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Abstract 
Container port ecosystems and allied infrastructure play a central role in global trade, 
with the efficiency of the involved supply networks and logistics, along with potential 
bottlenecks, being central themes in disciplines such as Operations Management. We 
conduct a literature review to show that, notwithstanding a plethora of approaches 
towards calculating the optimal operations performance in container port terminals, the 
involvement of multiple stakeholders (e.g., inland carriers, customs, and advocates for 
sustainable transportation) with conflicting interests have not been investigated from 
an integrated perspective. Motivated by the container handling operations at the port 
of Thessaloniki, Greece, this research applies Systems Thinking to investigate the 
complex interconnections and feedback loops associated with Artificial Intelligence (AI) 
driven infrastructure on operations efficiency and environmental sustainability of 
container ports under a “multisolving” perspective. We find that AI can catalyze 
infrastructure development and balance the associated multiple trade-offs in container 
port systems at the short- and long-term horizon. We also find that multisolving in such 
a system can be implemented across two alternative strategies: (i) adjusting the input 
resources to control key stocks; or (ii) altering the weight on decisions that are critical in 
influencing the outcome trade-offs. 
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Introduction 
Maritime transport and container ports have a pivotal role in the global economy, with 
international maritime trade flows amounting to 11.0 billion tons in 2021, 
demonstrating an annual growth of 3.2%, almost reaching the pre-pandemic levels 
(UNCTAD, 2022). Specifically, containerized trade volume declined by 1.3% in 2020 and 
rebounded in 2021, reaching 165 million 20-foot Equivalent Units (TEUs) (UNCTAD, 
2022). Amid the container volume increases and inbound/outbound flow imbalances, 
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port operations must accommodate the oft-conflicting interests of multiple 
stakeholders, e.g., terminal operators, drayage carriers, railroads, longshore labor, and 
governmental authorities (Maloni and Jackson, 2005). 
 
Notwithstanding a plethora of studies focusing on optimizing container port operations 
for improved efficiency in terms of cost and time constituents, research evidence 
investigating the associated emissions and energy consumption is limited (Okşaş, 2023). 
Maritime transport accounts for 3.5-4% of all climate change emissions, primarily 
carbon dioxide (Walker et al., 2019). Indicatively, in 2021, container ships spent 13.7% 
longer waiting time in ports (compared to 2020) due to aggravating delays, while the 
total greenhouse gas (GHG) emissions attributed to the world fleet increased by 4.7% 
(UNCTAD, 2022). Furthermore, coastal cities harness the economic benefits stemming 
from the hosted port operations (Tanner et al., 2020). At the same time, they directly 
experience the associated environmental ramifications (Aguilera et al., 2023). To this 
end, the International Maritime Organization (IMO) has set a strategy to reduce by 50% 
the GHG emissions from international shipping activities by 2050, compared to 2008 
emissions (IMO, 2020). The required carbon emissions reduction, in tandem with the 
diverging objectives of stakeholders, requires that port authorities adopt digital 
technologies to deploy short- and long-term plans to improve the sustainable 
performance of container port terminal operations (Lam and Li, 2019; Okşaş, 2023). 
 
Container ports are complex ecosystems involving multiple stakeholders with coexisting 
and often conflicting interests (Ha et al., 2019), spanning the economic, environmental, 
and social sustainability pillars. Therefore, multiple perspectives are required to 
understand the dynamics of port operations and the associated sustainability impact. 
Arguably, “multisolving” approaches may help nullify the myopic views of any one 
stakeholder by exploring policies or interventions to tackle multiple problems, from 
efficiency to environmental to healthcare issues (Milstein et al., 2022; Multisolving 
Institute, 2022). Multisolving is defined as: “The pooling of expertise, funding, and 
political will to solve multiple problems with a single investment of time and money” 
(Sawin, 2018). In a container port ecosystem, multisolving can offer the capability to 
regard the complex and interlinked social and environmental challenges associated with 
operations. Multisolving decisions hinge on the choice of system boundary and the 
underlying trade-offs that these decisions must address within such a system. In this 
regard, data are central in informing decision-making to precipitate the well-being of 
people, places, and profit (Corbett, 2018), in conjunction with disruptive technology 
platforms and allied Artificial Intelligence (AI) algorithms (Sunar and Swaminathan, 
2022). Demonstrating the role of AI in socially relevant, effective, and inclusive 
management prompts a nascent research field in container port ecosystems. 
Reconciling the multiple interests of diverse port stakeholders for spillover beneficial 
outcomes is an emerging subject area (Ha et al., 2019; Lam et al., 2013). Given these 
goals, our research embarks on analyzing the container port ecosystem from a 
multisolving perspective and attempts to address the following research question: How 
can we integrate AI into multisolving approaches to container port management? 
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As with multisolving problems, there are multiple stakeholders (e.g., port platform 
owner, ship owners, city), each of whom values different objectives (e.g., platform 
owner wants to maximize port premium, ship owners want to improve efficiency and 
reduce congestion, the city wishes to have a cleaner and more sustainable footprint). 
We address this research query, initially by exploring the extant literature to 
comprehend the dynamics in a container port and its impact on the surrounding 
ecosystem. Systematic search and taxonomy are used with reference to multicriteria 
analyses and AI applications in container ports. Since we seek to access “best-quality 
evidence” (Tranfield et al., 2003), the literature search and taxonomy were limited to 
peer-reviewed journal articles written in English. Second, the study leverages primary 
evidence from the case of the Thessaloniki container port in Greece. Owing to the city’s 
geographical location and its extensive road links and train connections, the container 
port of Thessaloniki is the largest transit-trade port in Greece, and it is considered the 
gateway port to the Balkans and Southeast Europe (ThPA S.A., 2022). Third, the study 
adopts Systems Thinking as a theory-building approach to explore the underpinning 
interconnected cause-effect relationships and feedback mechanisms to derive a 
pertinent mental model (Meadows, 2009). Systems Thinking has been used in container 
port management to assess the impact of capacity and transportation planning policies 
on financial outcomes (Bahadir and Camgöz Akdag, 2019). In addition, a systems 
perspective has been applied to investigating infrastructure and organizational issues 
toward mitigating port congestion (Xu et al., 2021). 
 
We find that AI can catalyze infrastructure development and balance the associated 
multiple trade-offs in container port systems at the short- and long-term horizon. We 
also find that multisolving in such a system can be implemented across two alternative 
strategies: (i) adjusting the input resources to control key stocks; or (ii) altering the 
weight on decisions that are critical in influencing the outcome trade-offs. Theory and 
practice implications of these findings are discussed in closing. 
 
Decision-making in Container Ports 
Container ports play a critical role in global trade, as they handle most of the world’s 
merchandise (over 80% of global trade volume) by facilitating the movement of goods 
from one location to another, using various modes of transportation such as ships, 
trucks, and trains (UNCTAD, 2022). In essence, container ports provide a crucial link 
between manufacturers and consumers, enabling the efficient movement of goods 
across local and national borders (European Commission, 2020). Contemporarily, most 
container ports are characterized by proximity or embeddedness in urban settings, 
impacting multiple and diversified stakeholders (Merk, 2013). The latter stakeholders 
extend from the logistics sector to local authorities and communities, demonstrating 
varied necessities and priorities. Therefore, the management of container port 
operations needs to embrace decision-making approaches to address multiple 
challenges simultaneously and sustainably (rather than solving each problem in 
isolation), with multisolving providing such a perspective. 
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Within the context of container ports, multisolving could involve addressing challenges 
related to environmental sustainability, economic development, and social equity 
(Figure 1). For example, a container port could exploit renewable energy sources to 
reduce GHG emissions (Ballester et al., 2020). Furthermore, digitalization and 
innovation in port operations can foster long-run growth, create job opportunities for 
local communities and improve access to goods and services for underserved 
populations (Bottalico et al., 2022). Adopting a multisolving lens, container ports can 
simultaneously achieve multiple benefits, leading to more sustainable and equitable 
outcomes. In particular, AI-driven multicriteria analyses can inform operations and 
infrastructure investments for achieving balanced outcomes. 
 

 
Figure 1. Deployment of AI-based Multicriteria Decisions in Container Port Ecosystem. 
 
Outcome Balance: Multicriteria Analysis in Container Ports 
The basis for our literature review for multicriteria analyses in ports is the structured 
literature search in the Scopus database using the query: {(TITLE-ABS-KEY("container 
port") AND TITLE-ABS-KEY(multicriteria)) AND (LIMIT-TO(DOCTYPE, "ar"))}. We retrieved 
and reviewed seven articles to cover the multicriteria analysis topic in container ports. 
The content of every identified published article was studied carefully to validate its 
eligibility and relevance to the scope of this research. 
 
Multicriteria decision-making methods have been applied for evaluation purposes of 
container ports. To begin with, multicriteria analysis has been used to decide on 
alternative locations for developing a hub port in South Africa (Notteboom, 2011). The 
main criteria in this specific analysis model concerned the attractiveness to the shipping 
lines (e.g., capacity, productivity, and information technology systems), the terminal 
operators/investors (e.g., profitability, connectivity to land infrastructure, and 
expansion possibilities in TEU capacity), and the community (e.g., economic benefits, 
energy use, and carbon footprint). The selection of the best performer location was 
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based on meeting the objectives of the terminal operators and the sustainable 
development of the community in South Africa and Sub-Saharan Africa. 
 
Furthermore, research studies have applied Analytical Hierarchy Process to evaluate and 
select the most attractive container port in West Africa, considering multiple criteria 
across four perspectives, including: (i) infrastructure; (ii) port location; (iii) port charge; 
and (iv) port administration/port efficiency (Gohomene et al., 2016). Empirical-driven 
findings indicate that port infrastructure is the most crucial criterion for port 
attractiveness in West Africa, followed by port draught and political stability (Gohomene 
et al., 2016). In this context, infrastructure denotes the number and quality of container 
berths, cranes, tugs, and terminal areas and the effectiveness of information and control 
systems. Multicriteria and multivariate analysis has also been used to evaluate the 
performance of major Brazilian container port terminals from 2006 to 2009 (Madeira Jr. 
et al., 2012). In particular, the movement factors in the port, port productivity, and 
container status were considered goals. The findings of this analysis verified the need 
for infrastructure investments (e.g., in portal gantry cranes, rubber tire gantry cranes, 
rail-mounted gantry cranes, reach stackers, construction of new berths, development of 
yards and warehouses, adoption of new digital-enabled processes) towards the selected 
goals. 
 
Container port competitiveness is generally strongly associated with well-developed 
infrastructure. In tandem with improved cargo handling capabilities, modernized 
facilities, improved service coverage, and direct and indirect connectivity to more 
countries have been proven to be catalytic in transitioning towards new hubs. 
Specifically, the connectivity of ten major ports in Southeast Asia was evaluated, 
revealing the pivotal role of favorable geographic locations in connectivity (Nguyen and 
Woo, 2022). Further, the Technique for Order of Preference by Similarity to Ideal 
Solution analysis helped rank these ports’ competitiveness based on the categories of 
port facilities, cargo volumes, and connectivity; no environmental sustainability factors 
were considered. 
 
Similarly, Teng et al. (2004) have utilized Grey Relation Analysis (GRA). This analysis 
calculates the grey relational degree and determines the contribution measure of the 
main behavior of the system or the influence degree between the system factors. The 
authors ranked eight East Asian container ports by considering thirty-one factors from 
their internal and external environment spanning from labor quality and ship mean time 
in port to political and economic stability. The study findings indicated the significance 
of political, social, and economic stability in establishing port competitiveness. 
 
Methodologically, these studies have explored the suitability of hybrid multicriteria 
decision-making models for selecting container ports. Specifically, two Multi-Criterial 
Decision Models (MCDMs) have been developed for assessing the operational 
performance of container seaports in the Black Sea region for 2018, namely: (i) the 
Entropy and Operational Competitiveness Rating Analysis technique; and (ii) the Entropy 
and Efficiency Analysis Technique With Output Satisfying methods (Görçün, 2021). The 



 - 6 - 

analysis was based on input (e.g., number of staff, port infrastructure in terms of quay 
length, depth, total storage area, port area, and container handling capacity) and output 
(e.g., number of arrivals, annual income, throughout) factors. The validated findings 
demonstrated the pertinence of hybrid methods for solving decision-making problems 
in the maritime industry and highlighted that output factors are more important than 
input factors. 
 
Finally, research evidence across fourteen major container ports in Greater China 
concerned the impact of climate change on port operations, highlighting the need for 
adaptation (Yang et al., 2018). Specifically, improving transport infra- and 
superstructures have been found to ensure cost-effective long-term resilience to natural 
catastrophes (e.g., flooding). 
 
Table 1 offers a taxonomy of existing MCDM studies in container ports as these are 
mapped on the relevant environmental, economic, and social sustainability pillars. 
Moreover, references to public policy and infrastructure were considered. 
 
Table 1. Multicriterial Decision-making in Container Ports. 

Study Sustainability Pillar AI 
Env. Econ. Soc. Pub. Pol. & Infr. 

§ Gohomene et al. (2016)   X   X No 
§ Görçün (2021)   X   X No 
§ Madeira Jr. et al. (2012)   X   X No 
§ Nguyen and Woo (2022)   X   X No 
§ Notteboom (2011) X X X X No 
§ Teng et al. (2004)   X X X No 
§ Yang et al. (2018)   X   X No 
Symbol: Env. for ‘Environmental’, Econ. for ‘Economic’, Soc. for ‘Social’, Pub. Pol. & Infr. for ‘Public 
Policy & Infrastructure’, AI for ‘Artificial Intelligence’. 

 
This taxonomy in Table 1 demonstrates that extant multicriteria analyses for container 
ports have largely overlooked multisolving perspectives, merely focusing on balancing 
outcome performance. However, energy consumption, emissions, and social impact on 
the local and regional settings are critical aspects of container ports. Moreover, AI-
driven implementations in MCDM studies are lacking, thus demonstrating an evident 
gap in the extant body of research. Consequently, the literature taxonomy leads to the 
realization that different weights are put on outcomes. 
 
Allocation Balance: Artificial Intelligence to Inform Infrastructure Investments in Ports 
In the second half of our review, we looked at seven articles that were retrieved based 
on the Scopus query search: {(TITLE-ABS-KEY("container port") AND TITLE-ABS-
KEY("Artificial Intelligence")) AND (LIMIT-TO(DOCTYPE, "ar"))}. 
 
AI and Machine Learning have been used to conduct benchmarking studies of the 
operational performance of container ports by considering the allocation balance across 
several inputs. For example, Data Envelopment Analysis has been used for calculating 
the container throughput of seventy-seven world container ports in 2007 via utilizing 
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input data related to the available infrastructure (i.e., the capacity of cargo handling 
machines, number of berths, terminal area, storage capacity) (Wu et al., 2010). 
Notwithstanding the scientific analyses leveraging intelligent algorithms for ports’ 
evaluation, the evidence has demonstrated the potential benefits of implementing AI in 
container port operations by improving efficiency, reducing costs, and enhancing 
security (Wu et al., 2010). 
 
Fast vessel turnaround time and high berth productivity are key performance factors in 
container terminals to ensure competitive advantage. To this end, implementing 
intelligence and improving learning capabilities are paramount to the decision-making 
process in container port terminals’ complex and dynamic environments (Lokuge and 
Alahakoon, 2004). Investigating dynamic vessel scheduling scenarios with hybrid 
‘Beliefs, Desires and Intention’ intelligent agent architecture at the Jaya container 
terminal port of Colombo demonstrated improved vessel scheduling efficiency (Lokuge 
and Alahakoon, 2007). In essence, AI-driven scheduling allows the effective utilization 
of the available capacity while, at the same time, mitigating the risk of paying high 
penalties for operational delays at berths (Lokuge and Alahakoon, 2007). 
 
In the same vein, regarding operations on the berthing side, research has explored the 
role of AI in allocating quayside cranes for servicing inbound container ships, considering 
the available infrastructure and the shipping timetable. Indicatively, evidence from a 
container terminal company in Busan, Korea, demonstrated the tepid processing 
performance of quayside cranes, amounting to 50% of the installed capacity (Chatterjee 
and Cho, 2022). Corresponding simulation modeling analysis incorporating AI and 
Machine Learning techniques indicated the potential improvements in terminal 
operations performance. 
 
Furthermore, an evident operations challenge pertinent to container ports is the 
autonomous routing of container trucks considering container ports’ complex and 
unknown construction environment. To this effect, algorithmic approaches have been 
proposed to achieve optimal path planning of container trucks while ensuring safe 
collision evasion and dead ends avoidance. Indicatively, simulation experiments of an 
improved ant colony optimization algorithm based on a rolling window demonstrated a 
potential improvement of 22% in the distance traveled by an autonomous container 
truck (Huang and Zheng, 2016). 
 
Algorithmic-driven and intelligent planning is even more prominent in the key yet mostly 
manual container stacking operations at the terminal yard. Efficiency challenges emerge 
due to the necessary relocations/reshuffles of containers to ensure easy access to 
outbound containers at the expected transfer time. The container stacking problem has 
been investigated from the AI perspective, with pertinent modeling efforts combining 
the ‘Enforced Hill-Climbing’ with a standard ‘A search’. The calculated plan minimized 
the number of necessary reshuffles to allocate selected containers at the top of the 
stacks or below other selected containers so that no reshuffles are needed to load the 
outgoing containers (Salido et al., 2009). 
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To a greater extent, scientific evidence have demonstrated the enabling role of AI and 
data analytics in the operations efficiency and productivity of potential Automated 
Guided Vehicles in the port of Piraeus, Greece (Tsolakis et al., 2021). The respective 
simulation study quantified the environmental benefits of intelligent routing scenarios 
of alternative types of Automated Guided Vehicles for shoreside container handling 
operations at freight ports. 
 
Table 2 presents a comprehensive synopsis of the matching of the relevant research 
efforts with the sustainability pillars and the implementation of AI. Consistent with the 
multicriteria taxonomy in the previous section, public policy, and infrastructure were 
considered in this analysis. 
 
Table 2. AI Applications On Input Allocations in Container Ports. 

Study Sustainability Pillar AI Env. Econ. Soc. Pub. Pol. & Infr. 
§ Chatterjee and Cho (2022)   X     Yes 
§ Huang and Zheng (2016)   X     Yes 
§ Lokuge and Alahakoon (2007)   X   X Yes 
§ Lokuge and Alahakoon (2004)   X     Yes 
§ Salido et al. (2009)   X     Yes 
§ Tsolakis et al. (2022) X X   X Yes 
§ Wu et al. (2010)   X   X No 
Symbol: Env. for ‘Environmental’, Econ. for ‘Economic’, Soc. for ‘Social’, Pub. Pol. & Infr. for ‘Public 
Policy & Infrastructure’, AI for ‘Artificial Intelligence’. 

 
In summary, our investigation of the efficiency gain literature on deploying AI 
infrastructure in container ports has underscored the role of algorithmic 
implementations towards input allocation, i.e., better planning and scheduling of the 
physical infrastructure for harnessing the capacity utilization potential. Especially, AI can 
inform sustainable environmental operations by resolving issues related to tepid 
performance in container handling. The literature in Table 2 supports the notion that 
different weights are assigned to inputs. 
 
Overall, our literature taxonomy efforts on multicriteria analyses and AI in container 
ports demonstrate the research gap in adopting data-driven intelligence in operations. 
The latter observation supports the need for targeted research in the field, in alignment 
with a similar need in the manufacturing domain (Chien et al., 2020). Notably, we 
observed that AI could be applied to putting different weights on the input and output 
sides in container port systems. In a complex feedback system, as in container ports, 
these choices may have a significant impact; hence, we conducted a stylized case study 
to examine such simultaneous multisolving opportunities. 
 
Case Study 
This study leverages evidence from decision-making at the container port in the city of 
Thessaloniki, Greece, managed by the Thessaloniki Port Authority S.A. 
(https://www.thpa.gr/index.php/en/). The port of Thessaloniki serves the transit trade 
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of Central and Southeastern Europe, with the quays being connected to the European 
Railway network. The container handling area is in Pier 6, covering a surface area of 
254,000 m2. The port can accommodate vessels with a draught of up to 12 meters with 
an on-site storage capacity of 5,000 TEUs in ground slots. The container terminal is 
equipped with modern container handling equipment. Four cranes (deploying post-
Panamax technology) are used for container loading-unloading services. 
 
Within the Systems Thinking concept, this research employs Systems Dynamics as a 
modeling approach for analyzing complex dynamic systems characterized by causal 
relations and feedback loops (Forrester, 1961; Sterman, 2000). Specifically, a causal loop 
diagram (CLD) is proposed that supports the visualization of the system and its variables’ 
interrelations. Figure 2 illustrates the CLD map that captures the nexus of AI, container 
ports performance, and multisolving. Our field studies inform the nature of the causal 
relationships. 
 
Focusing on the port capacity (reinforcing ‘Capacity Loop, R1’), an increase in the 
“Physical Platforming Degree Using Conventional Infrastructure” augments the 
“Available Capacity (TEUs)”. As the container handling capacity grows, the related 
“Traffic” congestion will be lower than it would have been. However, as more inland and 
marine carriers decide to collaborate with the port and the traffic increases, the “Port 
Congestion” becomes higher. High congestion, though, decreases the “Port 
Attractiveness (for shipping lines)”, negatively impacting, in turn, the contractual 
agreements and “Port Connectivity”. As “Port Connectivity” increases, the “Payoff from 
Contractual Agreements (P)” increases, which fosters investments in improving the 
“Physical Platforming Degree Using Conventional Infrastructure”. 
 
At the same time, an increase in the “Payoff from Contractual Agreements (P)” increases 
the “Physical Platforming Degree Using Conventional Infrastructure” and thus the 
respective “Port Connectivity” (reinforcing ‘Economic Gain Loop, R2’). However, 
increased “Port Connectivity” may lead to more “Payoff from Contractual Agreements 
(P)” while enhancing the “Physical Platforming Degree Using Conventional 
Infrastructure” but leads to a greater “Carbon Footprint (C)”. As “Physical Platforming 
Degree Using Conventional Infrastructure” and “Carbon Footprint (C)” increase (e.g., 
emissions increase by the development and increased utilization of conventional 
infrastructure), the “Willingness to Increase Congestion” decreases to comply with the 
environmental sustainability targets set by the IMO. Decreased “Willingness to Increase 
Congestion”, in turn, limits the “Available Capacity (TEUs)”. As the container handling 
capacity is reduced, the “Traffic” increases due to the less availability of infrastructure 
to accommodate the container flow needs. The less the “Traffic”, the less the observed 
“Port Congestion” that increases the “Port Attractiveness (for shipping lines)” due to the 
expected short waiting and service times, thus enhancing “Port Connectivity”, ultimately 
creating a balancing loop (balancing ‘Pressure to Reduce Congestion Loop, B1’). 
 
The more extended the “Port Connectivity”, the greater the accumulation on the “Stock 
of Knowledge in Digital Platform”, which in turn enhances the “Ability to Learn Using 
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AI”. The more advanced the “Ability to Learn Using AI” leads to better operations 
performance, mitigating “Port Congestion”. Reduced “Port Congestion” then increases 
the “Port Attractiveness (for shipping lines)” that expands “Port Connectivity”, 
eventually forming the reinforcing ‘AI Adoption Loop, R3’. 
 
Concerning carbon emissions, the role of the port’s Terminal Operating System (TOS) 
that manages the movement of containers could be catalytic. In particular, by the 
“Application of TOS to Footprint”, the planning, scheduling, and execution of container 
handling operations improve, hence reducing the “Carbon Footprint (C)”. Reduced 
“Carbon Footprint (C)” demotivates the “Search for New Physical Technologies”, which 
then, after a certain delay, increases the “Ability to Learn Using AI”. However, the 
greater the “Ability to Learn Using AI”, the more effective the “Application of TOS to 
Footprint”, hence leading to the foundation of the reinforcing loop ‘Longer Term 
Information Leverage (R4)’. 
 
In addition, increased “Ability to Learn Using AI” decreases “Port Congestion”. 
Thereafter, decreased “Port Congestion” elevates the “Port Attractiveness (for shipping 
lines)”, hence increasing “Port Connectivity” and subsequently the “Payoff from 
Contractual Agreements (P)”. Augmented income leads to investments that increase the 
“Physical Platforming Degree Using Conventional Infrastructure”, which then leads to a 
greater “Carbon Footprint (C)”. The more the “Carbon Footprint (C)”, the more the need 
and willingness to “Search for New Physical Technologies” that then limits the “Ability 
to Learn Using AI”. Typically, there is a delay between the monitoring of “Carbon 
Footprint (C)” and the “Search for New Physical Technologies”. Ultimately, the balancing 
loop ‘Longer-term Solution as Multisolving, B2’ is generated that promotes multisolving. 
 
Finally, the larger the “Stock of Knowledge in Digital Platform”, the more effective the 
“Application of TOS to Footprint”, which then decreases “Carbon Footprint (C)”. 
Increased “Carbon Footprint (C)” motivates the “Search for New Physical Technologies”, 
which deteriorates the “Ability to Learn Using AI”. The limited use of AI increases “Port 
Congestion”, which in sequence limits “Port Attractiveness (for shipping lines)” and “Port 
Connectivity”. On the other end, increased “Port Connectivity” increases the “Stock of 
Knowledge in Digital Platform”. This reinforcing loop (‘Platforming Loop as Short-term 
Leverage, R5’) highlights the role of AI as a short-term approach to multisolving. 
 
The described feedback loops are consistent with the fundamental structural 
mechanisms underpinning the system that we have observed in the Port of Thessaloniki. 
Even with simplifications through the aggregation of constructs, the current CLD 
comprises seven key stocks (i.e., “Ability to Learn Using AI”, “Carbon Footprint”, “Level 
of Port Congestion”, “Level of Port Connectivity”, “Level of Payoff from Contractual 
Agreements”, “Platforming Degree (Level) using Conventional Infrastructure”, and 
“Stock of Knowledge in Digital Platforms”), integrated through seven key loops (as 
shown in Figure 2). We analyze the multisolving trade-offs in the next section.
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Figure 2. AI and Multisolving Trade-offs in Container Port Systems CLD. 
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Discussion 
In terms of outcome (Figure 3a), the “Payoff from Contractual Agreements (P)” and the 
“Carbon Footprint (C)” are the key variables from a multisolving perspective. The 
outcome can be expressed as in Equation 1: 
 

Outcome = Wp x P – Wc x C Equation (1) 
 
where: 
 

Wp : “weight on Payoff from Contractual Agreements (Wp)” 
Wc : “weight on Carbon Footprint (Wc)” 

 
Assigning weights on either of these key variables is a theme that is aligned with the 
incentives of the different stakeholders involved in the container port ecosystem. 
Moreover, over the long haul, the outcome from Figure 3a informs the availability of 
input resources needed to tackle any prevalent challenges (Figure 3b). The allied 
allocation mechanism for input resources that shapes the investments is also shown in 
Figure 3b. In our case, “Input Resource (I)” is considered as the capital available for 
investments. 
 
On the one end, in the case under study, AI can help tackle short-term multisolving 
challenges by ensuring increased operations efficiency (e.g., optimal routing of transfer 
trucks transporting the containers in the port yard area). On the other end, physical 
infrastructure developments (e.g., new quay cranes) are an appropriate multisolving 
approach for the long-term horizon. Assigning weights on either of these key variables 
is a theme that is also aligned with the incentives of the different stakeholders involved 
in the container port ecosystem. The investment in “Input Resource (I)” is based on 
Equations 2 and 3: 
 

Investment in Conventional Infrastructure = Wci x I Equation (2) 
  

Investment in AI = Wai x I Equation (3) 
 
where: 
 

Wci : “weight on Conventional Infrastructure (Wci)” 
Wc : “weight on AI (Wai)” 

 
In our casework, we have observed that assigning weights (and allied debates regarding 
getting stakeholder buy-in) in input resources is relatively straightforward compared to 
assigning weights to outcomes that drive investments. Overall, both these sets of 
weights are shaped by the behavioral biases of the stakeholders. Furthermore, in 
general, the time lag associated with the gathering of outcome data and the following 
on input into investments makes managing such biases and resolving debates a tricky 
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problem. The goal of this modeling approach is to decipher the leverage points that 
identify alternative multisolving strategies. 
 
The seven different loops give us different trajectories in terms of which stakeholders 
influence the choice of weights in their decision-making process. The gains associated 
with these loops will alter the balance. We leave the calibration of an underlying System 
Dynamics model and assessment of the loop gains as a follow-on exercise. 
 

 
Figure 3. Multisolving Outcome and Input Interrelation. 
 
Even without a fully calibrated model, the short- and long-term multisolving trade-offs 
associated with using AI in container port systems can be summarised in terms of 
alternate strategies, as shown in Table 3. The analysis underlying this table suggests that 
AI can help tackle operational efficiency and performance challenges in the short term 
but would require corresponding development in physical infrastructure to ensure the 
viability of port competitiveness. 
 
Specifically, AI investments can lead to immediate observable operations efficiency 
gains that can help reduce emissions and traffic caused by inland carriers in a regional 
setting. However, optimized container handling processes and matching supply and 
demand at the terminals cannot ensure eminent short-term regional economic growth. 
 
Nevertheless, physical infrastructure developments demotivate operations 
optimization to foster economic growth and sustain a container port’s competitive 
advantage due to the excessive installed capacity, leading to increased emissions. 
However, infrastructure investments fuel regional economic growth and help address 
regional traffic issues. Finally, combining investments ensures balanced development 
with desirable outcomes for all multisolving constituents. 
 
 

a) b)
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Table 3. Multisolving Trade-offs based on Alternative Strategies  

Strategy Time 
Horizon 

Port 
Operations 

Performance 

Level of 
Regional 

Emissions 

Regional 
Economic 
Growth 

Regional 
Traffic 

Alter Input Weights 
(Assuming Wai > Wci) 

Short-term ↑ ↓ ⟷ ↓ 

Alter Outcome Weights 
(Assuming Wp > Wc) 

Long-term ↓ ↑ ↑ ↑ 

Alter Combination Weights 
(Wai > Wci) AND (Wp > Wc) 

Both ↑ ↓ ↑ ↓ 

Symbol: “⟷” – neutral effect; “↑” – increased performance; “↓” – decreased performance. 
 
Conclusions 
Multicriteria decision-making methods are often used in evaluating and selecting 
outcomes in container port systems due to the numerous factors that need to be 
considered. We have retrieved fourteen articles on this theme based on a structured 
literature search. 
 
Multicriteria-based methods enable decision-makers to consider various criteria and 
weight them according to their relative importance in deciding. Multicriteria decision-
making methods can be helpful in container port selection as they provide a structured 
and systematic approach to decision-making. They also enable decision-makers to 
reflect upon multiple criteria and weight them according to their relative importance, 
which can help ensure that all relevant factors are considered. 
 
Moreover, the multidimensional role of AI in container ports, particularly while 
establishing input priorities, involves improving efficiency, safety, security, decision-
making, and inventory management. AI can optimize the flow of containers, reduce 
waiting times, and improve overall efficiency. It can also improve security and safety by 
detecting threats and unauthorized access. Furthermore, AI can manage the movement 
of vehicles within the port, reduce congestion, improve safety, and provide real-time 
data and insights to assist decision-making. Lastly, inventory management can be 
enhanced by monitoring inventory levels and automatically reordering supplies when 
necessary, improving efficiency and reducing waste. Overall, AI plays a critical role in 
optimizing container port operations. Even though the literature is small, it underlines 
trends in multicriteria decision-making and the use of AI. This is a limitation of our work, 
but we hope that our research will draw attention to follow-on work. 
 
This research contributes to the Systems Thinking field by proposing a framework for 
architecting an AI tool to leverage uncertainty and develop multisolving capability in 
container ports. Deciding on the allocation of available resources to achieve desired 
outcomes is challenging due to the often-conflicting objectives of the multiple 
stakeholders involved in container port systems and the time horizon where certain 
outcomes need to be achieved. Our study indicates that multisolving in a container port 
system can manifest itself in alternative strategies: (i) adjusting the input resources to 
control key stocks; or (ii) altering the weight on decisions that are critical in influencing 
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the outcome trade-offs or a combination of these leverage points. Our work has been 
informed by key multisolving studies in the healthcare sector (Milstein et al., 2022). 
However, such approaches are yet to see multiple multisolving strategies, particularly 
while deploying calibrated System Dynamics models. We hope our study will become a 
part of the burgeoning literature on multisolving using System Dynamics models. 
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