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Numerous studies have developed alternative tools to detect prostate cancer in its early 

stages; however, their scope remains limited because of the strong assumptions they hold, 
resulting from the limitations in the medical literature. In our project, we study tissue-level 
dynamics of prostate, and we model the potential tumor presence and dynamics using two 
methodologies: system dynamics and machine learning (data science). Objective of the study 
is to come up with an improved diagnosis method supported by two models. We build the 
dynamic model using stock-flow modeling and simulation to observe the time-dependent 
dynamics in the prostate. Next, to fill the missing parts of data obtained from the literature, we 
make use of the dynamic model to produce synthetic data to be used as an input in the machine 
learning models. Using Python, we build nine different classification models and XGBoost 
Classifier performs the best among others with an accuracy value of 81.75 and recall value of 
87.71. Both models are validated using available real-world data on prostate cancer. 
Combined outputs from two models provide added information on tumoral status and processes 
in a given individual. This study can be eventually useful to improve the medical screening 
procedures towards early diagnosis of prostate cancer.  
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1. INTRODUCTION 
Prostate cancer is the second most common type of cancer among males worldwide. 

(Wang, et al., 2022)  Prostate cancer stages can be classified according to how advanced and 
malignant the tumor is. In advanced stages, the survival rate is significantly lower, thus 
detection of prostate cancer in early stages can increase the probability of survival. (American 
Cancer Society, 2023) Therefore, early detection/diagnosis of prostate cancer have great 
importance for both medical doctors and patients.  

 
After a certain age, males are suggested to go into screening for prostate cancer. Late 

diagnosis and overdiagnosis are two fundamental issues in prostate cancer screening. Late 
diagnosis may result in advanced and untreatable cancer while overdiagnosis can cause 
overtreatment of patients. Overtreatment is the case of unnecessarily treating and harming 
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patients who carry clinically insignificant tumors which are expected to stay steady in the 
lifetime. In this study, we aim to detect the potentially aggressive tumor at the right time.  
(Loeb, et al., 2014) (NCCN Guidelines, 2022) 

 
We plan to study tumoral characteristics of prostate with a novel approach that combines 

system dynamics with machine learning. Constructing dynamic models in tissue-level, we 
focus on the causal relationships between the biological structures of the human body. By 
modeling prostate characteristics of individuals, we aim to detect the potential tumoral cell 
growth in an early time.  

 
In this regard, machine learning methods add an extra static information to our study. 

Adapting several models to detect the tumor presence, we plan to classify the cancerous 
patients using their prostate-related various characteristics as input. Aim of the current cancer 
screening procedure is to assist the medical doctors in detecting clinically significant prostate 
cancer. Objective of this study is coming up with a reliable predictive method supported by 
two models with the integration of their dynamic and static outputs and to improve performance 
of the current procedures. With this purpose, an individual level system dynamics model will 
be built to observe prostate dynamics over time. Simultaneously, multiple machine learning 
models will be built and tested to predict the cancer presence, and the model with the highest 
performance accuracy rate will be selected. The co-working of the dynamic and static models 
is planned to increase the diagnosis performance which may be a significant improvement 
compared to the current medical practice. 

2. BACKGROUND KNOWLEDGE 
 

Prostate cancer occurs from uncontrollable cell proliferation in the prostate gland. (Wang, 
Zhao, Spring, & DePinho, 2018) (Cannarella, Condorelli, Barbagallo, La Vignera, & Calogero, 
2021) The casualties of cancer occurrence are still debatable, but studies show that there is 
positive correlation between certain characteristics of patients, which are called risk factors, 
and prostate cancer incidence/mortality. It can be argued that risk factors increase the likelihood 
of developing cancer and tumor growth rate. In prostate cancer cases, some of the significant 
risk factors are smoking, genetics, physical activity, sexual activity, increasing age and BMI. 
(Leitzmann & Rohrmann, 2012) (Pernar, Ebot, Wilson, & Mucci, 2018) Prostate specific 
antigen (PSA) is produced both in healthy and cancerous prostatic tissues and part of the 
produced PSA is secreted into blood serum. PSA can be found bound to a protein or free form. 
The free form of PSA is called free PSA. (Adhyam & Gupta, 2012) There is strong evidence 
that prostate enlarges with increasing age, and PSA production rate increases. (Zhang, et al., 
2013) Cancer cells’ walls are more prone to be disrupted, thus they are prone to secrete more 
PSA into the serum, which supports the claim that increasing PSA levels is one of the prostate 
cancer indicators. PSA, inside cells, goes into a process called ‘proteolytic cleavage’, in which 
PSA is transformed into mature forms, such as free PSA. Because cancer cells proliferate 
uncontrollably, proteolytic cleavage process completion rate decreases and free PSA portion 
of total PSA level decreases in people with prostate cancer. It is argued that free PSA to total 
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PSA ratio is another prostate cancer indicator, negatively correlated with tumoral volume. 
(Partin, et al., 2002) (Adhyam & Gupta, 2012) 
 

The procedure to prostate cancer detection is that after a certain age, males get PSA level 
tests and digital rectal examination by medical professionals. Current routine screening 
procedure can be seen in Figure 1. PSA is produced in cancerous and healthy prostatic cells. If 
the PSA level of a person is above a certain level, it may be an indicator for prostatic tumor; 
therefore, he would go into follow-up screening. Follow-up screening comprises Multi-
parametric Magnetic Resonance Imaging (mpMRI) and biopsy. The final summary output of 
mpMRI is called PI-RADS score. It is an indicator of how likely there is a tumor in the imaged 
area, ranging from 1 to 5. Biopsy output indicates if the sample tissue is cancerous or not, and 
it is seen as the final determinant of cancer. (NCCN Guidelines, 2022) 

      
 

 
 

Since mpMRI and biopsy are not part of routine screening, PSA test output is important 
for alarming the doctors. Healthy PSA level range can be different for each individual and 
might depend on multiple parameters: having prostate cancer, prostate enlargement due to 
increasing age, sexual activity of the person, different diseases such as benign prostatic 
hyperplasia and prostatitis. (Adhyam & Gupta, 2012) Erroneous results can occur if 
individualistic factors are not taken into consideration while reviewing PSA test results.  

 
One of the most important factors in prostate cancer detection is the free PSA/Total PSA 

ratio. Studies show that the free PSA ratio of total PSA tends to be lower in prostate cancer 
patients. (Adhyam & Gupta, 2012) Detecting cancer before it has become aggressive and 
untreatable is important. Not incorporating different parameters into cancer detection can result 
in higher false negative rates, undetected and untreated cancer patients and eventually hazard 
to the population. (Lila, Ulmert, & Vickers, 2008) 

 

Figure 1: Prostate Cancer Screening Procedure (NCCN Guidelines, 2022) 
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Past mathematical and simulation modeling studies on prostate cancer detection differ in 
their methodologies. Some of them use PSA levels as an indicator of a tumor, while some focus 
directly on the potential tumor growth dynamics over years. Using different prostate related 
parameters, their aim is to predict the tumor presence. Since medical research on cancer 
epidemiology is still ongoing, certain assumptions were made when developing past models.  

 

Dynamic causal modeling can be useful by generating behaviors of important system 
variables over time. For this purpose, we first decided to model the prostate tumor dynamics in 
Vensim using system dynamics approach. Secondly, data science tools such as Support Vector 
Machines (SVM) and Logistic Regression are highly recommended as classification tools in 
healthcare decision making. Representing the correlations between parameters, these 
methodologies are highly used in medical literature for tumor detection.  
 

Machine learning tools are core methodologies to lay out the correlations between 
parameters that affect PSA levels and detect prostate cancer existence, using individual level 
data. To understand how different factors affect PSA level, dynamics in the prostate should be 
observed. However, such tools do not utilize time series data; hence machine learning models 
have static characteristics and are not adequate to model the dynamics in the prostate. The need 
for system dynamics modeling arises from this limitation. The system dynamics model adds a 
dynamic dimension to tumor detection and can be used for foreseeing probable tumor growth 
which can be negligeable in the imminent time. It can be proposed that foreseeing probable 
tumor growth can alarm the medical doctors and patients to take precautionary actions to 
prevent the potential tumor growth. 
 

The relationship between screening output variables, risk factors and prostate cancer’s 
existence need to be analyzed and modeled. The imminent prostate cancer and probable tumor 
growth detection should be done, individually. Concerning the detection requirements in the 
short term with static data, machine learning tools can be used. Even though machine learning 
tools are adequate to lay out the correlations between prostate cancer related factors and 
predicting cancer existence in the short term; they lack the dynamic dimension. To comprehend 
the tumor growth, prostate related dynamics, and their effects on PSA; a system dynamics 
model needs to be built. Prostate related dynamics such as prostate cancer occurrence, tumoral 
tissue growth, healthy tissue growth, PSA level, free PSA ratio and the risk factors for cancer 
development are individual specific characteristics. That is why it is a requirement that the 
prostate dynamics to be modeled individually to comprehend the disease progression and 
effects of the risk factors. 

 
3. OVERVIEW OF THE SYSTEM DYNAMICS MODEL  

 
The dynamic model was designed to hold an explanatory power about the tissue-level 

dynamics of prostate. Model has four main stocks centrally (Figure 3). Having 
interdependencies, these four stocks create six feedback loops in the model. Four of them are 
balancing loops while the other two are reinforcing loops. Reinforcing loops are the results of 
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birth of prostate and healthy tissue volumes. New tissues being born, their rate of birth increases 
accordingly. Thus, two reciprocal positive feedbacks create reinforcing loops for each of the 
tissue stocks. (See Figure 2) 

 
Two of the balancing loops are observed during apoptosis of the tissues. When tissues tend 

to reproduce, this means an increase in their volume. With volume being larger, apoptosis rates 
increase accordingly. Hence, these negative feedback loops seek to balance the tumoral and 
healthy tissue volumes by balancing their population levels and death rates. 

 
Nutrient, the stock which tissues are fed by, are embedded in two negative feedback loops 

in result of its causal relationships with tumoral and healthy tissues. Tissues are mechanisms 
that are disposed to grow by consuming nutrient. Their consumption rate increases as their 
volume increases, which results in a decrease in nutrient levels. Nutrient levels being lower, 
tissues are forced to consume less nutrient which leads to a decrease in their volumes. 
 
 

 
Figure 2: Causal Loop Diagram 

 
Model is divided into three fundamental sectors: (1) PSA sector; (2) risk factors sector; (3) 

prostate tissues sector. Since PSA is not the sole indicator of prostate cancer, it is important to 
analyze the free PSA level along with its fraction in the serum PSA. Tumoral and healthy 
tissues are fed by vital nutrients so that they continue to reproduce. Tissues contribute to PSA 
production, but their rate of production differs by the type of the tissue.  
 

Besides the internal factors mentioned, the model has several external factors, as well (like 
smoking, BMI…). They are defined to be individual-specific characteristics; thus, their values 
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differ for each individual-specific run. Age being an independent stock in the model, it 
represents the individual’s real-time age. Hence, it increases linearly throughout the simulation 
period, which is ten years as default. A more detailed explanation is provided in the following 
section.  

 
Figure 3: Complete Stock Flow Diagram 

 
4. MODEL DESCRIPTION 
 

Model contains four internal stocks: Tumoral Tissue Volume, Healthy Tissue Volume, 
Nutrient Level, and PSA Level.  PSA sector includes only PSA Level stock, while Prostate 
Tissues Sector includes remaining three. Table 1 provides the units of the stocks of the model. 
Tissues are involved into the processes by their PSA production and their interaction with the 
nutrients.  

Table 1: Units of the Stock Variables of the Model 

Stock Unit 

Tumoral Tissue Volume Liter 

Healthy Tissue Volume Liter 
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Nutrient Level Gram 

PSA Level ng/mL 

 
4.1. Assumptions 

 
In the dynamic model, several risk factors are assumed to be affecting the tumoral and 

healthy tissue dynamics. As mentioned before, some external individual characteristics tend to 
accelerate the potential tumoral growth. The risk factors included are smoking, sexual activity, 
physical activity, BMI rate, family history, and age. In the model, we consider these six risk 
factors as individual-specific characteristics. Thus, they are subject to change in each run. Their 
values are assumed to be binary. Hence, a risk factor input should be entered as 1 if an 
individual carries that factor, 0 otherwise. Risk factors are expected to have different levels of 
effect on the system.  
 

Cancer Onset is located as an inflow to the stock of Tumoral Tissue Volume. It is assumed 
to be the triggering effect which initiates the existence and growth of tumoral tissue. 
Furthermore, Randomness is defined as a variable to explain the random effects on the 
biological processes in the prostate. For each run, randomness is assumed to have an impact on 
the tumoral growth initiation. Owing to this, we intend to capture the randomness in human 
biology, potentially creating an environment that allows rapid cell growth. 
 

Tissues are fed by certain hormones, vital nutrients, vitamins, and especially glucose.  
(Lorenzo, et al., 2016) Gathering all substances under one name, we called them nutrient to 
prevent unnecessary complexity of the model. Thus, Nutrient Level represents all the biological 
factors which help and accelerate tissue growth. 

 
4.2. Technical Description of the Dynamic Model  

Making use of medical literature on prostate cancer, biological interactions and dynamics 
of prostate tissues are derived. Model is simulated by using Vensim PLE 9.3.4. Causalities of 
the interactions are built and represented within the model. Thus, we can easily observe the 
time-dependent dynamic relationships between the variables. To catch the continuous nature 
of human biology, the time unit of the model is decided to be day, and time step is 0.125. Model 
is simulated for ten years, which equals to 3650 days.  
 

4.2.1. PSA Sector 
𝑇𝑢𝑚𝑜𝑟𝑎𝑙	𝑇𝑖𝑠𝑠𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒	(𝑉!) and 𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑇𝑖𝑠𝑠𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒	(𝑉") are two main stocks at 

the center of the system. Together they form the total prostate volume. Since both tumoral and 
healthy tissues produce serum PSA, they contribute to the inflow rate of 𝑃𝑆𝐴	𝐿𝑒𝑣𝑒𝑙	(𝑃#). 
Healthy tissue produces PSA with a rate of 𝛼" = 	6.25	𝑛𝑔.𝑚𝐿$%. 𝑐𝑚$&. 𝑦$%, (time unit is 
given as year in this equation) while tumoral tissue PSA production rate (𝛼!) is 15 times of the 
healthy tissue PSA production rate (𝛼"). Moreover, PSA has a natural decay rate coefficient of 
𝛾	 = 	0.35	𝑑$% (time unit is given as day in this equation). (Lorenzo, et al., 2016) 
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𝑃# 	= 𝛼"	 ∗ 	𝑉" + 𝛼! ∗ 	𝑉! − 	𝛾 ∗ 	𝑃#	  

 

 

 
 

 

As free PSA ratio is observed to be relatively less in cancer patients than in healthy people; 
it is important to model the free PSA dynamics along with other PSA parameters. (Adhyam & 
Gupta, 2012) Healthy prostate tissues tend to produce more inactive PSA which circulates in 
the blood unboundedly (free PSA), while cancerous cells produce more active PSA circulating 
in the blood and bound to certain inhibitors such as ACT. (Adhyam & Gupta, 2012) D’Amico 
et al. provide a set of equations to predict the tumor volume using given values of Gleason 
grade, total PSA level, and the prostate volume (𝑉(). (D'Amico, et al., 1997) Based on the 
causality between free PSA ratio and prostate tissues, we modeled free PSA as directly being 
affected by tumoral and healthy tissue volumes. Epithelial fraction used in the below equation 
equals to 0.2 and the PSA leak into serum per cubic centimeter of healthy tissue equals to 0.33, 
as defined by D’Amico et al. (D'Amico, et al., 1997) Mentioned equation set provided by 
D’Amico et al. is following: 
 

𝑃𝑆𝐴	𝑓𝑟𝑜𝑚	ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑡𝑖𝑠𝑠𝑢𝑒	
= [(𝑒𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑎𝑙	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)
∗ 	<	𝑃𝑆𝐴	𝑙𝑒𝑎𝑘	𝑖𝑛𝑡𝑜	𝑠𝑒𝑟𝑢𝑚	𝑝𝑒𝑟	𝑐𝑚3	𝑜𝑓	ℎ𝑒𝑎𝑙𝑡ℎ𝑦	𝑡𝑖𝑠𝑠𝑢𝑒= ∗ 	 (𝑝𝑟𝑜𝑠𝑡𝑎𝑡𝑒	𝑣𝑜𝑙𝑢𝑚𝑒)]	 

 

Tumoral	Tissue	Volume =
𝑃𝑆𝐴	𝑓𝑟𝑜𝑚	𝑡𝑢𝑚𝑜𝑟𝑎𝑙	𝑡𝑖𝑠𝑠𝑢𝑒

𝑃𝑆𝐴	𝑙𝑒𝑎𝑘	𝑖𝑛𝑡𝑜	𝑠𝑒𝑟𝑢𝑚	𝑝𝑒𝑟	𝑐𝑚&	𝑜𝑓	𝑡𝑢𝑚𝑜𝑟𝑎𝑙	𝑡𝑖𝑠𝑠𝑢𝑒 

 

Figure 4: PSA Sector  
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In the dataset, using TNM staging of the patients, we predicted the Gleason grade of each 
patient. Then, using their prostate volumes and total PSA levels, we estimated the cancer-
specific PSA levels along with the tumoral tissue volumes using above equations. Having 
tumoral tissue volume data, we were able to build a linear regression model. Dependent 
variable of the model is free PSA ratio, while the independent variables are healthy and tumoral 
tissue volumes. Deriving the correlation coefficients from the output, we integrated them into 
the dynamic model. Thus, the variable Fraction of Free PSA (𝑝) is linearly dependent on 
tumoral and healthy tissue volumes and by multiplying the PSA Level with this fraction, we 
get the Free PSA Level (𝑃*). 

𝑝	 = 	13.7586 − 2.19265 ∗ 	𝑉𝑐 + 0.18732	 ∗ 	𝑉ℎ 

𝑃* 	= 𝑝 ∗ 	𝑃#	  

 

4.2.2. Risk Factors Sector 

Prostate tissue dynamics are affected by both internal and external factors. Internal factors 
consist of nutrient level, while external factors consist of certain risk factors such as BMI, 
smoking, family history, sexual activity, and physical activity. (Perdana, Mochtar, Umbas, & 
Hamid, 2016) Some of the past studies lack including these risk factors into their models. Since 
tumor growth cannot be determined only by the internal physiological characteristics, it is 
important to consider the external factors while building a model. For instance, a 70-year-old 
male with a family history of cancer has more risk of developing a prostate tumor than a 50 
years-old male with a healthy lifestyle.  
 

 
 

 

Risk factor characteristics differ from each other in that not every risk factor directly 
affects the tumoral tissue growth, but some of them affect the tumor initiation. Thus, we 
classified the external risk factors according to their impacts on tumor growth and tumor onset. 
BMI is observed to be affecting proliferation rate of the tumoral cells. (Allott, Masko, & 

Figure 5: Risk Factors Sector  
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Freedland, 2013) Smoking increases the risk of developing cancer and increasing the 
proliferation rate of the tumor. Thus, smoking directly affects both tumoral growth and cancer 
initiation in the model. An increase in age decreases the apoptosis rate of tumoral cells and 
increases the proliferation rate of the healthy cells. Thus, age of the patient, which linearly 
increases throughout the simulation period, affects the tumoral and healthy tissue volumes as 
well as the cancer onset. Additionally, family history, sexual activity, and physical activity is 
observed to be influencing the cancer onset, not tumor growth. (Albright, et al., 2015) Even 
though all risk factors have an influence on the cancer dynamics, their rates are different from 
one to another. To decide on the correct risk rates, we used estimated relative risk (RR) values 
from past medical studies on prostate cancer risk factors. Using the relative risks, we calculated 
the combined probability of the risk factors.  

 
Table 2: References for Relative Risks (RR) of the Risk Factors 

Risk Factor RR on Cancer Onset RR on Tumor Growth 
Smoking 1.01 - 1.46 (Huncharek, 

Haddock, Reid, & 
Kupelnick, 2010)  

1.06 - 1.19 (Huncharek, 
Haddock, Reid, & 
Kupelnick, 2010) 

BMI - 1.01 - 1.05 (Allott, Masko, 
& Freedland, 2013) 

Family History 2.46 (Albright, et 
al., 2015) 

- 

Sexual Activity 1.26 – 1.73 (Perdana, 
Mochtar, Umbas, & 

Hamid, 2016) 

- 

Physical Activity 0.84 - 0.95 (Leitzmann & 
Rohrmann, 2012)  

- 

 
Cancer onset is a variable that determines whether cancer is initiated or not. Starting with 

a zero-tumor volume, if cancer onset becomes positive, then a negligible volume of tumor is 
created by the cancer onset and cancer is initiated. There are two main substances that affect 
the cancer onset value. First is the combined probability of risk factors and second is the 
randomness of the system. We used base the prostate cancer prevalence as 15.3%. (Huncharek, 
Haddock, Reid, & Kupelnick, 2010) Randomness represents a random probability which is 
UNIFORM [0, 1]. If the combined risk probability of the patient exceeds the random 
probability, then the Cancer Onset initiates the cancer and creates a negligibly small volume 
of tumor. 
 

4.2.3. Prostate Tissues Sector 

Three main stocks are located in this core part of the model. These stocks are called 
𝑇𝑢𝑚𝑜𝑟𝑎𝑙	𝑇𝑖𝑠𝑠𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒	(𝑉!), 𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑇𝑖𝑠𝑠𝑢𝑒	𝑉𝑜𝑙𝑢𝑚𝑒	(𝑉") and 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝐿𝑒𝑣𝑒𝑙	(𝜎). 
They have interdependent relationships with reinforcing and balancing loops present. 
Proliferation of the cells create a reinforcing loop, while apoptosis of the cells creates a 
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balancing loop. Initial tumor volume for non-cancerous people is in an interval between 0 and 
0.01 cc which is a negligible value. Considering the alternative risk scenarios, the initial tumor 
volume is changed accordingly. Initial healthy epithelial tissue volume is dependent on the age 
of the patient and changes within 20 cc to 40 cc interval except extreme cases such as benign 
prostate hyperplasia. Initial PSA values are also dependent on the age and prostate volume of 
the individual.  
 

 
 

 

Both healthy and tumoral tissues consume nutrient and they contribute to its decay rate, as 
well. Nutrient uptake rate for the tumoral tissue is 𝛿! = 	2.75	𝑔. 𝐿$%. 𝑑$% , and for the healthy 
tissue is 𝛿" = 	2.75	𝑔. 𝐿$%. 𝑑$%. Nutrient decays with a rate coefficient of 𝛾 = 	0.30	𝑑$%. 
Nutrient supply rate is 𝑠 = 	3	𝑔. 𝐿$%. 𝑑$%. (Lorenzo, et al., 2016) 

 

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑈𝑝𝑡𝑎𝑘𝑒	𝑏𝑦	𝑇𝑢𝑚𝑜𝑟𝑎𝑙	𝑇𝑖𝑠𝑠𝑢𝑒	 = 	 𝛿! ∗ 𝑉! 

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑈𝑝𝑡𝑎𝑘𝑒	𝑏𝑦	𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑇𝑖𝑠𝑠𝑢𝑒	 = 	 𝛿" ∗ 	𝑉" 

𝑁𝑎𝑡𝑢𝑟𝑎𝑙	𝐷𝑒𝑐𝑎𝑦	𝑜𝑓	𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	 = 	𝛾 ∗ 	𝜎	 

 

𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑇𝑢𝑚𝑜𝑟	𝐶𝑒𝑙𝑙𝑠
= 	𝐵𝑀𝐼	𝐸𝑓𝑓𝑒𝑐𝑡	𝑜𝑛	𝑇𝑢𝑚𝑜𝑟	𝐺𝑟𝑜𝑤𝑡ℎ ∗ 𝑆𝑚𝑜𝑘𝑖𝑛𝑔	𝐸𝑓𝑓𝑒𝑐𝑡	𝑜𝑛	𝑇𝑢𝑚𝑜𝑟	𝐺𝑟𝑜𝑤𝑡ℎ
∗ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑈𝑝𝑡𝑎𝑘𝑒	𝑏𝑦	𝑇𝑢𝑚𝑜𝑟𝑎𝑙	𝑇𝑖𝑠𝑠𝑢𝑒 

 

Nutrient uptake is proportional to the volume of the tumoral tissue, and proliferation rate 
of tumoral cells is proportional to the nutrient uptake. Thus, there is a reinforcing loop which 
results in an exponential growth of tumoral cells. Moreover, proliferation rate of tumor is 
affected by both BMI and smoking factors. According to one’s BMI value and smoking habits, 
a relative risk rate is assigned, and they are multiplied with the nutrient uptake rate. Simulating 
a person with high BMI rate and smoking habit, we observe the proportional growth on the 
tumoral cells compared to a healthy individual. Also, as a male gets older, his prostate tends to 

Figure 6: Prostate Tissues Sector  
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get bigger which is accepted to be normal in certain intervals. If the prostate volume exceeds 
the normal limits, it is a case called Benign Prostate Hyperplasia (BPH) which is commonly 
observed among older people. To truly reflect the age effect on the prostate volume, we inserted 
an age-dependent rate in the proliferation rate of healthy cells.  
 

𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝐶𝑒𝑙𝑙𝑠	 = 	 (𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑈𝑝𝑡𝑎𝑘𝑒	𝑏𝑦	𝐻𝑒𝑎𝑙𝑡ℎ𝑦	𝑇𝑖𝑠𝑠𝑢𝑒) ∗ 
(1 + 𝐴𝑔𝑒	𝐸𝑓𝑓𝑒𝑐𝑡	𝑜𝑛	𝑃𝑟𝑜𝑠𝑡𝑎𝑡𝑒	𝐺𝑟𝑜𝑤𝑡ℎ) 

 

5. MODEL BEHAVIOR & VALIDATION 
 

Past prostate research studies provide real and estimated data as intervals. Thus, for model 
calibration, we simulated the system by changing input parameters within the suggested 
intervals. Having several outputs with various input parameter values, optimal intervals for the 
model inputs were determined.  
 

The model was tested using structural and behavioral validity tests. For the behavioral 
validity, we compared model behaviors with real world data under certain scenarios. Those 
scenarios will be explained in the following. As real-world data, we used the dataset provided 
in the appendix. We had three fundamental runs for the model validation and showed that the 
patient-level prostate dynamics are consistent with the real data derived from medical literature. 
Having previous year PSA and current PSA values for the patients in the data set, we were also 
able to compare the time-dependent PSA increase rates. 
Figure 5 was extracted from another modelling study. In the figure, tumor volume change and 
serum PSA change over time of a patient can be seen; control line represents patient without 
an intervention and treatment line represent patient with treatment intervention. Since we don’t 
include treatment effect in our model, control line can be used for validation of our model. 
Comparing our model and the control line in Figure 5, their behavior under the same baseline 
conditions match. 

 

 
Figure 5: (A) Tumor Volume Dynamics and (B) Serum PSA Dynamics Graphs To Be Used For 

Behavioral Validation (Barnaby, Sorribes, & Jain, 2021) 
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5.1. Base Run 
Before starting the three scenario runs under different conditions, we present the base run. 

As a base, we assumed a 55-year-old male with minimal risk factors such as smoking and 
sexual activity. The subject has no family history in prostate cancer, neither a high BMI rate. 
Starting with a zero tumoral tissue volume, tumoral proliferation rate stays under control 
throughout the simulation period of ten years. He doesn’t demonstrate an extreme situation in 
any sectors, for which we can comment that the run is coherent with the real-world behavior. 
Because of the randomness effect that we added to the model, negligible amounts of tumor 
may be born but kept under control throughout the simulation. 

 
 

   
 

  
 

 
5.2. Risk Factors Effect 

5.2.1. 60-year-old smoker with a high prostate volume and BMI rate  
This patient is assumed to be a disadvantageous male with older age, high prostate volume, 

high BMI rate, family history observed, lack of physical activity which results in extreme 
growth of tumoral tissue. Starting with a negligibly small tumoral tissue volume, tumoral 
proliferation rate cannot be controlled because of his age and high BMI. Tumor tends to 
exponentially grow over time and reaches a clinically advanced level during the sixth year of 
the simulation period. Observing his increasing PSA level, a medical doctor would realize the 
risk at the sixth year or later. However, simulating his prostate dynamics over years, it is easy 
to observe potential changes in tissues and PSA levels.  

Figure 6: Outputs of base scenario  
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5.2.2. 50-year-old non-smoker with a normal prostate volume and BMI rate  

This patient has a healthy lifestyle and advantageous genetic factors (No history of prostate 
cancer was observed in the family). Starting with a negligibly small tumoral tissue volume, 
tumoral proliferation rate stays under control (<0.0008 liters) throughout the simulation period 
of ten years. We can observe that his healthy prostate easily beats the tumoral cell proliferation. 
Knowing that a linear increase in PSA over years is normal as long as it doesn’t exceed the 
alarming threshold of 4ng/ml and it doesn’t increase exponentially. Starting with a PSA close 
to 2ng/ml, this patient’s PSA value only exceeds 2 ng/ml in the next ten years which is a usual 
increase by age. Another point to focus is the fraction of free PSA in the serum, since this 
person doesn’t develop a clinically significant tumor over the simulation period, its free PSA 
fraction tends to stay steady.  
 

Figure 7: Outputs of scenario 1  

Alarming 
Threshold 
threshold 
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To truly observe the relative dynamics of the two patients, we compare their scenario runs. 
It is now more accurate how the first patient cannot control the tumor growth and how the 
second patient is successful in having control over the tumor. PSA level curves also show a 
different dynamic of the patients. Exponential growth in PSA is alarming for most of the cases, 
except for the benign prostate hyperplasia. Through these graphs, we easily observe the effect 
of risk factors in tumoral tissue growth. 
 

5.3. 65-year-old non-smoker and low BMI with a benign prostate hyperplasia run 

Apart from the tumoral growth, prostate volume tends to grow if the patient is diagnosed 
with benign prostate hyperplasia. In this case, starting with a volume of 45 cc, prostate reaches 
almost 100 cc at the end of the ten years. For males older than 65, normal range for the prostate 
volume is 36 cc – 45 cc. (Berges & Oelke, 2011) Even though he does not have a growing 
tumor, his PSA level exceeds the alarming threshold because of his growing prostate. This case 
shows how the PSA value may be misleading without analyzing other dynamics in the prostate. 

 
 

Figure 10: Outputs of scenario 2 in comparison with scenario 1 

Alarming 
Threshold 
threshold 
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Since the model works with considerably small parameter values, a small change in 

parameters can result in a considerable change in the output. Thus, it is important to address 
the sensitivity of human physiology in our model, as well. Having the results for the patients, 
we can observe the changes in output of the patients with relatively different characteristics. 
Hence, the solution method of the study is consistent with system characteristics and 
limitations. 

 
Model can be easily implemented to any male, having several prostate-related 

characteristics as input, we can observe his tissue-level prostate dynamics over periods of time. 
As long as a person has his prostate related data, the model can sustainably work. Only pre-
requisite for the model run is the individual prostate data, screening, and test results. Changing 
the model period to longer years, we can also analyze lifetime results. Thus, solution is robust 
considering the potential changes in the parameters and real-life dynamics.   
 
6. MACHINE LEARNING MODEL DESCRIPTION 

To be used as inputs for the machine learning models, we gathered three different datasets 
from previous medical studies and one dataset was provided by Ministry of Health in Turkey. 
(Klingebiel, et al., 2022) (Nikitina, et al., 2019) (Cebeci & Ozkan, 2021) These datasets contain 
hundreds of patients’ data with certain prostate-related characteristics such as PSA level, free 
PSA level, previous year’s PSA level, prostate volume, and age. To fill the missing clinical 

Alarming 
Threshold 
threshold 

Figure 11: Outputs of scenario 3  
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characteristics in the data, we used MICE imputation technique which performs best among 
other techniques such as KNN and Median imputation. Throughout this part of the study, we 
used Python as the programming language. 

 
Another deficiency of the data is the dominant presence of cancerous patients. For machine 

learning model to perform well, we needed data of individuals who don’t carry a tumor. So 
that, the model can be trained well to classify the individuals as “cancerous” or “healthy”. To 
this end, we generated hundreds of synthetic data of healthy individuals using system dynamics 
model. The analysis of the gathered and generated data was coherent with medical literature. 
This was an important and useful synthesis of the system dynamics model and data science 
model. 

 
For prediction of prostate cancer, nine different classification algorithms were built. Data 

was split into two sets: training and validation sets. Five-fold cross validation was performed 
in the training set to get an insight about overfitting. However, after training the model with 
the training dataset, the validation set was predicted, and the results of validation set was 
considered for the comparison and selecting the final model since the results of the validation 
set didn’t carry any data leakage. All parameter changes in the models were made manually in 
order to parameter optimization. 
 

Here is the list of the classification algorithms implemented: 
o Logistic Regression 
o Support Vector Machines 
o K-Nearest Neighbors 
o Naive Bayes 
o Decision Trees 
o Random Forests 
o Gradient Boosting Classifier 
o XGBoost Classifier 
o LightGBM Classifier 
 
Accuracy, precision, and recall values are indicators for performance of a classification 

model. Different indices are used for calculations of these indicators. Here are the equations of 
the performance indicator values: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  +  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

Pre𝑐𝑖𝑠𝑖𝑜𝑛  =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) 

 

𝑅𝑒𝑐𝑎𝑙𝑙  =  
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 
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As it can be seen from the calculations, lower false positive value indicates higher 
precision value and lower false negative value indicates higher recall value. In this study, recall 
value is accepted to be more significant than precision value since false negative detection may 
result in certain fatalities. (Papageorgiou, et al., 2018) In short, accuracy, false negatives and 
recall value have more emphasis when analyzing the results of the model and making 
comparison with other models. 
 

Table 3: Comparison of Classification Methods 

For Validation Set  Accuracy  Precision  Recall 
 K-Nearest Neighbors 72.7506 77.8626 56.9832 
 Support Vector Machines 73.2648 79.5276 56.4246 
 Naive Bayes 79.1774 81.4103 70.9497 
 Decision Tree 75.8355 73.4807 74.3017 
 Random Forest 81.4910 79.5580 80.4469 
 Gradient Boosting Classifier 81.2339 77.6042 83.2402 
 Logistic Regression 80.4627 76.1421 83.7989 
 LightGBM Classifier 81.4910 79.5580 80.4469 
 XGBoost Classifier 81.7481 76.2136 87.7095 

 
For comparison, when the accuracy values and recall values considered, XGBoost has the 

highest accuracy and recall value. Precision value of XGBoost is relatively lower than other 
models. However, as mentioned before recall value has more significance than precision value 
for cancer prediction. For conclusion, as it can be seen from Table 3, XGBoost model is chosen 
as the final model for this study. 
 

6.1. Suggestions  
 

The design can be implemented into the routine prostate cancer screening process. Current 
screening process can be seen in Figure 12. Suggested model implementations are marked with 
red arrows in figure 12.  
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System dynamics model can be integrated using individual level data and calibrated using 
the patient’s PSA test results to see probable future results. The results from the system 
dynamics model can alarm the medical doctors and patients to take precautionary actions to 
prevent the foreseen tumor growth. Machine learning model is implemented by using personal 
level data, output data of PSA test, and MRI test. Its objective is limited to detecting an existing 
tumor. The essential part of this process is to detect the tumor which could have been avoided 
by the standard procedures. The model can alarm the doctors to apply biopsy on the patient, 
and the biopsy is seen as gold standard in medical field. (NCCN Guidelines, 2022) Machine 
learning model’s aim should be to achieve lower false negative rates on the outcome of MRI, 
since false positives can be corrected by biopsy in the next steps. 
 

Obtained solutions should be revised with the new screening or test data. Since a change 
in input parameter may change the output, it is important to consider the future solutions of the 
model with additional screening and testing results present. 

7. CONCLUSION  

Tumor detection comes with its challenges, resulting in inadequacy of the screening 
methods and late diagnosis of cancer patients. In this study, we built system dynamics and 
machine learning models to detect the potentially aggressive tumor in early stages. We 
constructed a system dynamics model of the biological mechanisms in prostate to observe the 
time-dependent pathogenesis of prostate cancer. Building machine learning model as 
complementary, it was adapted to the study as a prompt classifier. Furthermore, machine 
learning model was useful for the statistical analysis of the output of prostate cancer screening 
process, laying out the correlations between the variables, and prediction of the prostate cancer 
presence. Throughout this study, we intended to develop a reliable predictive method supported 
by two models with the integration of their dynamic and static characteristics. 

 

Figure 12: Prostate Cancer Screening Process  
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We modeled the prostate of a male showing average and normal functioning biological 
characteristics in tissue-level. PSA being the most significant indicator of prostate cancer, we 
modeled its relationship with free PSA, as well. Furthermore, we considered the effects of 
external risk factors on prostate cancer by adapting them in the model. For the machine learning 
part of the study, we built nine classifying algorithms through Python to find the optimal one, 
and XGBoost performed best with an accuracy value of 81.75 and recall value of 87.71. System 
dynamics model was helpful imputing the missing data to be used as input in the ML model.  

 
The system dynamics model was validated through structural and behavioral validity tests. 

We performed a base run along with the three scenario runs to validate and examine the effects 
of several risk factors. In base run, a male with normal characteristics is simulated and results 
are concluded to be coherent with the real-world. Then, we simulated another two runs to 
demonstrate the effect of the risk factors. First of them is a disadvantageous male carrying each 
risk factor while second is an advantageous one with healthy lifestyle, carrying no risk factor. 
In the last run, we indicated the difference between prostate cancer and BPH. Even though PSA 
seemed to be alarming for prostate cancer, we observed the tumoral volume being steady and 
concluded that he showed a BPH behavior.  

 
Using the model, we could observe the 10-year-long prostate dynamics in tissue level. The 

integrated design can help increase the accuracy of prostate cancer detection and assist doctors 
and patients to take precautions of probable tumor growth, which can reduce the prostate cancer 
incidences and cancer specific mortality rates. It can be strongly argued that the design will 
help reducing prostate cancer incidences; however, number of procedures will increase with 
our additions to the current procedures, which can increase the cost of screening process. As a 
future work, cost effectiveness analysis can be done on the possible implementation of our 
design.  
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     APPENDIX 
 
 
 Base Run Scenario 1 Scenario 2 Scenario 3 

Tumoral 
Tissue Volume 

0 0.0001 0.0001 0.0001 

Healthy Tissue 
Volume 

0.024 0.03 0.024 0.045 

PSA Level 1.1 1.2 1.2 2.2 

Age 55 60 50 65 

BMI 0 1 0 1 

Smoking 1 1 0 0 

Family History 0 1 0 0 

Physical 
Activity 

0 0 1 1 

Sexual Activity 1 0 1 0 

Appendix 1: Initial values for the scenario runs 


