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Abstract

To better absorb structural complexity of real world systems, a hierarchical modeling
approach is needed. Using the cyber-physical modeling language Modelica, a recursive
system of systems approach to system dynamics modeling can be applied with all the
benefits a component-based, object-oriented modeling environment has to offer. In this
paper we will take a closer look at the free Business Simulation Library for Modelica,
which unlike earlier libraries makes use of acausal, physical connectors. In such an
environment, modelers typically do not need to write equations, instead they connect
pre-built, reusable components with the additional benefit, that connections observe the
fundamental distinction between information and material flows in system dynamics.
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Introduction

Subsystem diagrams showing the main subsystems and their interconnections provide a
convenient means to represent complex systems at a higher level of abstraction in system
dynamics (SD), see Morecroft (1982). Typically, the main subsystems will themselves consist
of interconnected systems and ideally a hierarchical representation of a system’s structure
(Figure 1) is needed to absorb its structural complexity (Myrtveit, 2000). Stafford Beer’s viable
system model provides a good example for this use of recursion in organizational cybernetics,
see Schwaninger and Ríos (2008).

In a component-based modeling environment, modelers will typically connect pre-built
submodels—usually referred to as “components”—to each other and adjust their parameters,
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if necessary. In a hierarchical, object-oriented modeling environment, a complex model will
furthermore be built in a nested fashion, exemplified by Figure 1, where the diagram for model
M0 will just show three components (M1, M2, M3).

Figure 1. Schematic diagram of nested model structure with connectors and connections

Components are connected to each other via interfaces (orange dots), which can be thought
of as the modeling equivalent to "connectors" for technical systems, e.g., plugs or sockets. In a
hierarchical modeling environment, we will not only need to connect components at the same
level, e.g., M1 and M2, but also connect outside to inside connectors, e.g., the connector for M2
is connected to an interface of the interior component M7. The advantage of clear interfaces
will be that we might simply replace one submodel with another one, which has compatible
interfaces. The far reaching benefits, e.g., modeling efficiency and component reusability,
of an object-oriented extension to system dynamics with a hierarchical, component- and
interface-based approach has already been fully recognized and outlined by Myrtveit (2000).

Unfortunately, fulfilling the promise of object-orientation with regard to reusability of com-
ponents including inheritance hierarchy and polymorphism for SD appears to be a difficult
endeavor, see Sotaquira and Zabala (2004) for a review of object-oriented approaches in SD
including Myrtveit’s. Elmasry and Größler (2018, p. 473), for example, still complain: “system
dynamics modelling software packages are ‘modularity unfriendly’.” In addition, there also
seems to be some kind of divide between modeling and simulation in the natural/physical
sciences and the social sciences, e.g., SD does not track energy flows simultaneously with
material ones, putting it at a disadvantage with regard to modeling physical systems (Cellier,
2008).

In this paper, we will start with a quick introduction to the cyber-physical modeling language
Modelica1 (Modelica Association, 2021) and clarify misconceptions that are present in our
field, which appears to have largely ignored Modelica.2 We recommend Zimmer (2016) and
ultimately Fritzson (2014) for a more thorough introduction to the language and its applications.
We will then examine, how hierarchical, component-based modeling can be utilized for SD by
embracing acausal (physical) connectors, a core concept of the language, which has not been
done in the earlier System Dynamics library (Cellier, 2008) for Modelica. To better understand,
how and why acausal connectors are used in Modelica, we will give a short introduction to
object-oriented modeling of cyber-physical systems and relate this to the elementary building
blocks of SD simulation models. Finally, we will examine, how this object-oriented, component-
based modeling approach deviates from conventional modeling approaches. For this purpose,
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we will compare illustrative, conventional SD modeling examples with semantically identical
ones built in Modelica. In this paper, we will not look at dynamic behavior, instead our focus
will exclusively be on different approaches to represent a system’s structure. After all, structure
precedes behavior.

From writing equations to connecting components

It is useful to illustrate the basic syntax of a programming language by starting with a simple
“Hello, World!” program. Applied to the dynamical world of SD, this would arguably amount
to implementing a model of exponential growth for a population residing in a single stock.
Listing 1 shows a textual model of world population growth written in Modelica using readily
available data (Central Intelligence Agency, 2022). It appears reasonable to assume that this
textual model will be understood by SD practitioners easily, once it has been clarified that
der(population) is a reference to the stock’s first derivative with regard to time, i.e., its net flow.
This immediate familiarity highlights the fact of Modelica indeed being a dedicated modeling
language for dynamical systems.

Listing 1. Population model

model PopulationModel "Simple model of population dynamics"
// parameters
parameter Real initialPopulation(unit = "people") = 7.8e9;
parameter Real birthRate(unit = "1/yr") = 18.1e-3;
parameter Real mortalityRate(unit = "1/yr") = 7.7e-3;
// stocks
Real population(unit = "people");
// flows & auxiliaries
Real reproducing(unit = "people/yr");
Real dying(unit = "people/yr");

initial equation
population = initialPopulation;

equation
// flows & auxiliaries
reproducing = population * birthRate;
dying = population * mortalityRate;
// net flow for stocks
der(population) = reproducing - dying;

end PopulationModel;

What may not be so obvious is the use of equations (LHS = RHS)3 instead of assignment
statements (LHS := RHS) in Modelica, which is a primarily equation-based modeling lan-
guage (Fritzson et al., 2020, p. 19). In fact, the PopulationModel could be simulated without
any problem, if we were to use 1/population = birthRate/reproducing and 1/population =

mortalityRate/dying to define the flows in lieu of the equations in Listing 1. We could also have
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used der(population) = 0 in the initial equation section to set up the model in equilibrium,
which in this case would, of course, only find the trivial solution4 (population = 0) of the initial
value problem.

Modelica allows the use of algebraic next to differential equations of motion in models.
Accordingly, most Modelica environments employ differential algebraic equation (DAE) solvers
like DASSL (Petzold, 1982) by default. In this regard, we need to clarify the statement by Sovilj
et al. (2021, p. 227) that “a general-purpose and versatile solver can be slow for simple SD
problems.” First, problems in SD do not always remain “simple,” e.g., stiffness may be an issue
in a model, models may be hybrid. Secondly, while speed might be an issue, convenience as
in setting up models in equilibrium and solving algebraic equations5 within a model need to
be considered as well. Thirdly, Modelica as a modeling language is completely agnostic with
regard to the method of solution and most environments offer a choice of solvers, including fast
and simple fixed-step Euler. We should also mention that modern solvers like DASSL adapt
their integration step size during a simulation run conditioned upon a given error tolerance.
A more comprehensive benchmark study for different models and solvers might therefore
be a worthwhile endeavor for future research; in such a study numerical errors need to be
considered complementing speed as to make a performance comparison truly meaningful.

Since a model and the method used to simulate it, i.e., to solve the system of equations, are
strictly separated in Modelica, using the equivalent of dt or TIME STEP in equations is illegal.
Models are always set up in continuous time, compatible with variable-step solvers. Should we
wish to address an instance in time or a sequence of instances in time we will need to make use
of events6, e.g., when time > 2 then <statements> or when sample(startTime,samplingPeriod)

then <statements>.

Figure 2. Component-based, graphical model of population growth

Using pre-built components from the free Business Simulation Library (BSL) (Reichert,
2022) for Modelica, an equivalent graphical model for population growth (Figure 2)7 can be
built by dragging & dropping their representative icons onto a canvas (model diagram). In this
case, parameters like the fractional rates or the initial value for the stock are defined locally,
i.e., within the components, and can be set using windows and dialog tabs in the modeling
environment.

A corresponding textual model is automatically built in the background (Listing 2).8 For exam-
ple, a modification equation (initialValue = 7.8e9) is used to initialize the stock population, an
instantiation of the library’s InformationLevel class. There are no mathematical equations in the
model’s equation section, instead connection equations are established by connecting compo-
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nent interfaces in the model diagram: connect(reproducing.massPort, population.inflow) and
connect(population.outflow, dying.massPort).

Listing 2. Component-based, textual model of population growth

model PopulationModel_Components "Simple model of population dynamics"
// classes (components) used in the model
import BusinessSimulation.SourcesOrSinks.ExponentialGrowth;
import BusinessSimulation.SourcesOrSinks.ExponentialDecline;
import BusinessSimulation.Stocks.InformationLevel;
...
// modfications for component instances
InformationLevel population(initialValue = 7.8e9) "World population";
ExponentialGrowth reproducing(hasConstantRate = true, fractionalRate = 18.1
e-3);

ExponentialDecline dying(hasConstantRate = true, fractionalRate = 7.7e-3);
equation

// no mathematical equations needed
connect(reproducing.massPort, population.inflow);
connect(population.outflow, dying.massPort);

end PopulationModel_Components;

Everything is a system

In explaining the semantics of Modelica and the BSL, we could loosely claim that in our models
everything is a system and that all systems are connected to each other via clearly specified
interfaces, i.e., connectors. While we simply used orange dots in Figure 1, the basic stock and
flow structure—entities are moved from one stock to another at a specified, constant rate—in
Figure 3 has four kinds of connectors, shown as blue triangles and purple squares, which are
either filled or empty.

Figure 3. Basic stock and flow structure
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From a system of systems perspective a stock may be defined as an elementary system9

that—in a physical sense—stores matter, energy or information (“mass” or simply "matter").
A stock will have two connectors–shown as filled squares–called inflow and outflow, which
can be connected to flows in order to receive or supply matter. To make the passive nature of
stocks being states more apparent, stocks are colored in red.

A flow on the other hand is an elementary system that pulls or pushes matter from one
stock to another at a specified rate, which may be given either as a constant parameter
or via an input connector, i.e., as a continuous-time signal. Note, that material connectors
(ports) for stocks and flows differ: Flow ports—shown as empty squares (we may think of the
cross-section of a pipe)—can only be connected to stock ports, and vice versa. To visually
highlight their activating process nature, flows are colored in green.

Information is exchanged using input (filled triangles) and output (empty triangles) connec-
tors. Stock and flow components will use output connectors to report the amounts contained
and the rates of flow, respectively. Since converters are elementary systems that exclusively
process information, they will only have input and output connectors. While connectors for
information exchange clearly show the direction of flow, i.e., causality, material connectors
(ports) do not—they are essentially acausal. Since components are pre-built models, it should
immediately make sense that causality is pre-determined by the connector used, as we will
know whether information is needed as input or provided as output by a component at the
time it is built—irrespective of its actual connections within a model. Hence connections in
Modelica models are always undirected edges in graph-theoretical terminology.10

Acausality, e.g., connecting two systems without a clear indication of the direction of flow,
is unusual in SD, which is rather fundamentally tied to causality. But causality—especially
when modeling physical systems—impedes reusability of pre-built components, which is one
of the great advantages and aims of object-oriented modeling.11 Indeed, if we think about
the physical analogy of tanks and pumps connected to each other, then a tank component
will, of course, have pipe fittings that can be connected to either the suction or the discharge
pipe of a pump. The reusability of pipe fittings arises from the fact that they do not “mind” the
direction of flow within the pipe they are connected to.

It should be noted that the directional indicators shown within a stock’s icon, i.e., gray
double arrowheads next to the connectors, are only suggestive; we may certainly connect a
bidirectional flow to any such port. It would spoil reusability, were we to need separate stock
components with bidirectional connectors. Whenever we have a clear direction of material
flow, it will be indicated visually either by a component’s icon—as is the case for the Transition

flow flowAtoB in the diagram—or by using small arrows12 above connections as in Figure 4.
In Figure 4 the basic stock and flow structure has been turned into a hierarchical model, i.e.,

it has been split into two subsystems, of which only systemA has a flow port; the outflow from
stockA now resides inside that subsystem. Abstract symbols on the subsystems’ icons are
used to give visual cues as to what structure is hidden within the components. From looking
at the diagram (Figure 4) alone, without an indicator of the direction of flow, we would not be
able to tell whether systemA pulls material from a materials inventory as in a pull supply chain
or whether systemA delivers material to a materials inventory as in a push supply chain setting.
This principal ambiguity exemplifies the reusability—or generality—of a system’s architecture,
i.e., the choice of its interfaces.
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Figure 4. Basic stock and flow structure as hierarchical system

Inspecting the structure within each subsystem in Figure 5 more closely reveals how
a subsystem’s outside connectors are connected to corresponding inside connectors13 of
embedded structure. Connections, i.e., connection equations, between outside and inside
connectors effectively are treated as if a connection to the outside connector were directly con-
nected to the linked inside connector. For example, connect(systemA.outflow, systemB.inflow

) effectively connects systemA’s outflow (systemA.outflow) to the embedded stock’s inflow
(systemB.stock.inflow).

(a) Internal structure for systemA (providing system)

(b) Internal structure for systemB (receiving system)

Figure 5. Providing and receiving system

We should mention, that systemA has a vector output (indicated by a dot inside the connector
symbol), which will report the amount in the stock as well as the rate of outflow from that stock.
Also, the initial values for the stocks have now been made parameters at the subsystem-
level. Even though these parameters are given identical names, i.e., initialStock, in both

7



subsystems, their full reference makes systemA.initialStock clearly distinguishable from
systemB.initialStock.

The cyber-physical modeling language Modelica concisely describes—and documents—
how reusable structures, e.g., modules or molecules of structure, are designed and what
interfaces they offer for connections. Clearly, subsystems need to have dedicated "physical"
connectors as sending goods or receiving orders are different from sending or receiving
instantaneous information signals. Furthermore, acausal connections between stock and
flow ports in Modelica guarantee mass balance requirements: While rate information from
an information output connector can be connected to multiple input connectors, a flow port
cannot be connected to more than one stock port. Multiple flows connected to a single stock
port will also automatically be netted, i.e., all rates will be summed into a single net flow. Thus,
the clear distinction between material and information flows within SD is concisely carried
over to an object-oriented, component based modeling environment.14

Everything is a circuit—component-based, cyber-physical
modeling in a nutshell

So far, we have not explained why we only needed a single connection from reproducing to
population in Figure 2—after all, there is a minor feedback from stock to flow in exponential
growth, which seems to be missing in the diagram. We will answer this question—and explain
acausal connection semantics more generally—by taking a short excursion to cyber-physical
modeling. This section leans strongly on the works by Czichos (2019), Isermann (2005),
and Fritzson (2014), which are recommended for in-depth reading. Where possible, direct
references to specific sources have been added.

Figure 6. Principle structure of cyber-physical systems

In this paper, we will not make a distinction between “cyber-physical systems” (CPS) and
“mechatronic systems.” Instead we will use these terms synonymously, see Czichos (2019,
pp. 461-511) for a more concise definition of a cyber-physical system. CPS are integrated
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systems that combine mechanical/coupled systems, electronic systems, and control/informa-
tion theory. The typical structure of CPS is shown in Figure 6 (Isermann, 2005, p. 4; Czichos,
2019, p. 50).

Figure 7. Quadripole representation of a lumped-component model

Broadly speaking, technical systems from different physical domains (e.g., mechanical,
electrical, magnetic, hydraulic, thermal, and chemical systems) can be understood by using
electrical analogies, so that systems from different domains can be modeled as if they
were electrical circuits. In such an analogous treatment, spacial dependencies are usually
neglected and instead interacting systems with lumped parameters are considered, which
can be modeled using algebraic and ordinary differential equations.

Table 1. Energy carriers with associated potential and flow quantities

Domain Type Potential Flow Carrier

Electrical Voltage Electric Current Charge

Translational 1D Position Force Linear momentum
Rotational 1D Angle Torque Angular momentum

Flow, Hydraulic Pressure Volume flow rate Volume

Thermal Temperature Heat flow rate Heat

Chemical Chemical potential Particle flow rate Particles

The modern, object-oriented approach to modeling CPSs can be seen as an extension of
Henry M. Paynter’s (1961) bond graphs. In bond graphs, physical components are connected
to each other via bonds that represent the instantaneous flow of energy or power. Typical
technical components—other than mere sources or sinks—can be depicted as a quadripole
(Figure 7), i.e., an electrical circuit with four terminals (Czichos, 2019, p. 31). In Modelica an
acausal (physical) connector always consists of a pair of connectors: Each port in Figure 7
has one connector for a flow15 variable (e.g., electrical current) and another connector for the
potential16 variable (e.g., voltage being effort in the electrical domain). Table 1 shows how
potential and flow quantities are usually chosen for different physical domains in Modelica
libraries (Fritzson, 2014, pp. 745-746).

Technical systems are then described using the following elementary process elements:
sources, sinks, storages, couplers17, and converters. For example, couplers are responsible
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for the transport of energy, matter or information in a system, while converters change energy
input from one domain into energy output of another. Table 2 lists elementary system examples
for different domains (Isermann, 2005, p. 45; Czichos, 2019, p. 38).

Table 2. Exemplary process elements in different energy domains

Domain Sources Storages Couplers Converters Sinks

Mechanical water reservoir spring lever piston in cylinder shock absorber
wind flywheel joint aerofoil friction

transmission

Thermal solar radiation thermal
capacity

thermal
inductance

Peltier device cold
environment

heat of earth thermal
radiation

Thermo-
dynamics

combustion gas volume vaporization compression throttling

exothermic
processes

condensation expansion

Electrical accumulator capacitor el. conductor piezoelectric
actuator

resistance

electrical grid inductor transformer electric motor eddy current

Chemical exothermic
reaction

accumulator matter flow chemical
reaction

endothermic
reaction

Balance equations for stored masses, energies and impulses, constitutive equations, phe-
nomenological equations or entropy balance equations can be formulated according to
physical laws and give rise to algebraic or differential equations in Modelica (Isermann, 2005,
pp. 34-37). For example, in the electrical domain where we have the electical current i as flow
and voltage v as the potential, components with an in (positive) and out (negative) port18—like
resistors or capacitors—will have to meet the following equations:

C.in.i+C.out.i= 0 (1)

C.v= C.in.v−C.out.v (2)

C.i= C.in.i (3)

Equation (1) demands that what flows in must flow out, while (3) ties the component’s
current to the positive (in) port’s current. Equation (2) defines the component’s potential as the
difference of potentials at the ports. A simple, idealized resistor may then be defined using
Ohm’s law which adds the following equation to the general port equations (1)-(3), where R
denotes the component’s resistance:

C.v= C.R×C.i (4)
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Next to the before mentioned equations, which can be defined for components irrespective
of their place in a system, e.g., within a circuit, connecting acausal connectors of two separate
components in Modelica automatically generates connection equations. For acausal connec-
tors, these can be seen as generalizations of Kirchhoff’s laws for electrical circuits to other
domains (Fritzson, 2014, p. 39). Connecting the out-ports of components C1 and C2 with the
in-port of component C3 in Figure 8 establishes what is called a connection set, where each
port has potential p and flow f.

Figure 8. Potentials and flows in a connection set

For a connection set two types of equations are automatically created. Equation (5)
corresponds to Kirchhoff’s first law and guarantees that whatever flows out of a component,
i.e., the flow at a component’s port is negative, must enter at the connected port (flow at that
component’s port is positive). In other words, if the outflows C1.out.f and C2.out.f are known
(i.e., fixed), we will have made sure that the inflow into C3 is the sum of these flows simply by
connecting the components.

C1.out.f+C2.out.f+C3.in.f= 0 (5)

C1.out.p= C2.out.p= C3.in.p (6)

Kirchhoff’s second law (6) requires that the potential within a connection set remains equal.
If the potential is fixed for any of the ports in the connection set(C1.out, C2.out, C3.in), then it
will be fixed for the remaining ports.

Equations arising from component definitions, e.g., (1)-(4), and from connections, e.g., (5)
and (6), suffice to define a system of differential and algebraic equations simply by connecting
pre-built components in a diagram. With regard to models of CPS, dynamic behavior rather
strictly arises from a system’s structure.

System dynamics from a cyber-physical perspective

In system dynamics, flows are modeled without taking a corresponding potential into con-
sideration (Cellier, 2008). Nonetheless, Kirchhoff’s laws for physical connections can still be
applied and thus acausal connectors are used in the BSL for stock ports (Listing 3) and flow
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ports (Listing 4). The potential variable (stock), defined as part of these connectors, is simply
used to propagate the amount contained in a stock within a connection set.

Since flow ports must be connected to a single stock port, while stock ports cannot be
connected to each other, there can be no ambiguity: In any connection set there will be
only one stock port. Stock-related classes will be responsible for integrating given flows
connected to their ports as to determine the stock variable, while flow-related components
will set the rates of flows (rate). We can now understand, why only a single connection
between reproducing and population is needed in Figure 2 to model exponential growth: The
level information is obtained from the FlowPort connector. Note, that this additional flow of
information is indicated by blue arrows within the components’ icons.

Listing 3. Stock port connector

connector StockPort "Connector for stock components"
import BusinessSimulation.Units.Rate;
Real stock "Current amount of 'mass' in the stock";
flow Rate rate "Flow that affects the stock";
output Boolean stopInflow "= true, if nothing can flow into the stock";
output Boolean stopOutflow " = true, if nothing can flow out of the stock";

end StockPort;

Stock and flow port connectors in the BSL are, in fact, composite connectors19 as they have
causal connectors as well. Using Boolean flags (stopInflow, stopOutflow) a stock may signal
to any flow, that is connected to one of its ports, whether it can be filled or drained.

Listing 4. Flow port connector

connector FlowPort "Used to represent stock and flow connections"
import BusinessSimulation.Units.Rate;
Real stock "The current amount of 'mass' in a connected stock";
flow Rate rate "Flow that affects the stock";
input Boolean stopInflow "= true, if nothing can flow into a connected stock"
;

input Boolean stopOutflow "= true, if nothing can flow out of a connected
stock";

end FlowPort;

We can categorize the basic building blocks of system dynamics according to the same cat-
egories used for technical systems (Table 3). While this, of course, is not a valid classification
in a strict physical sense, the analogies may be close enough for descriptive purposes. In most
cases, it makes sense to consider the combination of a Cloud—in the BSL concisely shown as
a stock with infinite capacity—and a flow as physical sources or sinks next to mere clouds.
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Accordingly, processes of growth or decline at a system’s boundary, e.g., ExponentialGrowth
and ExponentialDecay, are found in the package SourcesOrSinks20 as well.

Table 3. Elementary classes of the Business Simulation Library

There are three types of stocks in the BSL. The unrestricted InformationLevel21 can be
drained below zero and filled up to infinity. The MaterialStock22 carries a plus sign in its
icon to indicate that there cannot be negative amounts in the absence of antimatter, while
the CapacityRestrictedStock23 is the only stock that really meets the physical analogy of a
bathtub, which cannot be drained below zero, i.e., its minimum capacity, nor be filled above its
maximum capacity.24

Unidirectional und bidirectional flows (Flows.Unidirectional25, Flows.Bidirectional26) are
listed as couplers. This is debatable, because they are active process elements, i.e., flows
can be used as actuators moving matter, energy or information according to rates determined
in the cybernetic sections of a model. Interactions (Flows.Interactive27) are categorized as
physical converters, because outflow and inflow are not directly coupled and there often is a
change in units, e.g., broken flows.

The two sensors (FlowPortSensor28, StockPortSensor29) shown as physical converters in
Table 3 below interactions need some explanation. In non-hierarchical system dynamics
environments, connecting two or more flows to a stock will introduce the rate variable to the
integral equation describing the stock. A concept like measuring a flow (or a stock) is unusual
in system dynamics.

When we are designing pre-built components, we will not know the name or number
of components that will be connected to a stock or flow port in advance. While we may
simply connect an outside stock port to an inside stock port as in Figure 5b to accumulate
arbitrarily many flows that are connected to the outside port, how can we obtain the rate
information for the incoming flow to process it—likely after smoothing—within an information
converter? Sensor components therefore are a rather inevitable addition to system dynamics
in a hierarchical, component-based modeling environment.
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With regard to information processing in the cybernetic sphere Converters30 need no further
introduction. The policy component symbol (MoleculesOfStructure.Policy31) below a converter
takes up the suggestion given by Morecroft (1982) to have a converter-like component to
clearly indicate decision making processes in diagrams.

The notion of InformationSources32 fortunately is as plausible as it is technical. ExogenousData
as well as typical test signals, e.g., a RampInput, can be found among these classes. The
ConstantConverter, listed here below the information sources, has been introduced by Forrester
(1961) and for this historical reason is still listed as a converter in the BSL; there is an equivalent
component called ConstantInput that fits into the new categorization.

The icon shown in the storage column in the cybernetic sphere corresponds to the one
typically used for information delays (e.g., Smooth, DelayFixed). In principle an InformationLevel

may certainly have been listed here as well, but the notion of storage in information process-
ing and computation seems different and thus stocks will typically be nested within policy
components or information delays—not warranting a listing of their own.

Structure explains behavior—if you can see it

It is a central tenet of system dynamics that a system’s structure causes its behavior in time.
Let’s start looking at deviations from conventional SD modeling by putting this tenet to a simple
test: Which of the two stock and flow diagrams33 (Figure 9) is a model of basic first-order stock
adjustment? Which of the constants C1 or C2 can be interpreted as setpoint of the balancing
feedback loop (B)?

(a) Model A (b) Model B

Figure 9. Two models that really differ (conventional SD notation)

It becomes immediately apparent that the graphical elements used in stock and flow
diagrams are not sufficient to unambiguously explain how rates of flow are determined.
Compare the diagrams in Figure 9 with those in Figure 10, which were produced using the
BSL and which are semantically identical to the ones shown in Figure 9. Modelica allows each
class, e.g., each component in a model, to have an icon of its own. This is most noticeable
with regard to converters. We immediately recognize that A1 calculates a gap between the
setpoint C1 and the amount contained in stock S in Model A. We also see that the output from
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A2 is added to the current rate of outflow OUT. In other words, we can verify that Model A is a
model of first-order stock adjustment without having to look at equations.

(a) Model A (b) Model B

Figure 10. Two models that really differ (BSL)

Icons can also reference parameter values: S exhibits the stock’s initial value (i.e., the
parameter initS), while the constant converters C1 and C2 directly show their numerical values.
Icons can further be used to reveal finer details, e.g., the division in Model B (A1) is guarded
against division by zero—the one in Model A (A2) is not.

Dynamic stocks versus flows with hidden stocks

Modeling delays is of central importance in SD and Forrester (1961) as well as Sterman
(2000) dedicate a whole chapter to this important topic in their seminal introductory works.
It also marks a central point of deviation for the BSL in comparison with conventional SD.
This becomes evident upon scrutinizing Figure 11, which presents two semantically identical
models of a basic third-order delay structure with two inflows. We may again point out that
the delay is rather hard to spot in Figure 11a and that its specific nature remains opaque,
e.g., the type of delay, the average delay time, and (if applicable) its order are invisible in
the diagram. More fundamentally, the convoluted causal links in Figure 11a suggest that the
structure shown in Figure 11b is missing out in this regard. But is it? Are there good reasons
for many SD tools having parted from the basic diagramming suggestion for higher-order
delays given by Forrester (1961, p. 88), which is rather similar to Figure 11b?34

As we have used exponential delays of third-order in both cases, we are undoubtedly aware
of the fact that three stocks have been “hidden” somewhere. In Figure 11a they are hidden
within the equation for outflow, i.e., Vensim’s Delay N function, and in Figure 11b they are
embedded within the stock, i.e., the BSL’s DelayN35 component.
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(a) Delay N (Vensim) used for outflow
(b) DelayN (BSL) used for stock inDelay

Figure 11. Third-order delay with multiple inflows

To clarify how a function like Delay N works in the case of a third-order delay, we can image
it as a kind of converter, which takes in information and computes the rate of outflow as its
output. In Figure 12 the hidden structure within the delay function is made explicit inside a
green box—reminding us of the fact that we are modeling a delayed flow. We have to pass
the sum of inflow1 and inflow2 to the function in order to arrive at the delay’s total inflow. We
also have to pass the initial stock value36 and the delay time.

Figure 12. Explicit structure for third-order delay comparable to Vensim’s Delay N function

It becomes immediately clear that this kind of “double-entry accounting” is a bit tedious
and error prone, e.g., it would be nice if inflows were added automatically. If we fill the stock
inDelay without passing the rate information on to the Delay N function, any amount entering
the stock via such an additional flow will never leave the stock. Draining the stock looks
temptingly easy as well, but is actually a bit involved; see Fang and Dangerfield (2004) for
how to do this consistently.
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Hiding (or nesting) the stocks within an aggregate stock component (Figure 13) appears to
be a more natural modeling solution as it simply “encapsulates” an explicit model of a material
third-order delay relieving modelers from having to manually add and link flow rates as they
will automatically be added according to (5). Another advantage of having explicit interfaces
for stock and flow connections is that simple modeling errors can be prevented: Using the
Boolean flag of the delay’s inflow connector (stopOutflow = true), the component does not
allow the stock to be drained at its designated inflow side.

Figure 13. Explicit structure for third-order delay comparable to BSL’s DelayN component

A closer look at the outflow of the delay structure in Figure 13 reveals a different kind of
causality with regard to the aggregated stock (Junglas, 2016). If we consider the structure
within the red DelayN box as a single stock, then it will be drained by a flow, whose rate is set
by the stock itself. Thus the normal “division of labor” for stocks and flows is changed as in this
case the stock will cover both tasks: setting the rate and integrating the connected outflow.

This structure can be generalized to the notion of a dynamic stock with a dedicated outflow

port (StockPort_Special) catching the eye with its red coloring (see the outflow port of inDelay in
Figure 11b). Dynamic stocks contain internal processes that are not made explicit in the model,
i.e., they are at a lower level than a subsystem with a stock and a flow port37 like systemA in
Figure 4. Dynamic stocks like DelayN, SimpleConveyor38, Conveyor39, PureDelay40, and Oven41

can only connect to flows with a matching port (FlowPort_Special); in the library, these currently
are the OutflowDynamicStock and SplitOutflowDynamicStock components. Special stock and flow
ports use the potential variable within the acausal connector to transmit the rate information
from the stock to its outflow. Since we cannot connect other flows than the before mentioned
unidirectional outflows, modelers cannot accidentally fill or drain dynamic stocks via the outflow
port.

Reaching higher levels of abstraction

Up to this point, we have addressed elements that—once physical connectors are understood—
have an immediate counterpart in SD and dedicated SD tools, e.g., stock and flow ports are
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simply interfaces for connecting these elementary building blocks. Using Modelica’s flexibility to
define composite connectors19 the BSL provides causal connector classes (StockInfoOutput42,
StockInfoInput43), that will report a record44 of information specific to stocks (Listing 5).

Listing 5. Record of stock information

record StockInformation "Record of information that can be collectecd from a
stock"

import BusinessSimulation.Units.{Time,Rate};
Real infoLevel "Current Level of stock";
Rate infoInflow(min = 0) "Current rate of inflow";
Rate infoOutflow(min = 0) "Current rate of outflow";
Rate infoNetFlow(min = 0) "Net-rate of flow";
Time infoMeanResidenceTime "Mean time of residence for elements in the stock
(-1 indicates infinite time for zero outflow)";

end StockInformation;

Each stock in the BSL has a structural parameter45 (hasStockInfoOutput) to activate a stock
information output connector, i.e., StockInfoOutput is a conditional sub-component of any stock
component. In Figure 14, which is an excerpt of the ManagementEmployment46 example that
ships with the library, the AbsoluteSensor47 component is used to read out the rate of inflow
(IN), the amount in the stock (S), the mean residence time (MRT), the net rate of flow (F), and
the rate of outflow (OUT). This information is then provided via separate information output
connectors.

Figure 14. Using the AbsoluteSensor component to read out stock information

Next to reading out a whole set of data related to a stock at once, we may also directly
connect stock information output and input connectors. In the full ManagingEmployment exam-
ple (Figure 15) the stock workforce, a DelayN, is directly connected to expertise, which is a
HinesCoflow48, a variation of the typical coflow structure used in SD (Hines, 2015, pp. 50-53).
To establish a coflow we only need to make two connections. Further more, a coflow has the
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structural design and appearance of a stock. The linear growth process gainingExperience,
which has a constant rate of 1 yr per year, can be directly connected to the inflow port of
expertise to model the workforce becoming more capable.

Figure 15. HinesCoflow using stock information connectors in the ManagingEmployment example

The diagram in Figure 15 also demonstrates how the diagramming suggestions by Morecroft
(1982) can be taken up using Modelica. The well known first-order stock adjustment structure49

(Hines, 2015, pp. 38-39) is compactly used within the recruitingPolicy component. As material
processes and reservoirs are clearly separated from the cybernetic structure of control—and
possibly unintended influences—the basic structure of cyber-physical systems (Figure 6)
becomes evident in the diagram.

At an even higher level of abstraction, stock info connectors can be employed to implement
quantitative causal loop diagrams (CLD) in Modelica as suggested by van Zijderveld50 (2007).
Figure 16 shows the HealTheWorld51 example that ships with the library (Bossel, 2004). The
variables (societalAction, environmentalLoad, consumption, and population) are recognizable
as simplified stocks (e.g., red boxes) with a single stock port and a stock information output
connector. Such high level abstraction indeed allows to model CLD similar to an electrical
circuit. In this example, the components in between stocks are elasticities (Elasticity52)

Accordingly, the balancing loop B1 expresses that any percentage change in population

will result in an equally valued percentage change in environmentalLoad, i.e., having the same
sign. Conversely, any percentage change in environmentalLoad would then cause a percentage
change in population with opposite sign, whose absolute value is just a tenth of the original
one.

Figure 17 exemplifies that such a loop introduces simultaneous equations using a similar
feedback loop between two stocks A and B, where εB,A denotes the A-elasticity of B and εA,B
denotes the B-elasticity of A. In the left hand diagram in Figure 17 we see that, to obtain the
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Figure 16. Causal loop model of world dynamics

fractional rate of growth for B, we have to multiply the A-elasticity of B (the elasticity for the
arrow from A to B) with the percentage change for A ( Ȧ

A ). The diagram on the right hand
side then introduces the reciprocal structure for applying the B-elasticity to obtain the rate of
growth for A. The cycle colored in red is a feedback loop without a stock, i.e., a simultaneous
equation.

While it is not impossible to solve simultaneous equations in SD software, it is not easy to do
and may sometimes even be impossible. In Modelica environments, the standard DAE solver
will solve both algebraic and differential equations in the model—no additional measures have
to be taken by the modeler.

In such a high level dynamical model, we can add a delay in the same way a resistor
is added in an electrical circuit. Nonlinearity may be introduced by using high level lookup
components. Such level of abstraction also appears amenable to metaprogramming, i.e.,
we may write more or less intelligent programs that will construct dynamic models. It is, for
example, straight forward to parse a verbal model consisting of statements like “if A grows by
a%, then B will shrink by b%” in order to come up with a quantitative CLD diagram. Since any
component in such a simple, preliminary model can at once be replaced by a subsystem with
more elaborate structure, the object-oriented approach to SD supports fast and evolutionary,
i.e., agile, model development.
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Figure 17. Simultaneous equations in a loop of elasticities

Conclusion

Looking back upon the complaints and desiderata expressed by Elmasry and Größler (2018),
we can now state—with some conviction—that all of this is precisely addressed by using
Modelica for SD modeling as presented here. The wish list proposed in their paper is almost
exactly matched by Modelica’s semantics.

Furthermore, we are gaining the full benefits of object-oriented development, including the
kind of model reusability that Sotaquira and Zabala (2004) missed in existing object-oriented
approaches. Employing Modelica we can: (a) inherit and modify structure to build new
components or to store scenarios; (b) easily and thoroughly test partial models; (c) re-use
pre-built components to more efficiently—and more reliably—build large-scale models; (d) use
structural parameters to build more general components, e.g., switch between using a constant
or a continuous-time input; (e) immediately replace model components or subsystems with
another variant, since we know that its interfaces match up, e.g., switch between different
policies in a model; (f) better document and present our models, as each class is documented
separately and links to the documentation of its components—the linked documentation in this
paper is a case in point; (g) mix discrete-event and continuous time simulation in our models;
(h) have better support for collaborative modeling; (i) use the standardized and industry-level
functional mockup interface (FMI) for model exchange and co-simulation.

As we have seen, it is important to have the clear separation between information and
material flows carry over to an object-oriented modeling approach. As a cyber-physical
modeling language Modelica is uniquely placed to enable this. Regarding speed and versatility,
we should mention that Modelica is a clearly specified, open modeling language. There are
proprietary as well as open source environments available to build Modelica models and
it is presently being implemented using the highly performant Julia programming language
(Elmqvist et al., 2021).

From a more idealistic perspective, we feel that Modelica fulfills the promise of systems
science in that we may mix different technical domains as well as system dynamics on the
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same modeling canvas. It stands to reason that it is easier for a versatile, cyber-physical
modeling language to accommodate SD than for dedicated SD environments to accommodate
cyber-physical modeling in comparable efficiency and elegance.

Notes

1. Modelica is a registered trademark of the Modelica Association.

2. Robert Powers (2011), to give a striking example, not once mentions Modelica or its free
System Dynamics library (published in 2002) in his thesis on object-oriented approaches
to managing complexity, which has a whole section on “previous approaches in SD.”

3. Left-hand side (LHS) and right-hand side (RHS).

4. To find a nontrivial solution in more involved models, we would need to "prime" the
solver with a nontrivial start value, for example, Real population(start = 10).

5. Algebraic equations in SD are often referred to as simultaneous.

6. Events in Modelica can be time or state events, i.e., an event may be triggered by the
amount in a stock crossing some threshold.

7. All Modelica models and diagrams in this document were produced using Wolfram
System Modeler Version 13.

8. For clarity, all the components used within the model have been imported from the
library first; it is not necessary usually.

9. An elementary system is atomic in the sense that we typically will not be inclined
to visually inspect its inner structure, which often consists of explicit equations—not
connected subcomponents.

10. Accordingly, order does not matter in a connection equation and connect(a,b) is strictly
equivalent to connect(b, a).

11. In cyber-physical models, acausality is more generally tied to using algebraic equations,
where it will not necessarily be clear in advance, which variables will be givens and
which will be unknowns in need of being solved for.

12. Such visual flow indicators are mere graphical annotations in diagrams.

13. See section 9.1.2 of the Modelica language specification for more detail (Modelica
Association, 2021, p. 110).

14. While some SD tools allow modularity and distinguish mass flow connections from
information flow connections to the author’s knowledge in all cases Figure 5a would
be showing a flow from the stock to a cloud, which is clearly misleading and ultimately
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wrong. At the local level of the subsystem there is no stock with infinite capacity. The
use of flow ports thus is a more concise way to model material connections between
subsystems.

15. The flow is also referred to as the through variable.

16. The potential or effort is sometimes referred to as the across variable.

17. Couplers are also called transformers.

18. The convention here is that the positive side is considered to be the in port.

19. Composite connectors are aggregations of connectors (Fritzson, 2014, p. 207).

20. Documentation for the package SourcesOrSinks and its classes to be found at https:
//wolfr.am/131UH4LNB

21. Documentation for InformationLevel to be found at https://wolfr.am/131UUGhnv.

22. Documentation for MaterialStock to be found at https://wolfr.am/131UZDtSx.

23. Documentation for CapacityRestrictedStock to be found at https://wolfr.am/1325eXQiI.

24. Unfortunately, system dynamics as a discipline, while being critical with regard to false
mental models, quite often propagates misleading physical analogies: An unrestricted
stock in system dynamics is not a bathtub, whose capacity is restricted and whose out-
flow is proportional to its content (Torricelli’s law). A flow is arguably better represented
by a pump, e.g., a paddle wheel pump, than by a mere valve.

25. Documentation for the package Flows.Unidirectional and its classes to be found at
https://wolfr.am/1327wulNO

26. Documentation for the package Flows.Bidirectional and its classes to be found at
https://wolfr.am/1327zvn6d

27. Documentation for the package Flows.Interaction and its classes to be found at https:
//wolfr.am/13282mnIW

28. Documentation for FlowPortSensor to be found at https://wolfr.am/1329HTyfu.

29. Documentation for StockPortSensor to be found at https://wolfr.am/1329LMc7Q.

30. Documentation for the package Converters and its classes to be found at https://
wolfr.am/132h4UYZW

31. Documentation for the package MoleculesOfStructure.Policy and its classes to be found
at https://wolfr.am/132hSdX2c

32. Documentation for the package InformationSources and its classes to be found at https:
//wolfr.am/132ibgeAL
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33. All models in this paper showing conventional SD notation were produced using Vensim
DSS 6.3. Vensim is a registered trademark of Ventana Systems, Inc.

34. Forrester suggested to include the delayed outflow within the aggregate component
representing a delay structure. While this could be easily done in Modelica, it is a delib-
erate design choice to have the outflow be more visible using elementary components
in the BSL.

35. Documentation for DelayN to be found at https://wolfr.am/130nco99Z.

36. In Vensim we actually need to pass the initial outflow, which is typically the initial stock
value divided by the delay time.

37. In the BSL subsystems with both stock and flow ports are categorized as transceivers.

38. Documentation for SimpleConveyor to be found at https://wolfr.am/130p637Qk.

39. Documentation for Conveyor to be found at https://wolfr.am/130p8Do42.

40. Documentation for PureDelay to be found at https://wolfr.am/130paNXwe.

41. Documentation for Oven to be found at https://wolfr.am/130pcLgjT.

42. Documentation for StockInfoOutput to be found at https://wolfr.am/130xlwkbS.

43. Documentation for StockInfoOutput to be found at https://wolfr.am/130xsE4CK.

44. A specialized class of Modelica (Modelica Association, 2021, p. 45).

45. A structural parameter cannot be changed between simulation runs and is typically
used to determine the order of a delay or the turn conditional components and their
connections on or off—effectively making structural changes to a model before it is
compiled for simulation.

46. Documentation for the ManagingEmployment example to be found at https://wolfr.am/
130zZ2vcZ.

47. Documentation for AbsoluteSensor to be found at https://wolfr.am/130AvMDnv.

48. Documentation for HinesCoflow to be found at https://wolfr.am/130BUNyUn.

49. Documentation for FirstOrderStockAdjustment to be found at https://wolfr.am/130DVCX0w.

50. The model used by van Zijderveld to demonstrate MARVEL is implemented in the library
as an example called SoftwareReleaseProject.

51. Documentation for the HealTheWorld example to be found at https://wolfr.am/131usp0V0.

52. Documentation for Elasticity to be found at https://wolfr.am/131vDs5Ca.
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