Modeling Disaster Habitation for Improved Mitigation Project Analysis and Selection

David N. Ford, PhD, PE
Charles M Wolf, D.Eng, PE
Benjamin Ozumba

Virginia Tech
Freese and Nichols &
Texas A&M University
Texas A&M University

2023 System Dynamics Conference
Chicago, IL
July 23-27, 2023
Context
Increasing Natural Disaster Risk

1.3 billion people and $158 trillion in assets at risk due to natural disasters by 2050 (World Bank 2021)
Q.: How can proposed natural disaster mitigation projects be analyzed and selected to accurately reflect societal values?

Relevant Societal Values:

- **Humanitarian** - “Reduce the Nation’s {natural disaster} risk and increase resilience to disasters” (USACE objective 2.1)
- **Efficient use of public funds** – “Effectively and efficiently execute response, recovery, and mitigation.” (USACE objective 2.3)
Current Practice
(US Army Corp of Engineers)

- **Benefit:Cost Ratio (BCR) analysis for project selection**
 - BCR $>> 1.0$ and $\text{Max}(BCR)$
 - Biased toward easily-monetized benefits, e.g., rebuilding costs, lost incomes, national economic impacts
 - Focus on physical damage prevention and emergency cost savings
- **Fails to justify projects that primarily protect residential areas**
 - League City, Tx study – only 1 of 25 proposed projects BCR>1.0

Mitigation project analysis and selection based only on money leaves the humanitarian value out of consideration. Need to focus on *money and people, not just money.*
The Habitation Gap
Benefits of Habitation not in Current Analyses

Increased disaster habitation provides:

• Maintained demand for community enterprises
• Volunteers & participants of NGO, houses of worship, etc.
• Reduced private disaster costs to evacuate, relocate, re-habitate
• More operating schools - less loss of learning & required caregiving
• Reduced psychological trauma & anxiety due to evacuation/ relocation/ re-habitation
• More trust in government's ability to manage natural disasters
• More public participation in governance (e.g., public meetings, voting)
• Reduced shift of government and public focus & efforts to disaster

Improved mitigation project analyses need to include the benefits of habitation.
The Policy Change

In 2021, the USACE expanded the breadth of impacts to be included in natural disaster mitigation project analyses to include:

1) Regional economics
2) Environments
3) **Other social effects**, including “urban, rural and community impacts; **life, health**, and safety factors; **displacement**; and long-term productivity.”

Modeling habitation provides the opportunity to measure life, health, and displacement impacts.

But this requires rigorous methods and tools to meet the "efficient use of funds" requirement.
The Research Question

How can the impacts of proposed natural disaster mitigation projects on habitation be rigorously modeled and quantified for project analysis and selection?
A Framework for Modeling Disaster Habitation

- Focus on Disaster Mitigation
- Disaster Habitation Definition – a fully operational residence
- Critical Internal Infrastructure Systems (CIIS)
- Disaster Habitation Experience Zones
- Rich measuring of Habitation Performance...

Focus: Pre-event system design and construction to control post-event dynamic habitation behavior
Measuring Disaster Habitation
Stylized Behavior over Time Graphs

Habitation Performance Measures
- **Intensity** (res. or % lost)
- **Scale** (res.-wk. or %)
- **Duration** (time to 95% re-habitation (wk.))
Core Model Structures

- One aging chain structure per CIIS
- Linked CIIS structures (through calibration)
- CIIS damage(t) → Displacement
- CIIS restoration(t) → Re-habitation
- Scenario: community, event, mitigation
Case Study of Proposed Flood Mitigation #1

Halls Bayou Watershed Study Area
Halls Bayou: 20 miles long, 37 tributaries
Area: 60 square miles
Population: 200,489 (2020)
% Low-Moderate Income: 70%
Residences: 64,655 (2020)

2018 Harris Co (Houston) Flood Mitigation Bond Program
$2.5 billion with $350 million for Halls Bayou Watershed
- 11 stormwater detention basins
- Channel improvements
Data Sources and Uses
Halls Bayou Watershed Study, Houston, Tx

Data Sources
• Structure Inventory, HCFCD (residence locations and elevations)
• 2020 US Census data (populations in 115 census block groups)
• Hurricane Harvey flooding records (water surface elevations)
• Hydrologic / Hydraulic flood simulation output (100-yr & 500-yr flooding)
• Public utilities and TCEQ (Hurricane Harvey service losses)
• Subject Matter Experts (infrastructure damage and restoration processes)

Data Uses in Modeling
• Model structure development
• Model calibration (to Hurricane Harvey & simulated storms)
• Model validation (data-based reference modes, parameter estimation)
Example Simulation Results
Halls Bayou Watershed, Houston, Tx after Hurricane Harvey (2017)

Modeling infrastructures separately and then integrating their habitation impacts is critical to explaining habitation BOT

Individual infrastructure BOTG reveal the drivers of specific habitation performance metrics.
Model Behavior Validation
Halls Bayou Watershed, Houston, Tx after Hurricane Harvey (2017)

- Data based reference model
- SD model simulation

- Time (calendar days)
- Habitable Residences

- n = 1600.0
- $R^2 = 0.80$
- Mean Abs. Percent Error = 0.02
- Mean Square Error = 6.56
- Root Mean Square Error = 2.56
- Bias = 0.25
- Variation = 0.12
- Covariation = 0.63
Disaster Mitigation Project Analysis

Halls Bayou Watershed, Houston, Tx after Hurricane Harvey (2017)
Case Study of Proposed Flood Mitigation #2

Buffalo Bayou & Tributaries (BBTR)
Buffalo Bayou: 20 miles long
Area: 487 square miles
Population: 1,684,626 (Census 2020)
% Low-Moderate Income: 41%
Residences: 520,244 (2020)

Proposed BBTR Flood Mitigation Project
$30 billion, 10-15 year construction
- 130 miles of tunnels up to 40' diameter
- Inverted siphons discharge into Houston Ship Channel
Contributions

MODELING
• Dynamic framework for modeling disaster habitation
• Validated system dynamics model of disaster habitation

DISASTER PLANNING, ANALYSIS, AND MANAGEMENT
• Rigorous inclusion of habitation benefits in project analysis
• Basis for improved federal policies for mitigation project analysis and selection
• Potential for saving more lives and property
• Improves adaptation to climate change
Other Recent, Current, and Future Work

- Model analysis to identify high leverage points - **completed**
- Model four watersheds in Houston to analyze proposed community-wide mitigation programs – **just completed**
- Formal method and model review (and approval) by USACE – **in progress**
- Meet (again) with congressional representatives and staff concerning inclusion in federal policy
- Expand models to investigate mitigation project impacts on sub-populations (equity issues)
- Expand to model disaster recovery phase management