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Appendix 1: Coding the CDC hub models 

I- Coding details 
A primary list of models that contributed to the CDC Covid forecast hub was obtained from CDC’s website 

(https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/forecasts-cases.html). The list was verified by 

comparing with two pre-print manuscripts on medRxiv co-authored by the contributors to the hub ([38, 39]). 

The list was then compared with available forecast data on the hub, and as a result five missing models were 

added to the list, yielding a total of 74 models. We then narrowed down the list to the models that provided 

COVID-19 death forecast, which included a large majority of the models (n=61). The final list of models 

included:  

AIpert-pwllnod, BPagano-RtDriven, Caltech-CS156, CEID-Walk, CMU-TimeSeries, 

Columbia_UNC-SurvCon, Covid19Sim-Simulator, CovidActNow-SEIR_CAN, CovidAnalytics-

DELPHI, COVIDhub-ensemble, CU-select, DDS-NBDS, epiforecasts-ensemble1, Geneva-

DetGrowth, Google_Harvard-CPF, GT_CHHS-COVID19, GT-DeepCOVID, IEM_MED-

CovidProject, IHME-CurveFit, IowaStateLW-STEM, IUPUI-HkPrMobiDyR, JCB-PRM, 

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/forecasts-cases.html
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JHU_CSSE-DECOM, JHU_IDD-CovidSP, JHUAPL-Bucky, Karlen-pypm, LANL-GrowthRate, 

LNQ-ens1, Microsoft-DeepSTIA, MIT_CritData-GBCF, MIT_ISOLAT-Mixtures, 

MITCovAlliance-SIR, MOBS-GLEAM_COVID, MSRA-DeepST, NotreDame-FRED, NotreDame-

mobility, OliverWyman-Navigator, PSI-DRAFT, QJHong-Encounter, RobertWalraven-ESG, 

RPI_UW-Mob_Collision, SigSci-TS, SteveMcConnell-CovidComplete, STH-3PU, SWC-

TerminusCM, TTU-squider, UA-EpiCovDA, UChicagoCHATTOPADHYAY-UnIT, UChicago-

CovidIL, UCLA-SuEIR, UCM_MESALab-FoGSEIR, UCSB-ACTS, UCSD_NEU-DeepGLEAM, 

UMass-MechBayes, UMich-RidgeTfReg, UpstateSU-GRU, USACE-ERDC_SEIR, USC-SI_kJalpha, 

UT-Mobility, Wadhwani_AI-BayesOpt, and YYG-ParamSearch.    

Two researchers (NG and RX) analyzed the models based on any available information, and coded their 
methodological approaches. Specifically detailed notes were taken about modeling approaches based on 
documentations on websites, related journal publications, and in a few cases upon contacting modelers with 
clarifying questions. Other important sources of information included a webpage 
(https://zoltardata.com/project/44/forecasts) which includes self-reported brief information (about 1-2 
paragraphs) on methodological approaches of each model. This website particularly helped with several 
models that lacked any further technical documentation. We also consulted the information on a related 
GitHub repository (https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-
19_Forecast_Model_Descriptions.md). We further checked the modelers’ websites, blogs, or twitter links, for 
updates, possible changes in methods, or more methodological details. A few groups changed their models 
throughout the forecast for which we considered their most recent approach in our coding.    

The primary coding question was related to the modeling approach. Initially five mutually exclusive and 
exhaustive groups of modeling approaches were identified and used to categorize the models:  

1) Mechanistic compartmental models: this is the conventional approach in epidemiology to model the 

spread of an infectious disease in which the population is represented by different compartments. A 

common example is the Susceptible-Exposed-Infected-Removed (SEIR) model.  

2) Non-mechanistic models: these models do not capture the physics of the spread of the disease, and 

instead, by using different data-analytic approaches, try to uncover association between death 

incidents and other variables. These models include different forms of parametric and non-

parametric regression models and machine learning techniques.   

3) Ensemble models: these models provide estimates based on combining two or more distinct models’ 

(which could be each mechanistic and non-mechanistic) forecasts.  

4) Others: Only two models that used agent-based modeling approaches belonged to the “others” 

group. We thus name the group agent-based models. These models are mechanistic and representing 

individuals explicitly rather than lumping them together in mixed compartments.  

Among the first group of mechanistic compartmental models, we further categorized them into mechanistic 
models with state-resetting vs mechanistic models without state-resetting based on how simulation outcomes 
were combined with the data. A sub-group of mechanistic models used state-resetting procedures to improve 
their forecast accuracy. Simply put state-resetting is a procedure to combine simulation outcomes from the 
model with observed data to come up with more accurate values for the state variables in the model, and then 
to reset the state variables to those more likely values which would potentially enhance the quality of both 
parameter estimation and predictions. An example of state-resetting is an SIR-based model that periodically 
estimates the number of active cases from the case data, feeds it to the “I” variable, and then simulates the 
model for the purpose of projection. In this example one could also use a backward estimation of active cases 
based on reported death. In fact a more sophisticated method could combine both estimates into a better 
estimate for “I.” While explicit and structured methods for state-resetting, such as Kalman and Particle 
filtering, are well known, for simpler models one can use simple heuristic resetting with much lower 

https://zoltardata.com/project/44/forecasts
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md


Supplementary materials 

3 
 

computational costs. Moreover, a few models did state-resetting implicitly. For example, they estimated a 
regression model that was based on an SEIR-type mechanistic formulation. Such regressions would calculate 
the state variables based on observed data every period and as such are doing state resetting implicitly. 

We further examined models’ structures looking into methodological details. A major challenge however was 
the large variation of the quality of documentation of the models. While some of the models had reported 
sufficient details for replication of their models and findings, others may only had short documents, or a few 
lines of explanations about the underlying models and estimation techniques. Nevertheless we coded the 
models based on:  

- data inputs:  

o variable type (e.g., death data, case data, hospitalized data);  

o approach to use data: data as an exogenous input vs. data for model calibration; 

- output variable:  

o the main predictions of the models (e.g., death, case); 

o the time horizon of the predictions; 

- approach to estimate transmission intensity:  

o is transmission intensity constant or changing;  

o are they modeling social distancing explicitly or implicitly, and if so how; 

- approach to project future trajectory of transmission intensity:  

o are they assuming transmission intensity (and the reproduction number) is going to stay 

constant, or change; 

o if changes, do they model change in transmission intensity (and the reproduction number), 

or only do scenario analysis (constant varying transmission intensity);  

o if they model change in transmission intensity (and the reproduction number), does it 

include an endogenous mechanism or it is an exogenous time series based on expected time 

to reopen;  

- modeling mobility:  

o are they modeling change in mobility;  

o are they using mobility data;  

- General information such as:  

o modelers’ affiliation (academic or non-academic);  

o disciplinary background; and  

o the availability of technical documentation.  

Furthermore, for different methodological approaches we specifically looked for the following criteria:  

- For mechanistic models with adequate documentation:  

o details of the compartmental structure: compartments (Simple SIR vs. SEIR vs. more 

compartments for capturing different stages of illness and symptoms);  

o do they include coupled age-structure;  

o do they have a coupled compartments with commuting across regions; 

o parameter estimation (model calibration):  

▪ sources of parameter values; 

▪ do they calibrate their model with the data, and if so what is the payoff function and 

methods to find optimal parameters;  

o weather impact:  

▪ do they include any estimate of weather impact on transmission intensity or the 

reproduction number; 
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- For non-mechanistic models with adequate documentation:  

o Specifics of the method:  

▪ From simple regression models to more sophisticated curve-fitting approaches and 

machine learning techniques;  

o weather impact:  

▪ do they include any estimate of weather impact in their model; 

- For ensemble models:  

▪ the type of models used in the ensemble. 

Moreover, we made note of any interesting observation such as change in method of forecast and models or 

change in parameter values or attempts for fine-tunings.  

 

After NG and RX independently coded the models, they shared and discussed their results. The initial inter-
rater reliability (percent agreement between the two raters) was 90%, high enough that did not require any 
changes in the coding process. The coders converged on the final results after a discussion and those results 
inform the relevant regressions. All three authors discussed major lessons learned through reading the 
documents. 

  

II- Common features of the models 
A few initial observations were noteworthy for the research team:  

1) Only two (<4%) models used agent-based architectures. In contrast to our initial expectation, 

only 2 models used agent-based individual-level approaches, and they seemed to have stopped 

projecting after a few rounds. Only one of them provided death projection. On the other hand, the 

majority of the models preferred to model at US state- or county-levels, using compartmental or 

non-mechanistic approaches. Lack of ABM approaches may partially be explained by the 

computational costs of these methods in light of the calibration requirements and large parameters 

spaces they typically include.     

2) About 38% of the models used non-mechanistic approaches. With the growing attention to 

data-driven methods across various fields we observed a considerable number of non-mechanistic 

models. Particularly about 16% of the models used machine-learning techniques for projection 

confirming a growing trend in the application of AI. Many of these models were developed by 

computer science and engineering researchers.   

3) About half of the groups used conventional SIR-like models with modest modifications. 

Given the growing alternatives for modeling the dynamics of transmission it was interesting that still 

many modelers start with the classical architectures. The prevalence of S(E)IR models, some 

including more details about asymptomatic cases or hospitalized cases, and a few using detailed 

coupled compartmental structures where people travel between different regions puts these methods 

at the heart of the existing approaches.    

4) Among mechanistic models, the majority used simple techniques for parameter estimation. 

Most mechanistic models tried to utilize recent documented measures about COVID-19 (such as 

infection fatality rate or the disease duration) from other research publications. They then estimated a 

few unknown parameters such as the basic reproductive number (or transmission intensity), often by 

fitting the simulation with data in a nonlinear optimization. The process of parameter estimation was 

often simple, minimizing the mean square error between simulation and data on daily or weekly 

deaths/cases. The search strategy for optimal parameters ranged from simple algorithms to more 
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advanced machine-learning techniques. Only a handful of groups used more sophisticated estimation 

approaches with explicit likelihood functions and state-resetting (e.g. Markov Chain Monte Carlo 

simulations and Kalman Filtering).  

5) For fitting simulation with the historical trends, mechanistic models commonly considered 

non-constant reproductive numbers. A large number of models tried to incorporate change in the 

reproductive number (or transmission intensity of ß). Some of them used different mobility data, and 

estimated change in transmission intensity as a function of change in mobility. Others used 

estimation of the reproductive number from daily cases. A few groups used data on when each US 

state started their social distancing policies. Such data were fed into the model to better estimate 

change in the reproductive number. For example, a few models assumed a specific percentage 

decline in the reproductive number after implementation of lockdown policies. 

6) For the purpose of projection, mechanistic models commonly assumed constant 

reproductive numbers. Most models lacked techniques of projecting the reproductive number (or 

transmission intensity of ß). A large majority used their latest estimate of the reproductive number 

from the past data for projecting the future cases.  

7) Modelers updated their models through the course of the pandemic. Like any other social 

setting, modelers learned from the past projections and tried to incorporate new ideas to improve 

their future projections. Several of them updated their parameter values as more data became 

available about the nature of the disease. A few groups dropped out after a few projections, and a 

few other joined the hub several months after the starting date. We noted that a few groups changed 

their modeling approaches too. The common direction of changing modeling methods was from 

curve-fitting to mechanistic compartmental models.  

 

III- Features of top performing models 

Our primary analysis uses consistent coding applicable across all models. Given the significant heterogeneity 
in the documentation of CDC model set this analysis does not inform more detailed features of models 
beyond a few aggregate categories. We therefore studied the top 3 models in the long-term prediction 
performance in more depth (short-hands: IHME1, YYG, BPagano) to learn about more specific features that 
might have improved performance beyond those measurable across all models.  

Importantly, we noted that the assumption of constant vs. changing reproductive number is essential in long-
term projections. Among mechanistic models the challenge of modeling a pandemic primarily boils down to 
the prediction of societal reactions and policy decisions. Two particular models of YYG and IHME are good 
examples: the former used available reports on states’ plans for opening and the modelers’ best judgment for 
extrapolating those in future. Specifically, YYG estimated the reproductive number (R(t)) by four main values 
of (R0, R(post-mitigation), R(post-opening), R(equilibrium [sometime after post-opening])=~1), and used a 
sigmoid function for the transition between R0, and R(post-mitigation), and possibly other R-values, where 
the slope of the function was also estimated through model calibration. The mitigation and opening were 
based on a New York Times dataset. IHME used a more detailed approach: data on state policies (severe 
travel restrictions, closing of public educational facilities, closure of nonessential businesses, stay-at-home 
orders, and restrictions on gathering size) were gathered from press release or state government official 

                                                           
1 It is important to note that the IHME model of COVID-19 pandemic started as a non-mechanistic model but moved 
away from their initial curve-fitting approach towards a detailed, mechanistic model, which offered substantially better 
predictions than their curve-fitting approach (see reference 24. Reiner, R.C., et al., Modeling COVID-19 scenarios for the 
United States. Nature Medicine, 2021. 27(1): p. 94-105.). Since the first incarnation of the model was non-mechanistic, 
many may not have realized this important change. 
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orders. The model then estimated the policy effects on mobility and their effect on transmission intensity. In 
addition, IHME modeled future policy changes endogenously, with a binary feedback mechanism: they 
assumed that there is a threshold for daily death at 8 per million population, and if simulation forecasts for 
death pass the threshold, infectivity will decline due to possible implementation of social distancing measures.  
[24]. 

Another observation was about state-resetting techniques. For example, in the BPagano the number of daily 
infections was estimated by shifting daily death backward, and dividing it by the most recent estimate of the 
infection fatality rate. Then the current active cases (I) was estimated as the sum of daily infections for the 
duration of the infectious period. The IHME model took a similar approach by using death-based estimation 
of daily infection as data inputs (rather than simulated outcomes) in the SEIR model. 

Some other factors were also noted in the models. High-performing models incorporated the weather effect. 
IHME for example used flu season as factor in modeling transmission intensity. Moreover, YYG modeled 
lockdown fatigue which considers that R(post-mitigation) may increase before opening. This model also 
considered change in infected fatality rate which might be due to healthcare systems’ learning over time or 
changes in composition of infected towards younger cohorts. Such mechanisms are potentially helpful in 
better projections.  
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Appendix 2- Details of Statistical Analyses 
Analysis of CDC models 

We used data from the Center for Disease Control (CDC) repository of COVID-19 projections, which 
included 490,210 point forecasts for weekly death incidents across 57 locations, forecast dates over the span 
of a year (4/13/2020 to 3/29/2021), 20 forecast horizons (1-week-ahead predictions to 20-week-ahead 
predictions), and 61 models. We chose the normalized/per-capita absolute prediction error as the basis of 
comparison for model performance, i.e. the absolute difference between a model’s prediction of weekly 
incident death and the true weekly incident death, divided by location’s population. As this measure is highly 
skewed we log-transformed the measure and included 1-99 percentile of the data for further analysis. We 
further excluded two agent-based models and COVID-hub ensemble (the ensemble of all other eligible CDC 
models) from the analysis, which resulted in a final sample with 463,305 predictions made by 58 models for 
each state of the United States, with target end dates ranging from 4/18/2020 to 4/3/2021.  

We compared how each type of the model performed in each forecast horizon with a constant model – a 
model that predicts future weekly incident death to be the same as the weekly incident death last observed. 
Specifically, we included the weekly incident death predictions from the constant model for each unique 
combination of location, forecast date and forecast horizon in our sample frame as the baseline, and we 
included each model type (ensemble, non-mechanistic, mechanistic without state-resetting, and mechanistic 
with state-resetting) as a key independent variable in a linear regression with location-time fixed effects, and 
we ran separate regression analyses for each prediction horizon.  

As depicted in Table A1, the coefficient for each model-type represents the average differences in log-
transformed normalized error between that model-type and the baseline (constant) model. Results showed 
that (1) in one-week-ahead predictions the constant model performs better than all other model types on 
average (but several individual models outperform the constant one); many models and model types 
outperform the constant model in mid to long term predictions, with mechanistic model with state-resetting 
performing the best starting from 2-week-ahead predictions; (2) In short-term non-mechanistic and ensemble 
models perform better than mechanistic models without state-resetting, but that ordering reversed beyond 4-
5 weeks of projection horizon. However, on average mechanistic models with state-resetting outperformed all 
others in both the short- and the long-term. 

As a robustness check we also included more model characteristics, i.e. whether the modelers are affiliated 
with academia, whether the model has detailed documentation, and the interaction of the two, as covariates 
and reran the aforementioned analysis (we excluded the constant model from the analysis and used the 
mechanistic (excluding state-resetting) model as the baseline model). Results are reported in Table A2 and are 
consistent with our main results. Interestingly models with documentation performed worse than those 
without within 1-8 weeks-ahead predictions, but that effect was attenuated (and reversed in 5-8 weeks-ahead 
predictions) if the modelers were from academia. Note that the within R-squared (excluding the variation 
accounted for by the fixed effects) were small for all of the models. This is somewhat expected as there was 
much heterogeneity across model performance [19], and the purpose of this analysis was not to make causal 
inference about factors influencing model performance but to descriptively compare the model performance 
based on the broad categories that their methodological approaches fall into. These analyses generate model 
building hypotheses which we can further test in the simulation. To further investigate model heterogeneity 
we also conducted more detailed qualitative review for each model in Appendix 1. 

 
Table A1 
 (1) (2) (3) (4) (5) (6) (7) 
Outcome: 
Log(normalized 
absolute error) 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 
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Ensemble 0.125*** -0.00640 -0.0581** -0.0449* 0.0457 0.0808**  
 (0.0170) (0.0176) (0.0182) (0.0186) (0.0275) (0.0270)  
Non-mechanistic 0.141*** 0.0350** 0.000288 -0.00241 -0.00914 -0.0298 0.0170 
 (0.0113) (0.0118) (0.0122) (0.0125) (0.0179) (0.0176) (0.0181) 
Mechanistic with 
state-resetting 

0.0544*** -0.0751*** -0.136*** -0.174*** -0.171*** -0.184*** -0.105*** 

 (0.0126) (0.0130) (0.0134) (0.0136) (0.0147) (0.0143) (0.0155) 
Mechanistic 
(excluding state-
resetting) 

0.227*** 0.0988*** 0.0214 -0.00429 -0.0355** -0.0580*** -0.0415** 

 (0.0110) (0.0113) (0.0116) (0.0119) (0.0134) (0.0135) (0.0153) 
Constant -12.32*** -12.02*** -11.81*** -11.63*** -11.51*** -11.37*** -11.36*** 
 (0.00985) (0.0101) (0.0104) (0.0106) (0.0108) (0.0105) (0.0110) 
        
Observations 90,453 86,459 83,279 80,676 38,180 34,576 25,398 
Within R-squared 0.007 0.004 0.003 0.004 0.005 0.007 0.003 
Number of location-
time combination 

2,847 2,790 2,738 2,681 2,623 2,566 2,331 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 (1) (2) (3) (4) (5) (6) (7) 
Outcome: 
Log(normalized absolute error) 

Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 

        
Non-mechanistic 0.0292 0.0629* 0.107*** 0.0823** 0.0907*** 0.122*** 0.152*** 
 (0.0193) (0.0251) (0.0255) (0.0255) (0.0262) (0.0273) (0.0288) 
Mechanistic with state-resetting -0.244*** -0.231*** -0.177*** -0.169*** -0.128*** -0.120*** -0.151*** 
 (0.0179) (0.0177) (0.0179) (0.0185) (0.0190) (0.0205) (0.0220) 
Mechanistic (excluding state-
resetting) 

-0.0158 -0.125*** -0.0588** -0.0352 -0.00771 0.0661** 0.0737** 

 (0.0165) (0.0202) (0.0210) (0.0211) (0.0231) (0.0248) (0.0271) 
Constant -11.27*** -11.23*** -11.22*** -11.18*** -11.12*** -11.12*** -11.06*** 
 (0.0120) (0.0123) (0.0127) (0.0129) (0.0134) (0.0142) (0.0153) 
        
Observations 21,339 13,545 12,534 11,743 10,791 9,709 8,931 
Within R-squared 0.014 0.020 0.015 0.013 0.010 0.012 0.018 
Number of location-time 
combination 

2,273 2,195 2,129 1,951 1,898 1,830 1,724 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

Table A2 

 (1) (2) (3) (4) (5) (6) (7) 
Outcome: 
Log(normalized absolute error) 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

        
Ensemble -0.0571*** -0.0667*** -0.0464** -0.0151 -0.237*** 0.0167  
 (0.0156) (0.0162) (0.0168) (0.0172) (0.0413) (0.0456)  
Non-mechanistic -0.0564*** -0.0356*** 0.00495 0.0254** 0.0356* 0.0342* 0.107*** 
 (0.00766) (0.00823) (0.00859) (0.00879) (0.0170) (0.0172) (0.0200) 
Mechanistic with state-resetting -0.217*** -0.225*** -0.203*** -0.212*** -0.176*** -0.177*** -0.0473** 
 (0.0103) (0.0107) (0.0111) (0.0113) (0.0140) (0.0141) (0.0161) 
Academia 0.00394 0.0131 0.0204 0.0343* 0.285*** 0.0728 0.125** 
 (0.0121) (0.0126) (0.0134) (0.0138) (0.0372) (0.0409) (0.0440) 
Model documentation 0.183*** 0.192*** 0.175*** 0.172*** 0.159*** 0.195*** 0.348*** 
 (0.0128) (0.0134) (0.0138) (0.0141) (0.0196) (0.0194) (0.0250) 
Academia*Model documentation -0.0864*** -0.121*** -0.117*** -0.127*** -0.553*** -0.376*** -0.524*** 
 (0.0156) (0.0162) (0.0170) (0.0174) (0.0400) (0.0438) (0.0482) 
Constant -12.18*** -12.00*** -11.85*** -11.71*** -11.51*** -11.39*** -11.47*** 
 (0.00976) (0.0102) (0.0107) (0.0109) (0.0156) (0.0156) (0.0235) 
        
Observations 81,754 77,803 74,725 72,336 30,273 26,858 18,678 
Within R-squared 0.008 0.008 0.006 0.007 0.019 0.021 0.033 
Number of location-time combination 2,843 2,787 2,736 2,679 2,621 2,565 2,328 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 (1) (2) (3) (4) (5) (6) (7) 
Outcome: Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 
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Log(normalized absolute error) 

        
Non-mechanistic 0.108*** 0.157*** 0.145*** 0.103*** 0.0897** 0.0625 0.0771* 
 (0.0221) (0.0300) (0.0305) (0.0304) (0.0313) (0.0329) (0.0354) 
Mechanistic with state-resetting -0.141*** -0.127*** -0.139*** -0.127*** -0.105*** -0.169*** -0.218*** 
 (0.0208) (0.0249) (0.0254) (0.0254) (0.0266) (0.0283) (0.0305) 
Academia 0.157*** 0.0568 0.0862 -0.0232 -0.0589 -0.289 0.177** 
 (0.0474) (0.0501) (0.0493) (0.0510) (0.0944) (0.172) (0.0576) 
Model documentation 0.174*** -0.0686 -0.103 0.112 0.154 0.445*  
 (0.0319) (0.0575) (0.0570) (0.0631) (0.104) (0.180)  
Academia*Model documentation -0.321***       
 (0.0556)       
Constant -11.36*** -11.31*** -11.22*** -11.27*** -11.19*** -11.18*** -11.12*** 
 (0.0273) (0.0389) (0.0396) (0.0429) (0.0448) (0.0515) (0.0607) 
        
Observations 15,527 8,883 8,303 7,769 7,097 6,297 5,822 
Within R-squared 0.018 0.016 0.018 0.016 0.012 0.021 0.027 
Number of location-time combination 2,271 2,192 2,128 1,948 1,894 1,825 1,721 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05  
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Appendix 3: Comparison of models based on other measures 

In the paper we reported the model rankings based on regressions conducted for predictions at every 
projection horizon between 1 and 20 weeks. Those regressions include fixed effects for every combination of 
location and projection date, ensuring that idiosyncratic challenges in projecting specific locations and weeks 
is not driving the differences in prediction errors across different models. After controlling for those fixed-
effects the coefficient for each model represents the distinct contribution of that model to prediction errors. 
In fact, most models do not offer projections for every location, prediction date, or horizon, making such 
controls important for fair comparisons across models. Nevertheless, more direct comparisons of measures 
of prediction accuracy could inform more familiar ways to read the prediction data, and therefore present 
three of those comparisons below, followed by a replication of the ranking graph including the model names 
which were not part of the graph in the main paper. Whereas the ranking graph includes only models with 50 
predictions for a given horizon, for completeness the three graphs below include all models regardless of 
number of predictions. This may lead to some outliers, e.g. QJHong-Encounter has submitted fewer than 50 
in any horizon, and thus does not show up in the rankings graph, but performs very well where it has 
submitted a prediction as can be seen in the following graphs.  
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Head-to-Head Win Fraction 

For each location-week-horizon combination a few models may offer predictions, offering opportunities to 
see how models compare against each other in head-to-head battles. For example, if 5 different models are 
predicting deaths for the week of March 14, 2021 as part of a 10-week ahead horizon, those comparisons 
offer 4 win/lose options for each model in that set. A model that wins 3 of those 4 head-to-head 
comparisons gets a score of 0.75 from this location-week. For each model such win fractions, when averaged 
across all such comparisons for the 10-week horizon, would inform the quality of the model’s predictions at 
10-week ahead horizon. The following graph reports those average fractions across CDC model set and 
SEIRb family. Using this measure SEIRb outperforms other models in several longer time horizons while 
QJHong-Encounter (when it submitted a prediction), YYG-ParamSearch and IHME also perform very well 
(Figure A1). 

 

 

Figure A1: Comparison of performance of models based on head-to-head win fraction  
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Normalized Error Relative to Constant Model 

The next performance measure compares various models against the naïve (constant) benchmark. As 
discussed in the paper, the constant benchmark is not that naïve after-all: it is the straightforward prediction 
that accounts for endogenous behavioral feedback keeping the reproduction number around 1; it also beats 
many models both in the short and long-term horizons. Specifically, for each model we go through the 
following calculations: for each prediction (for a given location, week, and horizon) the per capita error for 
the constant model is deducted from the model’s per capita error to offer a comparative normalized error; 
then the median across all those comparative errors for each projection horizon is mapped (median is used 
given the fat-tailed distribution of these errors). Using this measure IHME and SEIRb are the top performers 
in longer time horizons (Figure A2) while Caltech-CS156, MSRA-DeepST, and QJHong-Encounter (when 
submitting a prediction), offer the best short-term predictions. 

 

Figure A2: Comparison of performance of models based on normalized error relative to constant model  
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Absolute Prediction Error (Population Normalized) 

The next detailed graph reports the absolute prediction error (normalized by location populations, in 
Death/Million/Week). For each model and each horizon, we report the median error across all locations and 
projection dates for which that model has submitted a prediction. It is noteworthy that this metric leads to 
somewhat different rankings compared to other measures: because each model has submitted predictions for 
only a subset of locations, projection dates, and horizons some may be competing on harder forecast tasks 
than others. This problem was partially addressed in the first two graphs by comparing models against each 
other (in Win fraction measure) or comparing against a constant model (in the second graph above). It was 
also more explicitly addressed by including fixed effects (comparing against mean) for each location-
projection date-horizon in the primary regressions (used in the main ranking graph). 

 

Figure A3: Comparison of performance of models based on population-normalized absolute error   
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Appendix 4: Model Documentation 

I- Model formulation 

For the purpose of parsimony, we develop a very simple model. Consistent with conventional SEIR models, 

the population (𝑁) is represented in four stocks of Susceptible (𝑆), Exposed (𝐸), Infectious (𝐼), and Removed 

(𝑅) (eq. 1-4).  

𝑑𝑆

𝑑𝑡
= −

𝛽𝑆𝐼

𝑁
  

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
−

𝐸

𝜏1
   

𝑑𝐼

𝑑𝑡
=

𝐸

𝜏1
−

𝐼

𝜏2
  

𝑑𝑅

𝑑𝑡
=

𝐼

𝜏2
  

(1-4) 

where 𝛽 is transmission intensity, 𝜏1 is exposure period, and 𝜏2 is infection period from symptom onset to 

recovery or death. In this simple representation, daily death of 𝑓 can be represented as a fraction of removal 

rate, where the fraction, 𝑖, is referred as infection fatality rate (eq. 5) 

𝑓 = 𝑖
𝐼

𝜏2
          (5) 

The transmission intensity of 𝛽 which determines the speed of the spread of the disease, and the reproductive 
number, should change overtime, and in fact that is the main difference between our SEIRb model and 

others. Specifically, we expect 𝛽 to decline and people practice more NPIs as perceived risk of death (𝑓′) 

increases, i.e., 
𝑑𝛽

𝑑𝑓′ < 0. Consistent with the literature that finds change in weather influences transmission 

[30], we include weather impact of 𝑤 in the formulation of transmission intensity. Equation 6 shows how we 
represented this relation in one of its simplest formats:  

𝛽 = 𝛽0𝑤
1

(1+𝛼𝑓′)𝛾        (6) 

For the weather impact of 𝑤, projections from a previous study [30] is used in our comparisons. Specifically, 
we start with the “Covid-19 Risk factor due to Weather” (CRW) that was publicly released in May 2020, and 

use a transformation of that factor (𝑤 = 𝐶𝑅𝑊2.64) based on other modeling work [18] that had found the 
CRW factor to be conservative in reflecting the impact of weather on transmission. 

Equation 6 closes a balancing feedback loop from daily death rate to future transmission intensity and 

consequently future exposure, onset, and death. In this relation, 𝑓′ is simply modeled as a lagged variable of 

𝑓, daily deaths, assuming public risk perception is a lagged function of confirmed death cases. Perception 
adjustment for increasing and decreasing death may be different, thus we include two lag times for upward 

(𝜏𝑈) and downward (𝜏𝐷) adjustment of 𝑓′, both estimated from model calibration: 

   
𝑑𝑓′

𝑑𝑡
=

𝑓−𝑓′

𝜏𝑅
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𝜏𝑅 = {
𝜏𝑈  𝑖𝑓  𝑓 > 𝑓′

𝜏𝐷  𝑖𝑓 𝑓 ≤ 𝑓′          (7) 

II- Model Calibration 

Model calibration is done separately and independently for each location (53 states and territories of USA 
with population over 200,000) and estimation/projection date (Tf: the end of each Saturday starting on May 
2, 2020 and ending on March 13 2021). Estimation is pursued maximizing the likelihood of observed Cases 
and Deaths for each location starting from an initial time for data inclusion (T0: when the official number of 
cases/deaths respectively exceeds 1e-6/1e-8 per day as a fraction of location’s population, or the beginning of 
May 2020, whichever comes first) until the estimation/projection date (Tf). We use a Negative Binomial 

likelihood function for both cases and deaths (xvt and yvt(𝜃): where x is data, y(𝜃) is model predictions for 

data given the unknown parameter vector 𝜃; t is the day and 𝑣 ∈ [𝑖, 𝑑] denotes the cases/deaths; we smooth 
out weekly cycles by using 7-day moving averages for death data): 

𝐿𝐿(𝜃, 𝜆𝑣) = ∑ ∑ −
ln(1+𝜆𝑣𝑥𝑡𝑣)

𝜆𝑣
+ 𝑙𝑛Γ (𝑥𝑡𝑣 +

1

𝜆𝑣
) − 𝑙𝑛Γ (

1

𝜆𝑣
) − (𝑥𝑡𝑣 +

1

𝜆𝑣
) ln(1 + 𝜆𝑣𝑦𝑡𝑣(𝜃)) +

𝑡=𝑇𝑓

𝑡=𝑇0𝑣

𝑥𝑡𝑣(ln(𝑦𝑡𝑣(𝜃)) + ln(𝜆𝑣))        (8) 

 

In this function Γ(z) represents the natural logarithm of the generalized factorial function for z-1 

(𝑙𝑛Γ(𝑧 + 1) = ln (𝑧!) for integer z). Predicted deaths (𝑦𝑡𝑑(𝜃)) come directly from the SEIR model described 
above.  

Two additional features inform the estimation process (but not projections, which come purely from the 

SEIRb model described above). First, before the projection date (Tf) the perceived risk, 𝑓′, uses the actual 

data (𝑥𝑡𝑑) rather than simulated values for deaths. That is we use the following equation instead of equation 
7: 

𝑑𝑓′

𝑑𝑡
=

𝑥𝑡𝑑−𝑓′

𝜏𝑅
          (9) 

Second, we use the following equations to predict cases (𝑦𝑡𝑖(𝜃)): 

𝑦𝑡𝑖(𝜃) =
𝛽𝑆𝐼𝐷

𝑁
          (10) 

𝑑𝐼𝐷

𝑑𝑡
= 𝑥𝑡𝑖 −

𝐼𝐷

𝜏2
           (11) 

Essentially, the data for measured infections flows into a stock (ID) that parallels the model-simulated 

infection rate (that is, it flows out with the same time constant of 𝜏2), and this stock of “measured” infectious 
population is used to predict expected “measured” infections based on model generated transmission 
intensity and susceptible fraction. This approach enables using measured case data to inform the parameters 
going into transmission intensity (most notably the response function parameters) without worrying about 
ascertainment rates which likely are far below 100% and vary across locations. 

The vector of estimated model parameters (𝜃) and the ranges we use for each in the calibration are listed in 
Table A3. 

Table A3 
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Parameter  Range Units Explanation 

𝛽0 [0.1-4] 1/Day Basic Transmission Intensity 

𝛼 [0.01,100] Day/Person Sensitivity to death 

𝛾 [0,5]  Death risk diminishing impact 

𝜏𝑈 [1,100] Day Time to adjust risk perception upwards 

𝜏𝐷 [10,400] Day Time to adjust risk perception downwards 

T0 Oct 15, 2019-Mar 3, 2020 Day Patient zero arrival time 

i [0.003-0.01]  Infection fatality rate 

 

We also estimate two parameters regulating the shape of the negative binomial distribution (𝜆𝑣), leading to a 
total of 9 estimated parameters for each location and estimation/projection date for the SEIRb model. Other 
variants include the same or fewer parameters (SEIRb-NoB: 5; SEIRb-NoW: 9; SEIRb-NoRst: 9) but 
otherwise follow the same exact calibration process. 

Maximization of the likelihood function in equation 8 is pursued using Powell Direction Set method built 
into Vensim ™ simulation software. For each location we conduct one initial calibration for the last 
estimation date (March 13, 2021) with 15 different random start points for unknown parameters. For all other 
estimation dates we use 5 different start points but also include the parameter setting found in the next 
estimation date. This process enhances our confidence in finding good optimization solutions while keeping 
the computational costs to a minimum. Overall all the 2436 (=53*46) estimations for SEIRb model could be 
completed in about 4 hours on a regular desktop when compiled and parallelized over 10 cores.  

III- State resetting 

The basic idea of state resetting is to ensure projections start from the right level given the most recent data 
on cases and deaths. Various data fusion, smoothing, and filtering methods exist to leverage current data to 
offer good, even optimal, estimates for state variables in a model. Those methods can enhance both model 
estimation and projections, however, they are computationally expensive and their elaborate setup may mask 
the basic benefits achievable from more simple state resetting schemes. We therefore opt for using a simpler 
approach in which only once, at Tf, we reset the two relevant state variables of E and I to their likely values, 
E* and I*, given recent deaths and cases. Specifically, we use the following equations to calculate E* and I*: 

𝐸∗ =
𝑥𝑑

∗ (1+𝑠𝐸)

𝑖
𝜏1  

𝐼∗ =
𝑥𝑑

∗ (1+𝑠𝐼)

𝑖
𝜏2  

𝑑𝑥𝑣
∗

𝑑𝑡
=

𝑥𝑡𝑣−𝑥𝑣
∗

𝜏𝑎
 ; 𝜏𝑎 = 7 days 

𝑠𝐸 = 𝑤𝑑𝐸𝜎𝑑 (
𝜏1

2
+ 𝜏2) + (1 − 𝑤𝑑𝐸)𝜎𝑖 (

𝜏1

2
+ 𝜏𝑎)  

𝑠𝐼 = 𝑤𝑑𝐼𝜎𝑑 (
𝜏2

2
+ 𝜏𝑎) + (1 − 𝑤𝑑𝐼)𝜎𝑖 (𝜏1 +

𝜏2

2
+ 𝜏𝑎)  

𝑤𝑑𝐼 =

2

𝜏2
1

𝜏1+
𝜏2
2

+
2

𝜏2
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𝑤𝑑𝐸 =

1

𝜏1+
𝜏2
2

1

𝜏1+
𝜏2
2

+
2

𝜏2

  

𝜎𝑣 =
𝑥𝑡𝑣−𝑥𝑣

∗

𝜏𝑎|𝑥𝑣
∗|

  

           (12-19) 

The basic idea behind these equations is to calculate expected E and I state variables based on (recent) death 

rate (𝑥𝑑
∗ ) and adjust that approximation based on the expected slope of E and I (sE and sI) calculated using the 

observed slopes of cases (𝜎𝑖) and deaths (𝜎𝑑). 

IV- Important simplifications and improvement opportunities 

The SEIRb model is very simple. It is built only to test the usefulness of three features we find correlate with 
the predictive quality of various models, and by design, to exclude various other features which could further 
enhance a predictive model. Here we provide a partial list of those missing features, focusing on mechanistic 
models (elaborating on alternative curve-fitting models goes beyond the scope of this paper). Since we have 
not tested the features below we cannot comment on their relative value in terms of enhancing predictive 
power, but we suspect several from this list could improve upon SEIRb’s performance. Indeed, the model 
“IHME-CurveFit” outperform SEIRb over longer time horizons, and benefit from incorporating a few of 
these features. However, several other models do benefit from a subset of these features and yet do not show 
notable improvements over SEIRb, thus we do not imply that incorporating all these features would tend to 
enhance a model’s predictive power.  

Model Structure 

- Capturing operational mechanisms of relevance 

o Loss of immunity among those recovered, reinfections, and potential reduction in severity of 

disease in future infections 

o Hospitalization, treatment, and critical care capacity 

o Testing, changes in testing capacity, and its impact on ascertainment and risk response 

o Changes in demand for testing based on recent cases and deaths 

o Prioritization of testing and treatment capacity based on symptoms and other factors 

o Incorporating travel networks between different locations and importation of cases from 

abroad 

- Modeling at more granular levels 

o Modeling at county (vs. state) level 

o Disaggregating based on age groups and high vs. low risk groups 

o Disaggregating based on severity of disease, including asymptomatic transmission 

- Capturing additional feedback mechanisms 

o Changes (reductions) in Infection Fatality Rate with accumulation of deaths due to changes 

in behavior among higher risk groups (e.g. elderly), improved treatment, and depletion of 

most at-risk populations (e.g. nursing homes). 

o Changes in behavioral response due to adherence fatigue 

o Emergence of new variants and endogenous changes in transmissibility of the SARS-CoV-2 

virus 

Data Sources 
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- Including data for testing 

- Including data for hospitalization and ICU visit 

- Including data for mobility changes in each location 

- Incorporating data for mobility across locations 

- Incorporating data for government policies and mandates, and their removal over time 

 

Model Estimation 

- Representing delays in reporting of cases and deaths 

- Estimating various assumed model parameters (e.g. 𝜏1, 𝜏2, 𝜏𝑎) 

- Estimating the impact of weather factors on transmission directly  

- Jointly estimating model parameters across states, using hierarchical Bayesian methods 

- Using more sophisticated likelihood functions to account for interdependency over time and across 

locations in the observed data 

- Using more sophisticated optimization algorithms and more computational power to decrease the 

chances of converging to local peaks in the parameter space 

 

Fine tuning for prediction 

- Testing alternative model structures to pick the one that offers better predictions  

- Testing alternative assumed parameters to pick the set offering better predictions 

- Adopting different model structures for different locations to enhance prediction 

- Adopting ensembles of models to increase predictive robustness 

State resetting 

- Using particle filters, extended or unscented Kalman filters, or other filtering methods for state 

resetting 

- Also resetting other state variables (e.g. perceived risk) based on recent cases and deaths 
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Appendix 5- Additional Analyses on Model Performance 

In this section we further assessed the models’ performance using alternative metrics as well as by different 
periods. First we adopted Interval Score (IS) based on the 95% prediction interval as the outcome [22], which 
summarizes each 95% prediction interval as a single number and is penalized by not containing true death as 
well as wide intervals. We do not use this metric in the main analysis because determinants of confidence 
interval accuracy are not the topic of our study. We replicated our main analysis for study 1 (see details in 
Appendix 2) comparing IS (normalized by state population) for each model in the CDC repository.2  Results 
were summarized in Figure A4, which were largely consistent with the one in the main paper, but showed a 
larger advantage in model performance for compartmental models with state-resetting (compared to other 
model categories).  

 
Figure A4: Death projection performance of the CDC model set over different time horizons compared to a 
constant model based on Interval Score. 

To provide insights on whether timing of the prediction impact each model’s performance and if certain 
models are better at predicting turning points (e.g., emergence of a new peak), we explored each model’s 
performance for two subsets of forecasts, based on whether they were made pre- or post- turning points. 
Specifically, we divided the death time series for each location into different segments marked by turning-
points in the (smoothed) death rates: each segment starts from one turning-point (maximum/minimum) and 
ends at the next. We then divided all predictions into two groups: those where the prediction date (the date at 
which prediction is done) and target date (the date for which a model is predicting the number of deaths) are 
within the same segment (pre-turning) or in different segments (post-turning). We replicated our analyses in 
Fig. 1B and Fig. 3C for each group. This approach allows us to quantitatively assess the types of models that 
are better in predicting death before/after reaching the turning points (extremums). 

                                                           
2 As constant model only contains point estimates, we constructed the width of its prediction interval in each location-
horizon-projection date combination to be the median of the prediction interval width for all CDC models in the same 
location-horizon-projection date combination. This choice does not impact how the performance of CDC models in 
different categories compare to each other. 
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Fig. A5a and A5b compared the performance of all models in CDC repository and the results showed that: 
(1) as expected, all models performed worse when there were turning points in upcoming death trends, but 
compartmental models with state-resetting still performed best overall; (2) as before compartmental models 
without state-resetting performed worse than non-mechanistic models in the short term, and their advantage 
grew with forecast horizon; however, this trend was more salient for predictions post-turning points. We 
concluded that there might be some evidence about additional benefits of compartmental models in forecasts 
that should foresee upcoming turning points but this evidence is at best indicative.  
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Figure A5. Death projection performance of the CDC model set over different time horizons compared to a 
constant model before turning points (a) and after turning points (b) (week 1 was excluded from Fig. A5b for 
consistent scales on Y-axis across figures). 

  

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0

w
1

1

w
1

2

w
1

3

w
1

4

R
el

at
iv

e 
Er

ro
r 

(B
as

e:
 C

o
n

st
an

t 
M

o
d

el
)

Prediction Horizon (Week)

(a) Predictions Pre-Turning Points

Ensemble

Non-mechanistic

Compartmental with state-
resetting

Compartmental no state-
resetting

Constant model

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
1

0

w
1

1

w
1

2

w
1

3

w
1

4

R
el

at
iv

e 
Er

ro
r 

(B
as

e:
 C

o
n

st
an

t 
M

o
d

el
)

Prediction Horizon (Week)

(b) Predictions Post-Turning Points

Ensemble

Non-mechanistic

Compartmental with state-
resetting

Compartmental no state-
resetting

Constant model



Supplementary materials 

22 
 

We also replicated the analysis in Figure 3C to evaluate how performance of SEIR-b and related models 
compared with other models in CDC repository based on the same definitions of segments and pre- vs. post- 
turning point forecasts. The results in Fig. A6a and A6b showed that the top performing models (IHME and 
SEIRb) remain at the top for the longer time horizons in both pre- and post-turning points. Thus we found 
no strong support for the hypothesis that behavioral models are distinctly better post-turning points. 
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Figure A6. Forecast quality ranks for CDC model set and SEIRb based on regressing Ln(Per capita projection error) 

against models, controlling for location-horizon-week combinations (a) pre- and (b) post- turning points. Color codes: 
compartmental models without state-resetting (blue); with state-resetting (black); non-mechanistic (red); agent-based 
(green); and ensemble (yellow). 

  

(pre- turning points) 

(post- turning points) 
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Appendix 6- Data and Replication Instructions 

A zip file provides both the models and the data used in this paper, offering opportunity to replicate and 
extend our results.   

 

 

 

 

 

 

 

 

https://www.dropbox.com/s/69cskjkz06trq82/V16Docs.zip?dl=0

