

How much can electric aircraft contribute to reaching the Flightpath 2050 CO₂ emissions goal? A system dynamics approach for European short haul flights

Chetan Talwar, Imke Joormann, Raphael Ginster, Thomas S. Spengler | ISDC 2022

1.) Introduction

2.) Model and validation

- 3.) Results and sensitivity analysis
- 4.) Implications

1.) Introduction

- 2.) Model and validation
- 3.) Results and sensitivity analysis
- 4.) Implications

Introduction – future goals for aviation and role of electric aircraft

Innovative propulsion concepts

- Novel powertrain technologies
- Sustainable alternative fuels (SAFs)
- Battery electric based concepts

Reduction potential for environmental impact

- Battery with specific energy of 700 800 Wh/kg
- 72 180 passengers comparable to the ATR-72 and A320 neo
- Can provide 926 km range

No emissions: considering only in-flight operations

*CO₂: Carbon dioxide ; *No_x: Nitrogen oxides

Goal of this study

- How much can electric aircraft contribute to reaching Flightpath 2050 CO₂ emission goal for short haul flights segment within the EU?
- Which policies and interventions would be required?
- Behavior/Scenario of these policies?

1.) Introduction

2.) Model and validation

- 3.) Results and sensitivity analysis
- 4.) Implications

Air transport system model overview

- Legend:
- '+' sign means variables move in same direction
- '-' sign means variables move in opposite direction
- '||' delays in transmission of information

- Legend:
- '+' sign means variables move in same direction
- '-' sign means variables move in opposite direction
- '||' delays in transmission of information

Legend: '+' sign means variables move in same direction '-' sign means variables move in opposite direction '|| delays in transmission of information

Legend: '+' sign means variables move in same direction '' sign means variables move in opposite direction '|' delays in transmission of information Underlined italics variables are the extensions made in the model

ATS model extended – policies considered

Model validation

Testing against historical data:

- Helps to account for the distance between the real world and model data
- Confidence in model if unequal bias and variation near 0
- Model is fairly depicting real world historical data

Variable	Splitting of the MSE					
-	Bias	Unequal variation	Unequal covariance			
Aircraft in use	0.089	0.064	0.847			
Airline fares	0.006	0.094	0.901			
Air travel demand	0.035	0.341	0.623			
Annual aviation CO ₂ emissions	0.000	0.035	0.965			
Load factor	0.002	0.452	0.546			
Operating margin	0.302	0.006	0.692			

Other methods:

- Extreme policy test
- Dimensional consistency*
- Integration errors*

Model time series

*Conducted in Vensim DSS x64 Version 8.0.8 Source: United States census Bureau, 2016 ; Theil, 1966

1.) Introduction

2.) Model and validation

3.) Results and sensitivity analysis

4.) Implications

Results – individual policies

Scenario	Policy measures				Results year 2050	
Runs	Jet fuel tax rate	Electricity subsidy	Government restriction policy	Seat tax penalty	CO ₂ compared to 2000 value	ASK electric fleet %
Basis	0	0	0%	0	162%	0%
High jet fuel tax	High	0	0%	0	160%	0%
High electricity subsidy	0	High	0%	0	74%	28%
Low fleet restriction	0	0	10%	0	57%	13%
Medium fleet restriction	0	0	15%	0	39%	23%
High fleet restriction	0	0	20%	0	29%	34%

*Conducted in Vensim DSS x64 Version 8.0.8

Results – combination of policies

Scenario	Policy measures				Results year 2050	
Runs	Jet fuel tax rate	Electricity subsidy	Government restriction policy	Seat tax penalty	CO ₂ compared to 2000 value	ASK electric fleet %
Basis	0	0	0%	0	162%	0%
High jet fuel tax	High	0	0%	0	160%	0%
High electricity subsidy	0	High	0%	0	74%	28%
Low fleet restriction	0	0	10%	0	57%	13%
Medium fleet restriction	0	0	15%	0	39%	23%
High fleet restriction	0	0	20%	0	29%	34%
High jet fuel tax and subsidy	High	High	0%	0	7%	89%
Low fleet restriction and low seat tax	0	0	10%	Low	56%	13%
Low fleet restriction and high seat tax	0	0	10%	High	35%	45%
High fleet restriction and low seat tax	0	0	20%	Low	29%	34%
High fleet restriction and seat tax	0	0	20%	High	27%	51%
High subsidy and low fleet restriction	0	High	10%	0	37%	43%
High subsidy and fleet restriction	0	High	20%	0	25%	56%

Flightpath 2050 CO₂ emission goals reached
Flightpath 2050 CO₂ emission goals not reached

*Conducted in Vensim DSS x64 Version 8.0.8

Results – combination of policies

Scenario	Policy measures				Results year 2050	
Runs	Jet fuel tax rate	Electricity subsidy	Government restriction policy	Seat tax penalty	CO ₂ compared to 2000 value	ASK electric fleet %
Basis	0	0	0%	0	162%	0%
High jet fuel tax	High	0	0%	0	160%	0%
High electricity subsidy	0	High	0%	0	74%	28%
Low fleet restriction	0	0	10%	0	57%	13%
Medium fleet restriction	0	0	15%	0	39%	23%
High fleet restriction	0	0	20%	0	29%	34%
High jet fuel tax and subsidy	High	High	0%	0	7%	89%
Low fleet restriction and low seat tax	0	0	10%	Low	56%	13%
Low fleet restriction and high seat tax	0	0	10%	High	35%	45%
High fleet restriction and low seat tax	0	0	20%	Low	29%	34%
High fleet restriction and seat tax	0	0	20%	High	27%	51%
High subsidy and low fleet restriction	0	High	10%	0	37%	43%
High subsidy and fleet restriction	0	High	20%	0	25%	56%
Pro electric	High	High	20%	0	8%	89%
Best case scenario	High	High	20%	High	11%	82%
Worst case scenario	0	0	0%	0	192%	0%

: Flightpath 2050 CO₂ emission goals reached : Flightpath 2050 CO₂ emission goals not reached

*Conducted in Vensim DSS x64 Version 8.0.8

Results – sensitivity analysis

- Base case:
 - Sensitivity to growth factor (EU GDP per capita, Population growth etc.)
- Fleet restriction with seat tax:
 - · More sensitive to growth factor
 - · Less to other variables
- Fleet restriction with subsidy:
 - Sensitivity to electricity price, ownership costs and growth factor

Fleet restriction with seat tax

Fleet restriction with subsidy

*Conducted in Vensim DSS x64 Version 8.0.8

1.) Introduction

2.) Model and validation

3.) Results and sensitivity analysis

4.) Implications

Implications

In summary, what can be implied about the potential of electric aircraft in contribution to reaching the Flightpath 2050 CO₂ emissions goal for European short haul flights?

Policies:

- A kerosene tax equivalent to 180 € per ton of CO₂ was not enough to reduce air travel demand or encourage electric aircraft adoption
- A combination of policies was found to be more effective than implementing individual policies
- Due to the high cost of electric aircraft, an electricity subsidy of 75 % was required to achieve higher adoption rates

Parameter sensitivity:

- Growth factor parameters like **GDP per capita**, **population growth**, **and jet fuel price** can affect the emissions (for all simulation runs)
- Electric aircraft related parameters like energy consumption efficiency, electricity price and ownership costs cause high uncertainty

Policy makers should monitor the growth rate factors and electricity aircraft development parameters as they can affect the air travel demand and cost attractiveness of operating electric aircraft.

Thank you for your attention

Forward. Foresight. For flight.

