(1-Switch alcohol truth campain)*"Normal alcohol consumption per capita-aged 25+"

+ Switch alcohol truth campain*Alcohol truth campaign*"Normal alcohol consumption per capita-aged 25+"
Units: Gallon/(Year*Person)
"Alcohol consumption per capita-aged 25+"=
SMOOTHI("Indicated alcohol consumption per capita-aged 25+", Time to change alcohol consumption
, "alcohol consumption per capita 25+")
Units: Gallon/(Year*Person)
alcohol cumsumption per capita uner 25[Gender,Age]=
(1-Switch alcohol truth campain)*Normal alcohol consumption per capita[Gender
,Age] + Switch alcohol truth campain*Normal alcohol consumption per capita[
Gender,Age]*Alcohol truth campaign
Units: Gallon/(Year*Person)
Alcohol industry revenue per year=
Total spending on alcohol per year by people aged 15 to $24+$ "Total spending on alcohol per year by people aged 25+"
Units: Dollar/Year
Alcohol marketing expenditures per year=
Alcohol industry revenue per year*Fraction of revenue for advertisement
Units: Dollar/Year
Alcohol price without tax= 90
Units: Dollar/Gallon
If the price is $\$ 100$, the revenue mathes the advertisement expenditure $\$ 5$ billion

Alcohol truth campaign=
1+RAMP(-0.1, 2025, 2027)
Units: Dmnl
1-0.2*PULSE $(2023,5$)
Current fraction of revenue for advertisement= 0.09

Units: Dmnl
Desired revenue= $5 \mathrm{e}+10$
Units: Dollar/Year
discrepancy between current and normal alcohol advertising expenditure= "Per capita alcohol advertising in television, radio, newspaper, and outdoors"
-Normal expenditure per capita
Units: Dollar/(Year*Person)
Discrepancy between normal and current movie alcohol exposure= Movie alcohol exposure-Normal movie alcohol exposure
Units: Exposure/Year
dollar spent for each hour of movie alcohol exposure=

7e+07
Units: Dollar/Exposure
Table 4 in "Self-regulation in the Alcohol industry" \$ spent on Film. I assumed in million dollar: 4.786e+007 To get 8 hours of exposure, I used 70 million dollars

Drinkers by age and gender[Gender,Age]=
Drinkers who do not drive after drinking[Gender,Age]+Drinkers who drive after drinking [Gender,Age]+Never DWI again[Gender,Age]
Units: Person
Effect of alcohol consumption on frequency of DWI[Gender,Age]= WITH LOOKUP
(
Ratio of current to normal alcohol consumtion[Gender,Age], ([(0,0)-(4,3)],(0,0.001),(0.1,0.05),(0.25,0.1),(0.5,0.5),(0.7,0.7),(1,1),
(1.5,1.5),(2,2),(3,3),(4,3)))

Units: Dmnl
([(0,0)-(3,1.5)],(0,0.1),(0.1,0.7),(0.25,0.9),(0.5,0.93),(1,1),(1
.5,1.07),(2,1.14),(3,1.14))
([(0,0)-(3,1.5)],(0,0.1),(0.1,0.1),(0.2,0.3),(0.5,0.6),(0.9,0.9), $(1,1),(1.1,1.1),(1.5,1.2),(2,1.3),(3,1.3))$
effect of alcohol marketing on abstainers starting drinking= WITH LOOKUP (
Discrepancy between normal and current movie alcohol exposure, ([(-7,0)-(5,2)],(-7,0.75),(-1,0.92),(0,1),(1,1.15),(2,1.3),(3,1.45),(4,1.45
)))
Units: Dmnl
Sargent reported crude $O R=1.33$, adjusted $O R=1.14$
"effect of alcohol marketing on consumption per capita-age 15 to 24 "= WITH LOOKUP
(
discrepancy between current and normal alcohol advertising expenditure, ([(-5,0)-(10,10)],(-5,0.85),(-2,0.94),(-1,0.97),(0,1),(1,1.03),(2,1.06),(
5,1.15)))
Units: Dmnl
Snyder et al. For every additional dollar per capita spent on advertising in the market, individuals consumed 3% more alcoholic beverages per month (event rate ratio, $1.03 ; 95 \% \mathrm{CI}$, 1.01-1.05)
"effect of alcohol marketing on consumption per capita-age 25+"= WITH LOOKUP (
discrepancy between current and normal alcohol advertising expenditure, ([(-5,0)-(20,10)],(-5,0.85),(-2,0.94),(-1,0.97),(0,1),(1,1.03),(2,1.06),(
5,1.1),(10,1.2),(15,1.3),(20,1.4)))
Units: Dmnl
(each additional dollar spent per capita raised the number of drinks consumed by 3\% [event rate ratio,1.03; 95\% confidence interval, 1.01-1.05]) This is for people aged 15 to 26. I should find for above 25
effect of alcohol price on consumption=
1+Price elasticity of demand*Additional tax/Price of alcohol with tax per gallon
Units: Dmnl
effect of revenue gap on advertisement= WITH LOOKUP (
Perceived revenue gap,
([(-1000,0)-(-2.14748e+09,10)],(-1000,1),(0,1),(1e+06,1.05),(1e+07,1.1),(
$1 e+08,1.2),(1 e+10,1.5)))$
Units: Dmnl
([(-1000,0)-(-2.14748e+09,10)],(-1000,1),(0,1),(1e+06,1),(1e+07,1
.05),(1e+08,1.2),(1e+10,1.5))
fraction drinkers=
0.8

Units: Dmnl
"Fraction of marketing expenditure allocated for product placement (films)"
$=$
0.12

Units: Dmnl
https://www.ftc.gov/system/files/documents/reports/self-regulatio n-alcohol-industry-report-federal-trade-commission/140320alcoholr eport.pdf Table 4: $(375,000+55,746) / 3,454,738=0.125$ This captures expenditure from Jan to Jun. Also I am not sure if teh numbers in table 4 should be multiplied by 1000
"Fraction of marketing expenditure allocated for television, radio, newspaper, and outdoors"
$=$ 0.387

Units: Dmnl
Table 2 shows what percentage of advertising expenditure goes to
TV, Radio, newspaper, and outdoors 22.54
$+2.93+3.66+2.42+.38+.84+5.96=$
Fraction of revenue for advertisement=
Current fraction of revenue for advertisement*effect of revenue gap on advertisement Units: Dmnl

Indicated alcohol consumption per capita[Gender,Age]= alcohol cumsumption per capita uner 25[Gender,Age]*"effect of alcohol marketing on consumption per capita-age 15 to 24 "
*
effect of alcohol price on consumption
Units: Gallon/(Year*Person)
"Indicated alcohol consumption per capita-aged 25+"=
"alcohol consumption per capita $25+$ "*"effect of alcohol marketing on consumption per capitaage 25+"
*effect of alcohol price on consumption
Units: Gallon/(Year*Person)

Indicated movie alcohol exposure=
Alcohol advertising in films/dollar spent for each hour of movie alcohol exposure Units: Exposure/Year

Movie alcohol exposure=
SMOOTH(Indicated movie alcohol exposure, Time to change movie alcohol exposure)

Units: Exposure/Year
Normal alcohol consumption per capita[Male, Age]=
2.93, 2.93, 2.93, 3.95, 3.95, 3.95, 3.95, 3.95, 3.95, 3.95

Normal alcohol consumption per capita[Female,Age]=
$1.79,1.79,1.79,1.82,1.82,1.82,1.82,1.82,1.82,1.82$
Units: Gallon/Person/Year
NIAAA reports per capital ethanol consumption 1982 to 2019. It declined from 2.75 to 2.1 (24% decline). I divided values of 2002 for age 12 to 17 and 18 to 24 by 0.76 to get values in 1982
"Normal alcohol consumption per capita-aged 25+"= 3.95

Units: Gallon/Person/Year
Normal expenditure per capita= 6.8

Units: Dollar/(Year*Person)
Source: Snyder et al (2006) Per capita spending ranged from
$\$ 0.20$ to $\$ 17.3$, averaging $\$ 6.8$ ($95 \% \mathrm{Cl}, 6.6-7.0$). $\$ 1$ in 2000 is equivalent in purchasing power to about $\$ 1.68$ today so I use $6.8^{*} 1.68=11.42$

Normal movie alcohol exposure $=$ 8

Units: Exposure/Year
Sarget :Adolescents reported seeing a median of 16 movies (IQR:
11-22) from the list of 50 , and this translated into an estimated median exposure (to alcohol use in the entire sample of 601 movies) of 8.3 hours (IQR:4.6-13.5).
"Per capita alcohol advertising in television, radio, newspaper, and outdoors"
=
"Fraction of marketing expenditure allocated for television, radio, newspaper, and outdoors"
*Alcohol marketing expenditures per year
/Total adult population
Units: Dollar/Person/Year
"Per capita revenue aged 15-24"[Gender,Age]=
Alcohol consumption per capita[Gender,Age]*Alcohol price without tax
Units: Dollar/Person/Year
"Per capita revenue-aged 25+"=
"Alcohol consumption per capita-aged 25+"*Alcohol price without tax

Units: Dollar/Person/Year
Perceived revenue gap=
SMOOTH3(Revenue gap, Time to perceive revenue gap)
Units: Dollar/Year
Price elasticity of demand=
-0.7
Units: Dmnl
Elder and colleagues (2010) determined that median elasticities ranged from -0.51 to -0.90 in the 38 articles they reviewed.

Price of alcohol with tax per gallon=
Alcohol price without tax+Tax
Units: Dollar/Gallon
Ratio of current to normal alcohol consumtion[Gender,Age]=
Alcohol consumption per capita[Gender,Age]/Normal alcohol consumption per capita [Gender,Age]
Units: Dmnl
Revenue gap= Desired revenue-Alcohol industry revenue per year
Units: Dollar/Year
Spending on alcohol per year[Gender,Age]=
Drinkers by age and gender[Gender,Age]*"Per capita revenue aged 15-24"[Gender
,Age]
Units: Dollar/Year
Switch alcohol truth campain= 0
Units: Dmnl
Tax=
1
Units: Dollar/Gallon
https://alcoholpolicy.niaaa.nih.gov/ The highest tax is on spirits

Time to change alcohol consumption= 0.5

Units: Year
Time to change movie alcohol exposure= 2
Units: Year
Time to perceive revenue gap= 1
Units: Year

Total adult population= $2.43 e+08$
Units: Person
I used average of the US adult population 2009 to 2018 found here:
https://datacenter.kidscount.org/data/tables/99-total-population-by-child-and-adult\#detailed/1/any/false/37,871,870,573,869,36,868
,867,133,38/39,40,41/416,417
"Total population 25+"= 1.82e+08

Units: Person
https://www.infoplease.com/us/census/demographic-statistics $39.9+45.1+37.7+13.5+10.8+18.4+12.4+4.2=182$

Total spending on alcohol per year by people aged 15 to 24= Sum(Spending on alcohol per year[Gender!,Age!])
Units: Dollar/Year
"Total spending on alcohol per year by people aged 25+"= "Per capita revenue-aged 25+"*"Total population 25+"*fraction drinkers Units: Dollar/Year

Appendix 2: Residuals

Residuals vs Predicted_Male_15	Residuals vs Predicted Male_16	Residuals vs Predicted _Male_17	Residuals vs Predicted_Male_18	Residuals vs Predicted_Male_19
Residuals vs Predicted_Male_20	Residuals vs Predicted _Male_21	Residuals vs Predicted MMale_22	Residuals vs Predicted_Male_23	Residuals vs Predicted_Male_24
Residuals vs Predicted_Female_15	Residuals v.s. Predicted _Male_16	Residuals v.s. Predicted _Male_17	Residuals v.s. Predicted_Male_18	Residuals vs Predicted_Male_19
redicted_Female_2	ed _Male_21	ted _Male_22	esiduals v.s. Predicted_Male_23	d_Male_24

Figure 1A. Residuals versus predicted values of passengers of drivers involved in fatal crashes with BAC $\geq 0.01 \mathrm{~g} / \mathrm{dL}$

Residuals over time_Male_15	Residuals over time_Male_16	Residuals over time_Male_17	Residuals over time_Male_18	Residuals over time_Male_19
Residuals over time_Male_20	Residuals over time_Male_21	Residuals over time_Male_22	Residuals over time_Male_23	Residuals over time_Male_24
Residuals over time_Female_15	Residuals over time_Female_16	Residuals over time_Female_17	Residuals over time_Female_18	Residuals over time_Female_19
Residuals over time_Female_20	Residuals over time_Female_21	Residuals over time_Female_22	Residuals over time_Female_23	Residuals over time_Female_24

Figure 2A. Residuals over time

