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New technologies in the transport sector promise to bring about certain benefits, for 

example related to mobility or safety, but are also expected to cause negative side 

effects which are in conflict with strategic city objectives. These might be mitigated 

by appropriate policy interventions that are designed carefully and timely. The 

Horizon 2020 research project LEVITATE has investigated multiple impacts of 

connected and automated transport systems, using an integrated multi-method 

approach, ranging from microscopic and mesoscopic simulations to system dynamics 

and Delphi panels. In particular, the system dynamics model described in this paper 

served to assess several systemic and wider impacts that were found difficult or even 

impossible to assess with the other methods. The main parts of the model are a 

population sub-model, a simplified traffic demand model distinguishing between 

three modes of transport, and a model for the use of public space. In order to 

calibrate the model and get results that are consistent with those of other methods, 

the input and output data of those simulations have also been incorporated into the 

system dynamics model. By means of selected example impact variables – modal 

split, demand for parking space and average commuting distance – the obtained 

effect of increasing automation as well as of several policy interventions is 

demonstrated. 

Introduction and problem statement 

Cooperative, connected and automated mobility (CCAM) is expected to be introduced in 

increasing numbers over the next decades. Automated vehicles have attracted the public 

imagination and there are high expectations in terms of safety, mobility, environment and 

economic growth. With such systems not yet in widespread use, however, there is a lack of 

data and knowledge about possible impacts. 

The impact dimensions for assessment are themselves very wide, and besides positive 

impacts also several negative side effects may be expected – for instance higher usage of 

private cars, empty vehicles driving around, or increase of urban sprawl. Stakeholders like 

urban municipalities are therefore increasingly worried, how far these future developments 

might be conflicting with their long-term strategic goals (for instance, regarding CO2 

emissions, modal split of traffic and use of public space), and what would be proper policy 

interventions to make use of the benefits but also prevent negative impacts. 

The EU funded (Horizon 2020) project LEVITATE [1] has addressed this by preparing a 

novel multi-method impact assessment framework to enable policymakers to manage the 



introduction of connected and automated transport systems, maximise the benefits and 

utilise the technologies to achieve societal objectives. Three main use cases have been 

investigated: passenger cars, urban transport systems, and freight transport and logistics, 

each of them considering a variety of applications, services and policy interventions (which 

are also referred to as sub-use cases in the following). The impact variables that have been 

studied have been organised along the dimensions of safety, society, environment and 

economy – they might also be classified into shorter-term (direct) and longer-term 

(indirect) impacts. The goal of the LEVITATE approach is to facilitate the quantitative 

comparison of several scenarios: the status quo (no automation at all), gradually increasing 

CCAM market penetration rate up to 100%, and finally the application of individual sub-use 

cases (policy interventions). 

While typical transport simulation methods (microscopic, mesoscopic, macroscopic) can 

give reliable estimates for direct impacts (such as related to travel time or total distance 

travelled), they are mostly inappropriate for assessing various systemic and wider impacts 

which are not covered by the simulation model. This gap has been addressed in LEVITATE 

by means of a simplified system dynamics model that is presented here. This model aims to 

analyse some of the critical systemic and wider impacts which can strongly impact strategic 

decisions in transport planning including changes in modal split, demand for parking space, 

and commuting distances. 

The remaining part of this paper is organized as follows: The next section summarizes the 

LEVITATE approach in some more detail and sets the context and motivation for the 

research presented here, discussing also previous related work in the system dynamics 

domain. After that, the used model is described, explaining the structure and main feedback 

loops, how subscripting has been used to arrive at a more realistic arrayed model, and 

finally how several possible policy interventions can be represented in this model. This is 

accompanied by a discussion of used input data, model calibration and validation – 

explaining how the model is embedded into the LEVITATE multi-method framework. After 

that, results are presented and discussed for four example impact variables, followed by 

conclusions and a brief outlook to ongoing and planned further research. 

Context and related work 

As mentioned in the previous section, forecasting the impacts of automated transport 

systems is challenging due to lack of data and experience, even more if quantitative results 

shall be obtained. Combining a set of mature methodologies, however, and including several 

assumptions that are justified by previous literature and studies, such an assessment has 

been performed in the LEVITATE project. For each of the investigated impact variables, 

both the influence of increasing AV market penetration rate (this is considered as baseline 

scenario, defining an implicit time scale) and the additional impact of certain policy 

interventions have been studied. 

 The results of these investigations are being incorporated into web-based policy support 

tool [2] to enable cities and other authorities to forecast impacts of CCAM on urban areas. 

Within the toolbox the impact of certain measures can be assessed individually 

(forecasting), further, a decision support system shall enable users to apply backcasting 

methods to identify the sequences of CCAM related measures that will result in achieving 

their desired policy objectives within a specified implementation period (under the 

precondition that such a pathway of feasible policy interventions exists). 



In the following, the applied simulation methods (as far as relevant for the system dynamics 

model) are briefly described, and related system dynamics approaches are discussed. 

Microscopic simulation 

Traffic simulation has been widely applied to estimate potential impacts of connected and 

automated vehicles (CAVs). Many studies have used microsimulation techniques to 

estimate the potential impacts of connected and automated transport system on traffic 

performance indicators [3]. It is envisaged that the microsimulation approach can be used 

to calculate the direct impacts of CAVs. In most cases, a commercially available traffic 

microsimulation tool (such as AIMSUN, VISSIM, Paramics or SUMO) is used along with an 

external component. The microsimulation tool is applied to represent the infrastructure 

and creates the simulated traffic in the predefined road system while the external 

component aims to simulate the CAVs  functionalities. 

 Within Levitate project, a traffic microsimulation approach is used to model and analyse 

various impacts on mobility (travel time, congestion, amount of travel), safety (based on 

vehicular conflicts), and emissions (CO2, NOx, PM10) due to introduction of CAVs as well as 

with the implementation of several policy interventions (sub-use cases) including dedicated 

lanes, parking price policies, parking space regulations, automated ride sharing, and 

automated urban shuttles. AIMSUN Next microsimulation tool was used to test these policy 

interventions utilising calibrated and validated city networks including Manchester (UK), 

Leicester(UK), and Athens (GR). CAV functionalities/behaviours were modelled through 

adjusting a wide spectrum of parameters in the simulation framework, which are based on 

various parametric assumptions from the literature review findings as well as discussions 

with experts conducted as part of the LEVITATE project, as detailed in [4]. 

Mesoscopic simulation 

The mesoscopic simulation approach is residing between microscopic simulations and the 

system dynamics model presented in this paper, regarding the aggregation level. Simulation 

of agents and their daily plans of activities is used as a method to estimate the medium-

term consequences of several sub-use cases on a variety of defined impacts. The model is 

based on calibrated choice behaviours of the simulated population, and its methods provide 

the means to draw direct, data-supported conclusions on the altered choices of agents 

regarding the use of transport modes under changing circumstances of transportation 

availability [5]. 

 All investigated scenarios were developed for a model of Vienna and its wider surrounding 

area, to serve as a prototypical example for a historically grown European city. The 

segmentation of the city into roughly ring-shaped domains that lie concentric around the 

city centre was made to enable analyses in accordance with the defined impact 

requirements. Borders between these domains are formed by major arterial (ring-) roads 

which are used to circumvent crossing through more densely populated areas towards the 

city centre. The same segmentation into zones has also been applied to the LEVITATE 

system dynamics model as will be explained in more detail in the following sections. 

  



System dynamics approaches in the transport domain 

There is a long tradition to apply system dynamics for similar problem areas in the 

transport domain. The following is only a brief collection of essential references relevant for 

the approach considered in LEVITATE. Land use transport interaction (LUTI) models like 

MARS [6] are focussing on changes in land use  due to certain changes in transport systems 

or corresponding policies. The MARS model has also been extended and applied to 

automated mobility scenarios recently [7]. Another very mature and detailed model for 

transport policy assessment is the ASTRA (ASsessment of TRAnsport Strategies) model [8], 

which  integrates transport with other dimensions including  macroeconomic, regional 

economic and land use, and environment. The underlying approach used in passenger 

transport part involves conventional four-step travel demand modelling; however, 

dominated by the time focused perspective of system dynamics modelling. Trip generation 

is performed using trip rates and population groups classification per defined zoning 

system. Trip distribution involves several breakdowns of the passenger demand at various 

defined spatial levels (zones). For determining modal distribution, various elasticities to 

time and cost changes as well as other influencing factors, have been used. 

In the domain of impact assessment of automated vehicles, currently a full exploration of SD 

modelling approach is lacking in literature. In this regard, an earlier study [9] made an 

effort for long-term impact assessment of autonomous vehicles based on some perceived 

scenarios and using an established transportation system dynamics model. This study 

demonstrated the importance of identifying various interactions within the system for 

better and holistic understanding of the long-term effects of autonomous vehicles and 

potential policy directions for achieving desired outcomes. 

Recently, Federal Highway Administration (FHWA) report [10] has made some efforts 

towards developing building blocks for applying system dynamics approach for performing 

impact assessment of automated vehicles. 

The conclusions from initial analysis and literature research in LEVITATE were the 

following: 

• A simple system dynamics model seems to be suitable to attempt bridging certain 

gaps in the LEVITATE multi-method framework, serving as “glue” model, covering 

the relationships between impact areas and facilitating the analysis of wider impacts 

and long-term behaviour. 

• In such an approach, many of the assumptions in the simplified SD model can be 

justified by outputs of microscopic or mesoscopic simulations. Consistency between 

the models is therefore ensured. Nevertheless, a validation of the CCAM related part 

of the model against historical data remains challenging at present. 

• Since the desired SD model has to be quite specific, in terms of impact variables and 

policy interventions considered as well as regarding interfaces with the detailed 

simulation models, a direct re-use or adaptation of existing full-blown SD models has 

not been deemed feasible. The core of the transport part, however, is compatible 

with the basic design in the ASTRA model. 

  



Description of the LEVITATE SD model 

On an abstract level, there are three main stock variables considered in our SD model, 

which might also be considered as interacting sub-models, due to the underlying structure 

and dependencies that will be further discussed in this section. A simplified overview of the 

model structure is depicted in Figure 1; the more detailed stock-flow diagrams are included 

in the Appendix. 

 

 

Figure 1: High level overview of the LEVITATE System Dynamics Model, showing main 

submodules (boxes), calculated impact variables (red) and implemented sub-use cases 

(yellow) 

 

• At the core, the Transport Model is containing the travel demand and trips (based on 

segmentation of the target area into geographical zones and the mode of transport). 

Both the change of total demand and the shift between several modes are influenced 

by the generalized costs, modelled by means of elasticities similar to (ref ASTRA). 

Total modal split is the most important impact variable calculated in this model. 

• In order to generate and drive the demand, a detailed population model has been 

implemented (segmentation into age groups, zones, and income groups). This model, 

allowing people to relocate between zones on longer time scales, is also used to 

calculate the average commuting distance impact variable. 

• Finally, the use of public space is modelled on zone level, distinguishing between 

parking space, driving lanes and other purposes. The relative demand for parking 

space (percentage of public space demanded for parking) is calculated in this model. 



The generalized costs for travelling are composed by four influencing variables in the 

following way: 

Generalized Costs = Travel Costs + (Travel Time * Value of Travel Time) − Attractiveness 

Obviously, lower generalized costs might result from changes in any of these four variables, 

and lead to an increase in corresponding trips. Such changes in the model are caused by: 

a)   Increasing AV penetration rate: the variable considered as the main parameter in 

LEVITATE to investigate (implicitly) the development over time, 

b)   Specific sub-use cases (policy interventions) considered on top of increasing AV 

penetration rate. 

Despite the conceptual simplicity of the described model, certain complex impacts can be 

assessed in a quantitative way, due to following features of the model: 

• The system exhibits multiple (balancing) feedback loops, both within the sub-models 

and between them: a higher share of private car trips, for example, will increase the 

relative demand for parking space in an area, leading to higher parking search time 

for non-automated cars (if no parking space extensions occur) and consequently 

higher generalized costs which result in decreasing demand. 

• While residing on much higher level of aggregation than micro-simulation and 

mesoscopic simulation approaches, the model is segmented with respect to 

geographic zones, age and income groups. This allows for calculation of more 

specific dependencies than considering only the average (aggregated) values of all 

system variables. The segmentation (construction of a multi-arrayed model) has 

been implemented by means of Vensim’s subscripting language. 

• Finally, the model has been calibrated against the current behaviour (i.e., the case of 

no automation), showing the observed modal split values (for the case of Vienna) – 

this is explained in more detail in the next section. 

The following sub-use cases (policy interventions) have been modelled: 

• Road Use Pricing: Applying a static city toll when a trip with private car starts or 

ends in a zone that is part of the target area (inner city, in our model Vienna’s zones 

1 and 2). 

• Parking Price policies: taking over certain parking behaviour patterns from the 

microsimulation model, associated with parking price and other parameters. Note 

that with the introduction of fully automated cars, paying for parking might be 

avoided by driving around, parking outside a specific zone, or even returning home. 

• Parking space regulations: Public space available for parking might be reduced (e.g. 

by 50%) and converted to space for other purposes. In particular, conversion to bike 

lanes, multi-functional areas and driving lanes has been investigated. 

• Automated Ride Sharing: A certain percentage of the total demand is covered by this 

service, assuming a certain “willingness to share” , influencing both travel costs and 

travel time. 



• Last Mile Shuttles: In a certain target area in the periphery of the city (where spatial 

and temporal density of public transport is lower than in the centre, in our model 

zone 3) such a service is introduced as a supplement to the existing public transport 

system, covering a certain percentage of the total demand. 

The integration of sub-use cases into the SD model is highlighted in Figure 2. Note that the 

specific input parameters are based on assumptions (justified by the literature) as well as 

outputs from the microscopic simulation as further discussed in the next section. 

 

Figure 2: Implementation of sub-use cases in the SD model (red arrows reflect negative 

polarity, blue arrows positive polarity, and grey arrows unspecified polarity) 

Input data, model calibration and validation 

The pre-validated population model was then transferred to the region of Vienna (city + 

surrounding area of approximately 30km out of the city), where the population in each 

zone and their age structure has been taken from official data sources [11]. Also the rates 

(birth rate, death rate, migration rate) have been adjusted accordingly. It is important to 

note that all used parameter values have been aligned with the mesoscopic model outlined 

earlier in order to ensure a consistent overall modelling approach. 

In the next step, the modal split in the status quo scenario (i.e. with no automation taking 

place) has been used for calibration of the Mode Choice parameters. This means that in the 

absence of automated vehicles the system should be in (or very close to) an equilibrium 

state that reproduces the actual current modal split values for each origin – destination 

pair. It might be argued that there is a diversity of possible sets of parameter values that 

would reproduce the desired modal split values. Thus, in order to ensure the reliability of 

the model, 

a.    The parameters (in particular related to travel costs, travel time, value of travel time) 

have been taken from statistics data for Vienna, from literature or from other models 

wherever possible. 

b.    Sensitivity runs with respect to these parameters have been performed. Results suggest 

that the impacts (relative changes) due to automation or policy interventions are 

depending only very weakly on the choice of parameters (as long as the calibration criteria 

described above are satisfied). 



While the SD model has been calibrated in such way for the case of no automation, it was 

also possible to run consistency checks (or cross-calibrations) against the mesoscopic 

simulations for increasing automation (but in absence of further interventions; this is 

considered as the baseline scenario) and, in addition, a few sub-use cases that were 

modelled both in the mesoscopic and in the SD model – certain variants of road use pricing 

and last mile shuttles. (Note that there was only a small “overlap” between these methods. 

Further variants of these sub-use cases, like dynamic city tolls, were too specific to 

implement in the SD model. On the other hand, several use cases and impacts that could not 

be covered in the mesoscopic model, were included in the system dynamics approach.)  

Finally, briefly discussing one example, the restriction and conversion of a certain amount 

of parking space, we demonstrate how the input parameters of the SD model have been 

aligned with the microscopic simulations. Parameters can be included on two levels: 

a.    Sub-use case specific parameters (characterising the nature and strength of a certain 

intervention) are directly aligned between the two models, e.g. the percentage of public 

parking space that is restricted, and how it is converted (into driving lanes, bicycle lanes, 

hop-on/hop-off areas or similar). 

b.    Several output parameters of the microsimulation model, e.g. the (delay in) travel time, 

that are affected by this sub-use case, are also fed into the SD model as input parameters. In 

this way the SD model can benefit from the lower-level simulations assessing direct impacts 

that are not modelled in the higher-level simplified SD model. 

The results presented in the next section will compare certain impact variables as a 

function of the AV rate (market penetration rate), which was the standard approach 

decided in the LEVITATE project across all methods. From a system dynamics perspective, 

the more natural result is of course the development of these variables as a function of time, 

over a (longer) time period. To map between these two concepts, the AV rate as a function 

of time has been assumed as exogeneous data in the SD model. The shape of this function 

corresponds to certain pre-defined scenarios that users of the policy support tool will be 

able to select (quick, normal or slow uptake of AVs). For the quick uptake scenario (which 

was selected for our further simulation runs) the simulation extends over a 40 years’ time 

range, using time steps of 1 month, with AV rate increasing gradually from 0 to 100% 

between Year 10 and Year 30. The last 10 years give the system some more time to stabilize 

in its new equilibrium state – which is expected when studying longer term impact 

variables. 

  



Results for selected impact variables 

In the following, we will discuss the results for four impact variables that are modelled in 

the SD model: 

• The modal split for travels using public transport systems, 

• The modal split for travels using active modes (cycling, walking), 

• The relative demand for parking space, i.e. the percentage of public space demanded 

for parking, 

• The relative average commuting distance, i.e. the ratio to the value in case of no 

automation 

This will be shown as a function of AV market penetration rate (from 0 to 100%), for the 

baseline (i.e. no policy intervention applied), as well as following selected sub-use cases: 

• Road use pricing (static city toll of 10 EUR per entry into city centre – zone 1/2) 

• Last Mile Shuttle (operating in zone 3) 

• Parking pricing – resulting in balanced parking behaviour 

• Public parking space restriction by 50% 

• Conversion of  public parking space to driving lanes 

• Automated ride sharing (assuming that 20% of demand can be covered, and full 

compliance) 

Modal split for public transport 

The following results (Figure 3) on modal split were obtained for public transport based on 

distance travelled. 

The modal split is determined as share by distance of trips carried out using that transport 

mode, shown as a fraction of the total distance travelled in any available mode. Percentage 

of public transport usage is estimated to slowly decrease with increasing rate of AVs with 

maximum decrease (almost 10%) at full fleet penetration. This can be foreseen as a 

consequence of increase in access, convenience, and affordability of private automated cars 

with time and increasing automated fleet. 

Implementation of road-use pricing would likely increase modal share in public transport 

as compared to the baseline curve, in order to avoid paying toll. However, the subsequent 

decrease in percentage would be observed consistent with the baseline curve due to the 

aforementioned reasons. 

 



 

Figure 3: Impact of automation (baseline) and different policy interventions on modal split 

using public transport 

Policy on parking space regulations can have a strong impact on changes in modal split as 

also found in the SD model results. For example, replacing on-street parking with driving 

lanes would encourage more vehicles on the roads potentially reducing share of public 

transport users with increasing MPR; however, becoming almost insensitive at around 80% 

fleet penetration. Removing 50% on-street parking was found to have a marginal impact on 

modal shift to public transport. 

With regard to parking pricing policies, a balanced strategy (includes proportions of all 

parking options) was included in the SD model as this was found to be potentially the best 

strategy in terms of its impacts on traffic operations, as shown by microsimulation analysis. 

Under balanced parking strategy, a slight reduction in public transport modal split was 

estimated with increasing AV rate with a slight increase at full automation. This may be 

attributed to increased congestion at full fleet penetration with such parking policy. 

As can be expected, last mile shuttle services (considered as part of public traffic) will 

significantly increase public transport modal share, as compared to that in baseline 

condition, due to providing increased access to travel. However, with increasing AV rate, 

the modal share can potentially decrease due to increase in personal vehicle ownership. 

The increased modal share in public transport for Automated ride sharing service is due to 

the fact that this new mode is also included in public transport. But, similar to other sub-use 

cases, it can likely decrease at or near full automation due to increased access, convenience, 

and affordability for private automated passenger cars. 

Modal split for active modes 

Similarly, the results for active modes are presented through the plot in Figure 4. 

With respect to baseline scenario (increasing automation only), active travel is predicted to 

decrease with increasing rate of AVs in the transport system. This trend was also found to 

be common under implementation of all sub-use cases (policy interventions). The relative 

impact compared to the baseline, however, was found to be diverse. 



Analysing modal split (active modes) curves under different policy interventions, the 

results indicated significant increase in active travel due to road use pricing and balanced 

parking behaviours, as compared to the baseline results. This trend can be expected as such 

policies involving some sort of price would likely impact motorized travel and influence 

people to prefer use of active modes. Whereas the parking price policy showed higher 

increase for medium automation levels, road use pricing showed a higher effect for 100% 

AV penetration rate. 

 

Figure 4: Impact of automation and various policy interventions on modal split using active 

travel 

The results indicated a slight increase in active travel due to replacing on-street parking 

with driving lanes/cycling lanes, whereas just removing half of the parking spaces was 

found to increase active travel up to 70% MPR AV penetration rate become insensitive with 

further increase in the fleet penetration. 

Finally, automated ride sharing as well as  last mile shuttle services are likely to negatively 

impact active travel with respect to the baseline due to providing pick-ups and drop-offs 

closest to the origins and destinations of passengers, where last mile shuttles can 

potentially have much stronger impact on active travel than automated ride sharing as 

shown in Figure 4. 

Relative demand for parking space 

In Figure 5 the impact is presented as relative demand, in percentage of public (street) 

space within the inner-city area (zone 2). With regard to increasing automation only 

(baseline), the results indicate an increase in demand for parking with increasing AV rate, 

reaching more than 40% at full fleet penetration. 

Implementation of parking space regulations of 50% on-street parking removal would 

lower the total demand for parking as compared to baseline condition. Whereas conversion 

to driving lanes intervention would likely have an increased demand as compared to 50% 

parking space removal, due to encouraging higher number of vehicles on the road. In 

comparison with the baseline, this policy will have lesser demand up to 50% fleet 

penetration and will gradually increase with higher levels of automation. 



As expected, the parking price policy providing balanced parking behaviours showed 

significant impact; the relative demand for parking space stays quite low. Road use pricing 

implementation was also found to reduce the demand for parking space significantly, very 

similar to the parking price policy. 

Last mile shuttle services would not create any difference on demand for parking as 

compared to the baseline. Automated ride sharing service was not found to have any added 

demand for parking as compared to the baseline.  

 

Figure 5: Impact of automation and different policy interventions on demand for public 

parking space 

Average commuting distance 

The results are presented in Figure 6. Since the average commuting distance is influenced 

by many parameters which are not part of the SD model, the figure shows the relative 

commuting distance - the fraction relative to "no-automation" scenario. (A value of 1.01 

indicates an increase of 1% compared to the “no-automation” case.) 

Overall, there is a marginal increase in the average commuting distance with increasing 

automation under the baseline and with the implementation of each policy intervention, 

reaching maximum value at full penetration of CAVs. 

The model results also show larger commuting distances with the implementation of road 

use pricing. Even if this might seem surprising, it can be explained in the model due to the 

fact that also inner-city residents would be subject to road use pricing and might therefore 

decide to relocate to outer zones (which might not happen in reality if they are exempted). 

And while road use pricing would not help to reduce the commuting distances, it would 

definitely support a switch to other (non-car) modes.  



 

Figure 6: Impact of automation and various policy interventions on average commuting 

distance 

Under automated ride sharing services, the results indicate maximum increase in 

commuting distances as compared to the baseline and other interventions. This is 

explainable as such service would provide access and serve customers anywhere to 

anywhere. However, last-mile shuttle services, operating only in zone 3 and not outside the 

city boundaries, can significantly reduce commuting distances with comparison to the 

baseline condition (as shown in Figure 6). 

Replacing on-street parking with driving lanes would encourage a greater number of 

vehicles and potentially increase distance travelled, however, results do not indicate much 

change in commuting distances due to this policy measure. A similar trend was found under 

removing 50% of the on-street parking scenario. With regard to parking pricing policy, only 

a marginal difference in commuting distances with comparison to the baseline was found. 

 

Transferability of results 

Besides basic sensitivity analysis (investigating the influence of actual parameter values in 

the model), it has also been analysed, how far the results presented in this section can be 

transferred to other regions of the impact parameter space. For this purpose, three settings 

(that might correspond to different cities / regions) have been evaluated in the SD model 

for comparison, representing different initial conditions: 

1. Lower modal split for public transport (caused by increased value of travel time), 

2. Higher modal split for public transport (caused by increased energy costs), 

3. Lower demand for public parking space (caused by parking restrictions / pricing). 



As a result – with the exception of some “deformations” for extreme values (e.g. where the 

modal split for public transport gets close to 100%) – the qualitative and quantitative 

outcomes of the model are quite stable over wide ranges of the parameter space. This 

increases the confidence of the results that are shown to users of the LEVITATE policy 

support tool. 

Conclusions and Outlook 

We have motivated the need for an integrated impact assessment framework that 

addresses direct as well as longer term systemic and wider impacts of connected and 

automated mobility, and their interrelationships. A simplified system dynamics model has 

been developed as part of the multi-method approach applied in the LEVITATE project. 

Despite its simplicity, this model has yielded valuable insights into the behaviour of the 

system and quantitative results that are consistent with other simulation methods, and – 

even more – have been able to cover additional impacts and sub-use cases.  

From an analysis point of view, the problem statement (reflecting the gap between current 

state or expected future developments on one hand and the actual stakeholder goals on the 

other) for this research field is characterized by the following:  

• CCAM applications and services will be approaching rapidly, with several benefits 

being expected – but still a lot of uncertainty.  

• On the other hand, other impacts might be negative (opposite to the direction 

towards desired objectives).  

• The main question for stakeholders is how to steer the system in such a way – by 

means of CCAM related policy interventions – that positive impacts are enforced and 

negative effects can be mitigated.  

Using example results obtained within the SD model, we have shown, (a) how increasing 

market penetration rate influences the impact variables, and (b) how selected policy 

interventions can change that behaviour. In most cases such relative changes are observed 

in both directions. In other words: When one policy intervention helps to bring a specific 

impact variable closer to the desired objective, it might be different for another impact 

variable – where a second intervention might do a much better job. Also the timing plays an 

important role: Some interventions might be good now, but useless in case of full 

automation.  

From a methodological perspective, it is worth to note how this supplementary SD model 

has been embedded into a multi-method framework. Wherever possible, the model 

parameters have been aligned with other methods, like the (initial) population data, 

geographical zones and trip data for the Vienna region with the mesoscopic simulation 

model. Considering simulation outputs from microscopic simulations (e.g. regarding travel 

time delay) as (exogeneous) inputs for the SD model ensured to get consistent results. 

Finally, extensive use of subscripts helped to model complex dependencies while keeping 

the model conceptionally very simple.  

The integration of the results shown here into the overall LEVITATE policy support tool is 

currently ongoing. This tool will allow stakeholders to assess possible impacts of CCAM and 

related policy interventions in a holistic way, and will also provide a basic backcasting 



functionality, answering the question: Which combination and sequence of policy 

interventions might be most appropriate to exploit the potential of CCAM for reaching 

desired strategic objectives?  

For the system dynamics approach presented here, there are several natural next steps that 

will be addressed in future research projects. Other impact dimensions can be added into 

the SD model in a similar manner: health, economic aspects, enhanced behaviour modelling, 

and emissions & environmental impacts. Most importantly, connecting system dynamics 

with the backcasting approach that has also been developed in LEVITATE, analysing 

optimal pathways of interventions directly in a system dynamics model, can be considered 

as a major future research challenge.  
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Appendix: Stock and flow diagrams 

In order to document the assumed dependencies between variables of our model in full 

detail, the Vensim1 views (stock and flow diagrams) for the main submodules are shown in 

Figure A.1 – A.3.  

These diagrams also show which of the key variables have been modelled as stock 

variables: 

 The population (Figure A.1), using the subscripts Age and Zone (income group is 

implicitly modelled as it is assumed to be a function of the age group), 

 The number of trips (Figure A.2) as central model variable, using the subscripts Age, 

Origin Zone, Destination Zone and Mode, 

 Three forms of available Public Space (Figure A.3) – parking space, lane space and 

multi-functional / active modes – using the subscript Zone. 

 

 

Figure A.1: Detailed Vensim view of the population model 

 

 

1 Vensim from Ventana Systems (https://vensim.com) is the tool that has been used to 

implement the SD model.  



 

Figure A.2: Detailed Vensim view of the transport model (Demand / Trips) 

 

  

Figure A.3: Detailed Vensim view of the public space model 

 


