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Global climate change is expected to lead to higher temperatures and more extreme heat 
events, such as heat waves (HW) (IPCC, 2021), which can negatively affect the livestock industry by 
reducing production, product quality, and food safety (Rojas-Dowing et al., 2017). When animals 
experience heat stress (HS), they struggle to release excess body heat and maintain their normal 
temperature (Bernabucci et al., 2014). This happens when the surrounding air temperature exceeds the 
range in which they are most comfortable and efficient at producing without expending too much 
energy (Johnson, 1987). 

Extended exposure to HS makes it difficult for animals to dissipate heat, so they naturally 
reduce their feed intake (West, 2003), decreasing milk production. While mathematical models are 
aiming to explain how animals respond to HS, they often oversimplify the complex interactions 
involved. Understanding how animals respond to HS is challenging because it involves many 
complex factors: it is a typical complex dynamic problem that can be observed on a day-to-day basis, 
and the interaction of variables results in their change over time; it includes feedback loops due to the 
endogenous animal ability to regulate heat flows; it is nonlinear since the accumulation of HS 
significantly changes the animal response and the cause-effect relations between variables are not 
proportional; and there are critical biological and physiological time delays, which lead to the time lag 
of reduced animal performance compared with heat exposure. 

To address this complex issue, we used the system dynamics methodology to build an explicit 
model that captures the dynamics of cows’ milk yield (MY) response to HS. Moreover, we undertook 
an initial attempt to estimate the delays characterizing the cows’ response to HS, to parameterize the 
model and consequently differentiate between cows that are tolerant and nontolerant to HS. 

- Dynamic hypothesis: The analogy of regulating the room temperature: After prolonged 
exposure to excessive heat, MY in dairy cows typically goes through two phases: a reduction phase 
followed by a recovery phase. The most significant drop in MY occurs within 2-6 days (Spiers et al., 
2014; Atzori and Cannas, 2011) after the start of a HW due to delayed animal responses, which reflect 
the accumulation of heat in the cow’s body.  

We develop a model for understanding this dynamic heat response in cows, inspired by the 
furnace analogy (Wright and Meadow, 2008). In this model, two balancing feedback loops govern the 
process, similar to a room’s heating system (Figure 1). The first feedback loop (B1) regulates heat 
production. Heat load increases with the discrepancy between the maximum heat load the cow can 
reach and the actual heat load generated. Cows continuously produce heat due to their physiological 
functions, and if this production exceeds the cow’s maximum limit, it poses a risk, like furnace 
overheating. In our case, the cows cannot stop producing heat, and if they exceed their own maximum 
limit, they will go into hyperthermia to the point of death in the most severe cases. Our model’s 
second feedback loop (B2) involves heat dissipation, which is influenced by the accumulated heat 
load and the time it takes for the cow to adjust its heat dissipation. The time needed for heat 
dissipation depends on factors like the cow’s surface-to-volume ratio and environmental conditions 
(Finch, 1986). During a HW, the cow’s ability to dissipate heat efficiently is reduced, leading to 
increased energy requirements for thermoregulation and prolonged heat dissipation. 



- Model formulation: The model structure, reported in a simplified stock-and-flow diagram 
in Figure 2, can be summarized as follows: 1) the heat dissipation rate of the cow adjusts based on the 
temperature-humidity index (THI) and HS occurrences; 2) changes in the heat dissipation rate affect 
the accumulation of Heat Load in the cow; 3) the level of Heat Load impacts the cow’s heat 
production rate requirement, which influences dry matter intake (DMI) and, consequently, MY. The 
model has 24 variables, including one stock variable, two flow variables, and 21 auxiliary variables 
(equations, graphical functions, and parameters). 

 

 
Figure 1 – a) CLD for a furnace system with two balancing feedback loops that regulate the inflow 
(B1) and the outflow (B2) of heat in a room (Adapted from Wright and Meadows, 2008); b) CLD of 
heat stress model. 

 
Figure 2 - A simplified stock-and-flow diagram of the Heat Load Model. 

Heat Load (Mcal), the critical stock variable, increases through the inflow of heat production rate 
(Mcal/d) and decreases through the outflow of heat dissipation rate (Mcal/d) (Eq. 1). The starting 
value of Heat Load stock is determined by initial heat load (Mcal) parameter for each cow (Eq. 2). 



Heat Load (t) = Heat Load (t-dt) + (heat production rate - heat dissipation rate) x dt          (1) 

Heat Load (t0) = initial heat load         (2) 

The inflow variable heat production rate (Mcal/d) (Eq. 3) depends on the response time of the 
animal’s metabolism for adjusting its heat production, time to adjust heat production (d) parameter, 
and heat load discrepancy (Mcal), which represents the gap between the max heat load (Mcal) that 
the animal’s metabolism tends to attain and the current Heat Load level (Eq. 4). It is assumed that 
both max heat load and time to adjust heat production parameters may vary depending on the genetic 
characteristics of the animal, hence may be different from one animal to another. 

heat production rate = heat load discrepancy / time to adjust heat production    (3) 

heat load discrepancy = max heat load - Heat Load       (4) 

The outflow variable, heat dissipation rate (Mcal/d), is determined by the accumulated Heat 
Load and the response time of the animal’s metabolism for adjusting its heat dissipation, time to 
adjust heat dissipation (d) variable (Eq. 5). The increasing (decreasing) HS level is expected to 
increase (decrease) the time required to adjust the heat dissipation and to decrease (increase) heat 
dissipation rate. Consequently, this variable is defined based on the animal’s expected normal time to 
adjust heat dissipation without stress (d) plus the additional time to adjust heat dissipation (d) at the 
corresponding heat stress level (Eq. 6). Heat stress is quantified as an increasing function of THI (Eq. 
7). 

heat dissipation rate = Heat Load / time to adjust heat dissipation           (5) 

time to adjust heat dissipation = time to adjust heat dissipation without stress  

    + heat stress x additional time to adjust heat dissipation with heat stress    (6) 

heat stress = f+(THI)            (7) 

Because the primary source of heat production is the feed intake, DMI (kg/d) is defined as a 
function of heat production rate (Eq. 8) using heat produced per DMI (Mcal/kg) based on knowledge 
in the literature. In case of increasing heat stress conditions, feed requirements for maintenance 
(kg/day) are expected to increase (Eq. 9) and hence feed available for milk production (kg/day) 
decreases, eventually decreasing the milk yield (kg/day) (Eq. 10). 

DMI = heat production rate / heat produced per DMI        (8) 

feed for maintenance = f+(heat stress)         (9) 

milk yield = f+(feed available for milk production) = f+(DMI - feed for maintenance) (10) 

- Model application: Parametrization and calibration for the case study farm in Sardinia: 
Data for this study were collected in August 2021 on a dairy farm in Arborea, Italy. Meteorological 
data were used to calculate the THI (Kibler, 1964). 

 Among the exogenous model parameters provided in the model, three parameters are assumed 
to be constant and similar for each cow and calculated based on the available literature (NRC, 2001): 
accordingly, thermoneutral feed for maintenance was set to 12.46 (kg/d), Milk production per DMI 
(available for milk) to 2.86, and heat produced per DMI to 0.64 (Mcal/kg) (NRC, 2001).  

Eight other parameters are calibrated individually for each cow. The calibration aims to 
minimize the sum of squared errors between the model-generated and observed (smoothed) MY 
values. The model is calibrated and evaluated with 20 cows on the farm, focusing on the period from 
August 4 to August 31, when HW occurred. 

- Results: The study involves solving an optimization problem to calibrate the selected 
parameter values for each cow in the model and evaluating the consistency and feasibility of these 
parameters at every step. The calibration process reveals that some cows exhibit different MY 
patterns under HS than expected. 



A visual inspection is conducted for each cow’s model-generated MY behavior, considering 
their pattern reproduction performance (periods, trends, phase lags, amplitudes) (Barlas, 1996). As a 
result, 11 out of 20 cows were found to follow the model-generated behavior, while the remaining 9 
did not match the model’s predictions. Examples of conforming and non-conforming cow behaviors 
are shown in Figures 3 and 4, respectively. 

Statistical measures such as R2, mean absolute percentage error (MAPE), and concordance 
correlation coefficient (CCC) are calculated for each cow. Almost all the conforming cows have 
MAPE < 5%, CCC values > 0.6, and R2 > 0.6, except for one cow (ID #20) with MAPE of 1.25% and 
two cows (ID #13 and #20) with R2 less than 0.6. The majority of non-conforming exhibit R2 and 
CCC values smaller than 0.4 and 0.6, respectively, whereas two of the non-conforming cows (ID #8 
and #18) show limited performance in MAPE despite high R2 and CCC results. MAPE values are 
generally below 5%, with the highest being 7.50% for one cow. 

Given the dynamic nature of the problem and the temporal dependency of the data, the 
model’s ability to reproduce performance patterns was the primary evaluation criterion supported by 
statistical measures. The results showed that the model could explain the impact of HS on MY for 11 
out of the 20 selected cows.  

 
Figure 3 - Example results from that conform with the observed behavior: model-generated MY 

results and smoothened MY data (with cow ID’s in brackets). 

 

 
Figure 4 - Examples results that do not conform with the observed behavior: model-generated MY 

results and smoothened MY data (with cow ID’s in brackets). 

- Discussion and conclusion: Our model incorporates feedback relationships and provides 
insights into animal heat production and dissipation, allowing us to quantify how cows respond to 
changing weather conditions in terms of milk production. Unlike many existing approaches that rely 
on empirical or statistical methods, our model takes a dynamic and explicit approach to predict heat 
stress effects. The model successfully captured the milk yield responses of 11 out of 20 selected cows. 
These cows can be considered “heat-sensitive” as their milk production is influenced by temperature 
and heat stress. However, the model did not explain the behavior of the other nine cows, possibly 
because they are resistant to heat stress or have longer biological delays in their responses. While this 
study is based on a relatively small sample, it suggests that our simple model can provide valuable 



predictions of milk yield under heat stress conditions and identify heat-sensitive animals. Future work 
will involve calibrating the model with more cows and conducting in-depth multivariate analyses. 
One limitation is that the model’s relationship between feed intake and milk yield may need 
expansion to include variability in feed conversion efficiency and better explain milk production 
declines. 

This research contributes to our understanding of heat stress dynamics in dairy cows, offering 
applications in nutritional modeling, energy requirement estimation, and cow characterization for trait 
phenotyping and selection in populations or farm management purposes (André et al., 2011; Hill and 
Wall, 2011). 
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