No milk without meat: Dynamic implications of the biological link between milk and bovine meat production on nutrition guidelines

Supplementary material – technical documentation

This supplement describes the model structure and provides full documentation of the model. The simulation model is implemented in Stella Architect (© isee systems), version 2.1.5. The files needed to run the model and replicate the analyses are appended to this supplement and can be viewed and run with the isee Player, https://www.iseesystems.com/soft-wares/player/iseeplayer.aspx.

<u>1</u>	MODEL STRUCTURE	2
<u>2</u>	MODEL EQUATIONS	4
Та	ble A.1 List of Model Equations – Stocks	4
Та	ble A.3 List of Model Equations – Other Variables	6
Та	ble A.4 List of Model Equations – Parameters, their Values and Sources	9
Та	ble A.5 List of Model Equations – Nonlinear Functions	12
3	INFORMATION ON MODEL TESTING	13
_		

4	REFERENCES	.13	5
_			-

1 Model structure

Our model is a simplified version of the meat supply and demand policy model by [BLINDED FOR REVIEW], designed to specifically capture the biological link between milk and bovine meat production.

Our model uses the same herd structure as the comprehensive model. Yet, different from it, our model is initialized to equilibrium, meaning that all model parameters and therefore also the behavior remain unchanged throughout the simulation horizon in the absence of shocks or stressors. This enables users to better analyze impacts on model behavior as changes in consumption patterns are not confounded by other processes. Effects on production are thus more clearly visible. To further highlight production effects of consumption changes, we present simulation results in the paper, the STELLA model, and the accompanying online simulator as relative values where the reference or 2020 value of a variable is equal to 1.

Figure A-1: Structure of the model: Main herd structure with milk and bovine meat production

Figure A-2: Structure of the model: Meat demand

Figure A-4: Structure of the model: Emissions

Figure A-6: Structure of the model: Initial values

2 Model equations

Where to find	Variable Name	Equation	Units	Interpretation	Initial
Herd struc- ture	Calves	Calves(t) = Calves(t - dt) + (Calf_birth_rate - Calf_weaning_rate) * dt	animal	This is a stock variable that calculates the number of calves at each point in time based on the initial value of calves plus the integrated difference between calf birth rate and calf weaning rate over time.	INITIAL_CALVES
Herd struc- ture	Calves in Gestation	Calves_in_Gestation(t) = Calves_in_Gestation(t - dt) + (Calf_breed- ing_rate - Calf_birth_rate) * dt	animal	This is a stock variable that calculates the calves in gestation at each point in time based on the initial value of calves in gesta- tion plus the integrated difference between calf breeding rate and calf birth rate over time.	INIT Calves_in_Gestation = initial_calves_in_gestation
Herd struc- ture	Feeder Cattle	Feeder_Cattle(t) = Feeder_Cattle(t - dt) + (calves_allo- cated_to_feeder_stock - slaughtering_rate) * dt	animal	The stock of cattle who are fattened and later slaughtered.	INIT Feeder_Cattle = INI- TIAL_FEEDER_CATTLE
Herd struc- ture	Heifers milk pro- duction	Heifers_milk_produc- tion(t) = Heif- ers_milk_production(t - dt) + (Calves_allo- cated_to_breeder_stock - Parturition_rate) * dt	animal	This is a stock variable that calculates the number of heifers at each point in time based on the initial value of heifers plus the integrated difference between the calves allocated to the breeder stock and the par- turition rate over time.	INIT Heifers_milk_produc- tion = INITIAL_HEIF- ERS_MILK_PRODUCTION
Herd struc- ture	Milk cows	Milk_cows(t) = Milk_cows(t - dt) + (Par- turition_rate - Slaugh- tering_rate_milk_cows) * dt	animal	This is a stock variable that calculates the number of dairy cows at each point in time based on the initial value of milk cows plus the integrated difference between the par- turition rate and the slaughtering rate over time.	INIT Milk_cows = INI- TIAL_MILK_COWS

Table A.1 List of Model Equations – Stocks

Herd Weaned struc- calves ture	Weaned_Calves(t) = Weaned_Calves(t - dt) + (Calf_weaning_rate - Calves_allo- cated_to_breeder_stock - calves_allo- cated_to_feeder_stock) * dt	animal	This is a stock variable that calculates the number of weaned calves at each point in time based on the initial value of weaned calves plus the integrated difference be- tween calf weaning rate and calf matura- tion rate over time.	INIT Weaned_Calves = INITIAL_WEANED_CALVES
--------------------------------------	---	--------	--	---

Table A.2 List of Model Equations - Flows

Where to find	Variable Name	Equation	Units	Interpretation
Herd structure	Calf birth rate	Calf_birth_rate = DELAY3(Calf_breed- ing_rate, PARTURITION_TIME)	animal/Year	The number of calves born each year after a delay equal to the average par- turition time.
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEANING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the aver- age weaning time.
Herd structure Calf breeding Carate end to the call of		Calf_breeding_rate = (Milk_cows+Heif- ers_milk_produc- tion)*Calves_per_cow_or_heifer_per_year	animal/Year	The number of calves that are born each year depends on the size of the stocks of cows and heifers and on the number of calves that each cow and heifer produce per year.
Herd structure	<pre>lerd structure Calf birth rate Calf_birth_rate = DELAY3(Calf_breed- ing_rate, PARTURITION_TIME)</pre>		animal/Year	The number of calves born each year after a delay equal to the average par- turition time.
Herd structure	Calves allo- cated to feeder stock	calves_allocated_to_feeder_stock = calf_maturation_rate-Calves_allo- cated_to_breeder_stock	animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves.
Herd structure	Slaughtering rate	slaughtering_rate = Feeder_Cattle/aver- age_fattening_time_feeder_cattle	animal/Year	This is the outflow to the stock of feeder cattle. Feeder cattle are slaughtered when they reach the av- erage fattening time. The average fat- tening time is not constant but de- pends on the profitability of meat. In this simplified model, we equate prof- itability with demand (desired meat consumption).
Herd structure	Calves allo- cated to breeder stock	Calves_allocated_to_breeder_stock = MIN(Desired_new_heifers_milk_produc- tion, Max_#_of_new_heifers_milk_cows)	animal/Year	The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the mini- mum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").
Herd structure	Parturition rate	Parturition_rate = Heifers_milk_produc- tion/PARTURITION_TIME	animal/Year	This flow describes the process of heifers becoming dairy cows after having their first calf.
Herd structure	Slaughtering rate milk cows	Slaughtering_rate_milk_cows = Milk_cows/AVERAGE_LIFE- TIME_MILK_COWS	animal/Year	This is the outflow from the stock of dairy cows. Dairy cows are slaugh- tered when they reach their average lifetime.
Herd structure	Calf matura- tion rate	calf_maturation_rate = Weaned_Calves/CALF_MATURING_TIMF	animal/Year	This is the outflow from the stock of weaned calves. Calves are weaned

				when they reach the average calf ma- turing time. The number of weaned calves each year is subsequently allo- cated to either the breeder or the feeder stock.
Herd structure	Calf weaning rate	Calf_weaning_rate = DE- LAY3(Calf_birth_rate, WEANING_TIME)	animal/Year	The number of calves weaned each year after a delay equal to the aver- age weaning time.
Herd structure	Calves allo- cated to breeder stock	Calves_allocated_to_breeder_stock = MIN(Desired_new_heifers_milk_produc- tion, Max_#_of_new_heifers_milk_cows)	animal/Year	The desired number of calves that are allocated to the breeding stock can be higher than the maximum possible number of new breeder calves given the existing herd structure. Under such extreme conditions, the mini- mum function makes sure that not more calves are allocated to the breeding stock than are physically available (the "maximum number of new heifers milk cows").
Herd structure	Calves allo- cated to feeder stock	calves_allocated_to_feeder_stock = calf_maturation_rate-Calves_allo- cated_to_breeder_stock	animal/Year	The number of matured calves each year that are allocated to the feeder stock. the number is calculated from the total number of weaned calves.

Table A.3 List of Model Equations – Other Variables

Where to find	Variable Name	Equation	Units	Interpretation
Herd structure	Average fatten- ing time feeder cattle	<pre>average_fattening_time_feeder_cat- tle = initial_fatten- ing_time_feeder_cat- tle*change_in_bovine_meat_con- sumption</pre>	Year	The average fattening time of feeder cat- tle depends on the demand for bovine meat. if de-mand increases, cattle are fattened for longer than if demand de- creases.
Herd structure	Bovine meat production	"Bovine_meat_production_(with- out_suckler_cows)" = slaughter- ing_rate*meat_per_slaugh- tered_feeder_cattle	ton/Year	Tons per year produced by the slaugh- tered feeder cattle withing the bovine livestock but excluding the suckler cow line.
Herd structure	Change in bo- vine meat con- sumption	change_in_bovine_meat_consump- tion = cur-rent_pc_consump- tion_of_bovine_meat/refer- ence_pc_consumption_of_bo- vine_meat	Dmnl	The change in demand, i.e., the current demand relative to the reference de- mand. in this simplified model, we as- sume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environ- mental regulations.
Herd structure	Change in milk consumption	change_in_milk_consumption = cur- rent_pc_consumption_of_milk/refer- ence_pc_consumption_of_milk	Dmnl	The change in demand, i.e., the current demand relative to the reference de- mand. in this simplified model, we as- sume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environ- mental regulations.
Emissions	CO2e emissions from bovine meat produc- tion	CO2e_emissions_from_bo- vine_meat_production = CO2_emis- sions_per_ton_of_bovine_meat*To- tal_bovine_meat_production	ton co2/Year	The total number of tons of CO ₂ equiva- lents per year resulting from bovine meat production.

CO2e emissions_from_milk_produc-Emissions **CO2e** emissions The total number of tons of CO₂ equivaton co2/Year tion = CO2 emislents per year resulting from milk profrom milk production sions per ton of milk*Milk production. duction Meat demand Current per capcurrent pc consumption of boton/(per-The per capita consumption of bovine ita consumption vine meat = (IF TIME < deson*Year) meat per year in the activated scenario. of bovine meat mand_change_start_year THEN base-line_pc_consumption_of_bovine meat ELSE (1-switch consumption_recommendations_0_off_1_on)*baseline_pc_consumption_of_bovine_meat+recommended_pc_consumption_of_bovine meat*switch consumption recommendations 0 off 1 on Milk demand Current per capcurrent pc consumption of milk = (The per capita consumption of milk per ton/(perita consumption year in the activated scenario. IF TIMF < deson*Year) of milk mand change start year THEN base-line_pc_consumption_of_milk ELSE (1-switch_consumption_recommendations_0_off_1_on)*baseline_pc_consumption_of_milk+recommended_pc_consumption_of_milk*switch_consumption_recommendations_0_off_1_on Herd structure Dairy cows Dairy_cows_meat_production = ton/Year Tons of bovine meat per year produced meat produc-Meat per slaughby the slaughtered dairy cows. tion tered dairy cow*Slaughtering rate milk cows The desired number of milk cows is cal-Herd structure **Desired number** Desired # milk cows = animal culated by adjusting the current number of milk cows Milk_cows*change_in_milk_consumption of milk cows upward if the demand for milk products increases and downward if the demand for milk products decreases. in this simplified model, we assume that a change in consumption will lead to the same change in production. the more advanced version of this model considers a series of additional factors such as price elasticity of demand and supply, fodder availability and environmental regulations. Herd structure **Desired adjust-**Desired adjustanimal/Year The desired adjustment of the milk cow ment milk cow ment milk cow stock = (Destock compares desired and available stock sired # milk cows-Milk cows)/Catnumbers of milk cows and adjusts this tle_livestock_adjustment_time difference not immediately, but over the cattle livestock adjustment time. Herd structure Desired new heifers milk producanimal/Year The desired new heifers are the sum of Desired_new_heiftion = MAX(0, De-sired_adjustthe calves needed for replacing the curers milk producment_milk_cow_stock+Replacerent milk cow stuck plus the desired adtion ment_of_milk_cows) justment of the milk cow stock. Meat demand Indicated boindicated_bovine_meat_production ton/Year indicated bovine meat production reprevine meat pro-= to-tal_domestic_bosents demand. in this simplified model, vine_meat_consumpprice does not mitigate desired conduction tion*MEAT_LOSS_AND_WASTE_FACsumption. total demand is the domestic TOR consumption, adjusted for the meat loss and waste along the entire value chains. net exports in the case of bovine meat are negligible, especially compared to

Supplementary material: No milk without meat

net milk exports.

Milk demand	Indicated milk production	Indicated_milk_production = (to- tal_domestic_milk_consump- tion+NET_MILK_EXPORTS+milk_con- sumption_by_ani- mals)*MILK_LOSS_AND_WASTE_FAC TOR	ton/Year	indicated milk production represents de- mand. in this simplified model, price does not mitigate desired consumption. total demand is the sum of domestic consumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains.
Initial values	Initial calves in gestation	initial_calves_in_gestation = Calf_birth_rate*PARTURITION_TIME	animal	The initial value of calves in gestation, calculated to initialize the model in equi- librium.
Herd structure	Maximum num- ber of new heif- ers milk cows	Max_#_of_new_heifers_milk_cows = calf_maturation_rate*FRACTION_FE- MALE_CALVES	animal/Year	The maximum number of new heifers is the number of female weaned calves each year.
Herd structure Meat per slaughtered feeder cattle		<pre>meat_per_slaughtered_feeder_cat- tle = LOOKUP(effect_of_fatten- ing_time_on_meat_yield, aver- age_fattening_time_feeder_cattle)</pre>	ton/animal	The meat per slaughtered feeder cattle depends on the age of the animal and the value of meat per animal is read from the table "effect of fattening time on meat yield".
Milk demand	Milk consump- tion by animals	milk_consumption_by_animals = (Calves+Weaned_Calves)*MILK_CON SUMPTION_PER_CALV_PER_YEAR	ton/Year	The amount of milk consumed by calves every year. in the more elaborate model, also pigs are fed with milk from dairy cows.
Herd structure Milk production		Milk_production = Milk_cows*MILK_PRODUC- TION_PER_COW_PER_YEAR	ton/Year	This variable calculates milk production per year as a function of both, the num- ber of milk cows and the average milk production per cow per year.
Meat demand	Ratio between bovine meat production and consumption	Ratio_between_bovine_meat_pro- duction_and_consumption = To- tal_bovine_meat_production/indi- cated_bovine_meat_production	Dmnl	this ratio compares supply and demand. the total demand is adjusted for the bo- vine meat loss and waste along the en- tire value chains. net exports in the case of bovine meat are negligible, especially compared to net milk exports.
Milk demand	Ratio between milk production and consump- tion	Ratio_between_milk_produc- tion_and_consumption = Milk_pro- duction/Indicated_milk_production	Dmnl	this ratio compares supply and demand. the total demand is the sum of domestic consumption, consumption by animals and exports, adjusted for the milk loss and waste along the entire value chains.
Meat demand	Recommended per capita con- sumption of bo- vine meat	<pre>recommended_pc_consump- tion_of_bovine_meat = recommend- ed_pc_consumption_of_bo- vine_meat_SFP*(1- switch_0_sfp_1_phd)+switch_0_sfp_ 1_phd*recommended_pc_consump- tion_of_bovine_meat_phd</pre>	ton/(Year*per- son)	The recommended per capita consump- tion of bovine meat for one of the two nutrition recommendation scenarios: Swiss Food Pyramid or Planetary Health Diet.
Milk demand Recommended per capita con- sumption of milk		recommended_pc_consump- tion_of_milk = recom- mended_pc_consump- tion_of_milk_SFP*(1- switch_0_sfp_1_phd)+recommmend ed_pc_consump- tion_of_milk_PHD*switch_0_sfp_1_ phd	ton/(per- son*Year)	The recommended per capita consump- tion of milk for one of the two nutrition recommendation scenarios: Swiss Food Pyramid or Planetary Health Diet.
Meat demand	Reference per capita con- sumption of bo- vine meat	reference_pc_consumption_of_bo- vine_meat = SMTH3(current_pc_con- sumption_of_bovine_meat, TIME_TO_REACT_TO_CONSUMP- TION_CHANGES_MEAT, base- line_pc_consumption_of_bo- vine_meat)	ton/(per- son*Year)	The reference demand represents the per capita demand of bovine meat in the recent past. the time horizon over which demand changes are taken into consideration for adjusting pro-duction is indicated by the parameter "time to react to consumption changes meat".
Milk demand	Reference per capita con- sumption of milk	reference_pc_consumption_of_milk = SMTH3(current_pc_consump- tion_of_milk, TIME_TO_REACT_CON- SUMPTION_CHANGES_MILK, base- line_pc_consumption_of_milk)	ton/(per- son*Year)	The reference demand represents the per capita demand of milk in the recent past. the time horizon over which de- mand changes are taken into considera- tion for adjusting production is indicated

				by the parameter "time to react to con- sumption changes milk"
Herd structure	Replacement of	Replacement of milk cows =	animal/Vear	This variable calculates the number of
neru structure	milk cows	Slaughtering rate milk cows	annnai, rear	dairy cows needed to replace the dairy
	mink cows	Sladghtering_rate_mik_cows		cows that are slaughtered
Meat demand	Switch between	switch 0 sfp 1 pbd = 0	Dmnl	This is a scenario switch that allows al-
Milk demand	Swiss Food Pyr-	switch_0_sip_1_pild = 0	Dinini	ternating between the Swiss Food Pyra-
Wink demand	amid and Plane-			mid recommendations (switch = 0) and
	tary Health Diet			the recommendations of the Planetary
	tary neurin biet			Health Diet (switch = 1)
Meat demand	Switch between	switch consumption recommenda-	Dmnl	This is a switch that allows alternating
Milk demand	consumption	tions 0 off 1 on = 0	Dinin	hetween current and recommended
	recommenda-			consumption pat-terns 0 means current
	tions			consumption patterns. 1 means recom-
				mended consumption patterns.
Population	Switch between	switch popula-	Dmnl	This is a switch that allows alternating
· opulation	population	tion growth 0 off 1 on = 0	2	between a constant population size and
	growth and no	80_00		a time-dependent population size. 0
	growth			means constant population. 1 takes pop-
	8			ulation from historical and projected
				data.
Herd structure	Total bovine	Total bovine meat production =	ton/Year	The total amount of bovine meat pro-
	meat produc-	"Bo-vine meat production (with-		duced in one year. this variable only cal-
	tion	out suck-		culates bovine meat production from the
				dual-purpose meat/dairy stock but ex-
		duction		cludes bovine meat from the suckler cow
				line.
Emissions	Total CO2e	total_CO2e_emissions = CO2_emis-	ton co2/Year	The total number of tons of CO ₂ equiva-
	emissions	sions_from_bovine_meat_produc-		lents per year resulting from milk and
		tion+CO2_emissions_from_milk_pro-		bovine meat pro-duction.
		duction		
Meat demand	Total domestic	total_domestic_bovine_meat_con-	ton/Year	The total amount of bovine meat con-
	bovine meat	sumption = to-tal_population*cur-		sumed per year by the Swiss population.
	consumption	rent_pc_consumption_of_bo-		
		vine_meat		
Milk demand	Total domestic	total_domestic_milk_consumption =	ton/Year	the total amount of milk consumed per
	milk consump-	total_population*current_pc_con-		year by the Swiss population
	tion	sumption_of_milk		
Population	Total popula-	total_population = (1-switch_popula-	person	The total population of Switzerland,
	tion	tion_growth_0_off_1_on)*popula-		used to calculate total milk and bovine
		tion_2020+switch_popula-		meat consumption.

Table A.4 List of Model Equations – Parameters, their Values and Sources

Where to find	Parameter name	Name in model	Value	Units	Interpretation	Source
Herd structure	Average life- time of milk cows	AVERAGE_LIFE- TIME_MILK_CO WS	4	Year	The number of years, on average, that a milk cow is kept on lactation	Agridea/FiBL, 2019, section Tierhaltung
Meat de- mand	Baseline per capita con- sumption of bo- vine meat	BASE- LINE_PC_CON- SUMP- TION_OF_BO- VINE_MEAT	0.01044	ton/(per- son*Year)	Per capita consump- tion under baseline conditions.	SBV, 2021
Milk de- mand	Baseline per capita con- sumption of milk	BASE- LINE_PC_CON- SUMP- TION_OF_MILK	0.3189	ton/(per- son*Year)	Per capita consump- tion under baseline conditions.	SBV, 2021

Supplementary material: No milk without meat

Herd structure	Calf maturing time	CALF_MATU- RING_TIME	0.56	Year	The time it takes for calves to fully mature. the constant assumes the value of the re- maining 205 days un- til calves reach the age of 1 year, where the female animals destined for milk pro- duction get insemi- nated for the first time	SBV, 2021
Herd structure	Calves per cow or heifer per year	CALVES_PER_C OW_OR_HEIFER _PER_YEAR	1.02	1/Year	The number of calves that, on average, each cow and heifer produce per year.	Agridea/FiBL, 2019, section Tierhaltung
Herd structure	Cattle livestock adjustment time	CATTLE_LIVE- STOCK_ADJUST- MENT_TIME	10	Year	The long adjustment time is rooted in the long lifetime of cattle livestock buildings and related infra- structure, which limit the flexibility with which farmers enter and exit the cattle sector.	[BLINDED FOR REVIEW]
Emissions	CO2e emissions per ton of bo- vine meat	CO2E_EMIS- SIONS_PER_TO N_OF_BO- VINE_MEAT	13	ton co2/ton	tons of CO2 equiva- lents produced per ton of bovine meat. data source: FAOSTAT	FAOSTAT, Climate Change, Emis- sion Intensities: https://www.fao.org/fao- stat/en/#data/El
Emissions	CO2e emissions per ton of milk	CO2E_EMIS- SIONS_PER_TO N_OF_MILK	1.6	ton co2/ton	tons of CO2 equiva- lents produced per ton of milk.	Bussa et al., 2020
Meat de- mand, Milk de- mand	Demand change start year	DE- MAND_CHANG E_START_YEAR	2022	Year	this is a scenario vari- able that allows de- fining the year in which consumption changes start.	User choice.
Herd structure	Fraction of fe- male calves	FRACTION_FE- MALE_CALVES	0.5	Dmnl	The fraction, on aver- age, of calves that are female.	Agridea/FiBL, 2019, section "Tierhaltung".
Initial val- ues	Initial number of calves	INITIAL_CALVES	304353	animal	The initial value of calves	Calculated to initialize the model in equilibrium
Herd structure	Initial fattening time feeder cat- tle	INITIAL_FAT- TEN- ING_TIME_FEED ER_CATTLE	0.43	Year	An average of the av- erage fattening time for veal fattening and bull fattening, weighted by the live- stock units of calves and bulls in the initial year of the simulation and estimated to keep the model in equilibrium	Agridea/FiBL, 2019, section "Tierhaltung".
Initial val- ues	Initial feeder cattle	INI- TIAL_FEEDER_C	240197	animal	The initial number of feeder cattle	SBV, 2021 Cattle aged 365-730 days
Initial val- ues	Initial heifers milk production	ATTLE INITIAL_HEIF- ERS_MILK_PRO- DUCTION	135005	animal	The initial value of heifers.	Milk production per dairy cow (7 ton/year; SBV, 2020) and livestock numbers (total of 677863 cows - of which 542857 must be dairy cows and the rest heifers for milk pro- duction; SBV, 2021).

Initial val- ues	Initial number of milk cows	INI- TIAL_MILK_CO	542857	animal	The initial value of milk cows	SBV, 2021
Initial val- ues	Initial number of weaned calves	WS INI- TIAL_WEANED_ CALVES	391800	animal	The initial value of weaned calves	Calculated to initialize the model in equilibrium
Meat de- mand	Meat loss and waste factor	MEAT_LOSS_AN D_WASTE_FAC- TOR	1.1	Dmnl	calculated from SBV. (2021).	SBV, 2021 total production (incl. net exports) vs. total consumption 2020.
Herd structure	Meat per slaughtered dairy cow	MEAT_PER_SLA UGH- TERED_DAIRY_C OW	0.3	ton/ani- mal	Meat yield is set at 38% of the live weight (700kg).	Agridea/FiBL, 2019, section "Tierhaltung".
Milk de- mand	Milk consump- tion per calf per year	MILK_CON- SUMP- TION_PER_CALF _PER_YEAR	0.6	ton/(ani- mal*Year)	calculated from SBV (2021)	SBV, 2021 Kälber bis 160 Tage, Jungvieh 160- 365 Tage; total milk consumption by calves and weaned calves: 400'000 ton/year.
Milk de- mand	Milk loss and waste factor	MILK_LOSS_AN D_WASTE_FAC- TOR	1.13		calculated from SBV (2021)	SBV, 2021
Milk de- mand	Milk production per cow per year	MILK_PRODUC- TION_PER_COW _PER_YEAR	7	ton/(ani- mal*Year)	The amount of milk produced, on aver- age, per cow and year	SBV, 2020
Milk de- mand	Net milk ex- ports	NET_MILK_EX- PORTS	189000	ton/Year	the net amount of milk exported per year.	SBV, 2020
Herd structure	Parturition time	PARTURI- TION_TIME	1	Year	The parturition time is 9 months but heif- ers and cows only get inseminated once per year.	Agridea/FiBL, 2019
Popula- tion	Population	POPULA- TION_2020	8.67054 e+06	person	the population in Switzerland in 2020	BfS, 2021
Meat de- mand	Recommended per capita con- sumption of bo- vine meat (Planetary Health Diet)	RECOM- MENDED_PC_C ONSUMP- TION_OF_BO- VINE_MEAT_PH D	0.00511	ton/(per- son*Year)	recommended per capita consumption of bovine meat ac- cording to the plane- tary health diet.	The data is from the integrated model developed in the NRP69 pro- ject, described in [BLINDED FOR RE- VIEW].
Meat de- mand	Recommended per capita con- sumption of bo- vine meat (Swiss Food Pyramid)	RECOM- MENDED_PC_C ONSUMP- TION_OF_BO- VINE_MEAT_SF P	0.00544	ton/(per- son*Year)	per capita consump- tion in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 pro- ject, described in [BLINDED FOR RE- VIEW].
Milk de- mand	Recommended per capita con- sumption of milk (Swiss Food Pyramid)	RECOM- MENDED_PC_C ONSUMP- TION_OF_MILK _SFP	0.2788	ton/(per- son*Year)	per capita consump- tion in the Swiss Food Pyramid Scenario	The data is from the integrated model developed in the NRP69 pro- ject, described in [BLINDED FOR RE- VIEW].
Milk de- mand	Recommended per capita con- sumption of milk (Planetary Health Diet)	RECOMMMEND ED_PC_CON- SUMP- TION_OF_MILK _PHD	0.09125	ton/(per- son*Year)	recommended per capita consumption of milk according to the planetary health diet	The data is from the integrated model developed in the NRP69 pro- ject, described in [BLINDED FOR RE- VIEW].
Milk de- mand	Time to react to consumption change - milk	TIME_TO_RE- ACT_CON- SUMP- TION_CHANGES _MILK	10	year	the time horizon over which demand changes are taken into consideration for adjusting pro-duction. The lower value for meat than for milk re- flects the capital	[BLINDED FOR REVIEW].

					intensity of bovine meat production compared to milk production (stables and milking equip- ment)	
Meat de- mand	Time to react to consumption change – meat	TIME_TO_RE- ACT_TO_CON- SUMP- TION_CHANGES _MEAT	5	Year	the time horizon over which demand changes are taken into consideration for adjusting pro-duction.	[BLINDED FOR REVIEW].
Herd structure	Weaning time	WEAN- ING_TIME	0.44	Year	The time it takes to wean calves	SBV, 2021 Calves aged up to 160 days.

Table A.5 List of Model Equations – Nonlinear Functions

Where	Parameter	Name in model	Points	Units	Interpretation	Source
to find	name					
Herd	Effect of	effect_of_fatten-	(0.3400, 0.0700),	ton/ani-	Meat yield is set at 38%	Agridea/FiBL, 2019,
struc-	fattening	ing_time_on_meat_yield	(0.4300, 0.1050),	mal	of the live weight of an-	section "Tierhaltung".
ture	time on	= GRAPH(0+0)	(1.2000, 0.1970)		imals. The low value is	
	meat yield				for veal fattening and	
					the high value for bull	
					fattening.	
Popu-	Population	population=	(2000.00, 7164440),	person	the total population in	Historical data: BfS,
lation		GRAPH(TIME)	(2001.00, 7197640),		Switzerland	2021
			(2002.00, 7255650),			Future projections:
			(2003.00, 7313850),			BfS, 2015; Refer-
			(2004.00, 7364150),			enzszenario A-00-
			(2005.00, 7415100),			2015.
			(2006.00, 7459130),			
			(2007.00, 7508740),			
			(2008.00, 7508740),			
			(2009.00, 7701860),			
			(2010.00, 7785810),			
			(2011.00, 7870130),			
			(2012.00, 7954660),			
			(2013.00, 8039060),			
			(2014.00, 8139630),			
			(2015.00, 8339510),			
			(2020.00, 8757650),			
			(2025.00, 9159870),			
			(2030.00, 9541470),			
			(2035.00, 9856970),			
			(2040.00, 10044300),			
			(2045.00, 10176100)			

3 Information on model testing

Given that we initialize the model in equilibrium, we work with constant parameter values from the year 2020 for consumption, livestock numbers—that translate into production quantities—, and population size throughout the simulation period. Assumption on the latter can be relaxed by changing parameters according to Table A.4)

For testing the model, we followed the standard procedure for assessing model structure and behavior (Sterman, 2000). We calculated analytically (e.g., in the case of initial calves in gestation) and/or numerically the initial values of those animal stocks for which no statistical data is available such that for each stock the inflow is equal to the outflow and thus ensures dynamic equilibrium.

4 References

- Agridea/FiBL. (2019). Deckungsbeiträge. Ausgabe 2019. Lindau & Frick, Switzerland: Agridea and Forschunginstitut für biologischen Landbau FiBL.
- BfS. (2015). Szenarien zur Bevölkerungsentwicklung der Schweiz 2015-2045. Neuchâtel, Switzerland: Bundesamt für Statistik (BfS).
- BfS. (2021). Die Bevölkerung der Schweiz im Jahr 2020. In B. f. S. (BfS) (Ed.). Neuchâtel, Switzerland.
- Bussa, M., Eberhart, M., Jungbluth, N., & Meili, C. (2020). Ökobilanz von Kuhmilch und pflanzlichen Drinks: ESU-services GmbH.
- SBV. (2020). Milchstatistik der Schweiz, 2020. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).
- SBV. (2021). Statistische Erhebungen und Schätzungen 2020 über Landwirtschaft und Ernährung. Brugg, Switzerland: Schweizerischer Bauernverband (SBV).
- Sterman, J. D. (2000). *Business Dynamics. Systems Thinking and Modeling for a Complex World*. Boston et. al.: Irwin McGraw-Hill.