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Abstract:	

The	adequate	representation	of	non-linear	relationships	(NLRs)	in	SD	models	is	often	challenging.	
The	implications	of	using	alternative	formulations	for	formalizing	NLRs	can	affect	in	a	significant	
way	 both	 the	 efficiency	 of	 the	modeling	 and	 calibration	 process	 and	 the	 accuracy	 of	 the	 results	
produced.	The	use	of	elasticity	formulations	to	represent	such	relationships	is	not	new	to	SD	as	they	
have	been	used	from	the	inception	of	the	field,	including	by	Jay	Forrester	(1956,	published	in	2003)	
and	are	covered	briefly	in	Sterman’s	popular	SD	textbook	(2000).	Elasticity	formulations	can	be	very	
effective	 and	 efficient	 in	 some	 circumstances,	 and	 their	 low	 occurrence	 in	 the	 system	 dynamics	
literature	may	indicate	a	lack	of	knowledge	of	their	characteristics	and	usability	that	favor	the	more	
popular	alternative:	table	functions.	Our	review	indicates	that	sufficient	guidance	about	how	to	use	
elasticity	 formulations	 in	 SD	 models	 and	 about	 the	 conditions	 under	 which	 this	 appears	
justified/advantageous	 has	 thus	 far	 been	 lacking.	 This	 paper	 attempts	 to	 address	 this	 gap	 by	 a	
theoretical	 discussion	 about	 the	 properties	 of	 elasticity	 formulations,	 a	 brief	 literature	 review	
including	criticism	of	 their	use,	prerequisites	 for	use	 (including	 testing),	and	a	comparison	of	 the	
approach	 to	 table	 functions	 in	 terms	 of	 advantages	 and	 limitations	 and	 in	 terms	 of	 practical	
modeling	examples.	

1. Introduction	
System	 dynamics	modelling,	 as	 a	way	 of	 representing	 a	 problematic	 development	 as	 a	 set	 of	
mathematical	equations,	contains	an	element	of	art	as	well	as	science:	Often	there	is	more	than	
one	way	to	represent	the	same	real-world	relationship(s)	between	two	or	more	variables.	More	
often	than	not,	such	relationships	are	non-linear1.	While	they	can	in	some	cases	be	sufficiently	
well	 approximated	 by	 linear	 formulations,	 such	 practice	 can	 lead	 to	 relevant	 inaccuracies,	
especially	when	a	 system	moves	beyond	 its	normal	 operating	 space.	 In	order	 to	 respect	non-
linearity,	in	current	SD	modeling	practice,	non-linear	relationships	are	typically	represented	by	
way	of	 table	 functions	(also	known	as	graphical	 functions	when	displayed	 in	X-Y-graph	 form).		
These	come	with	advantages	and	caveats.	Advantages	of	using	table	functions	include	that	they	
support	the	 introduction	of	 just	about	any	 functional	 form	and	do	not	require	particular	math	
skills	to	be	implemented.	However,	if	the	functional	relationship	is	known	to	be	monotonic2	and	
meets	certain	other	requirements	(as	discussed	below),	a	constant	elasticity	formulation	can	be	a	
simpler	and	more	effective	alternative.	

The	concept	of	“elasticity”	refers	to	a	characteristic	of	the	relationship	between	two	variables,	one	
(Variable	 X)	 affecting	 the	 other	 (Variable	 Y):	 	 elasticity	 is	 the	 ratio	 between	 the	 proportional	
change	in	Y	to	the	proportional	change	in	X.	In	other	words,	elasticity	measures	how	much	one	
variable	changes	as	a	consequence	of	the	change	in	the	other.	When	this	ratio	tends	to	be	constant	
over	the	range	of	values	that	X	can	take,	then	the	elasticity	gives	us,	in	one	number,	an	immediate	

																																																													
1	A	non-linear	relationship	is	one	where	the	change	in	output	is	not	proportional	to	the	change	in	input.		
2	 Even	 for	graphical	 functions,	monotony	 is	good	modeling	 practice	 because,	 as	 Sterman	 (2000,	 14.4.3,	
p.577)	points	out,	non-monotonic	table	functions	imply	ambiguous	link	polarity	and	thus	indicate	„multiple	
causal	pathways“,	that	should	rather	be	modeled	separately		



measure	of	the	strength	and	the	direction	of	reactions	of	the	relationship.	Such	a	concept	could	
thus	be	easily	used	to	represent	a	broad	variety	of	relationships	in	system	dynamics	modeling.		

However,	 our	 literature	 review	 indicates	 that	 formulations	 that	 are	 constructed	 around	 the	
concept	of	 constant	 elasticity	 (constant	 elasticity	 formulations	or	CEF	 in	 the	 remainder	of	 the	
document)	may	be	scarcely	adopted	in	system	dynamics	modeling:	Searching	for	 ‘elasticity’	or	
‘elasticities’	in	all	System	Dynamics	Review	(SDR)	volumes	rendered	77	results.	After	excluding	
the	hits	that	include	‘eigenvalue	elasticity	analysis’,	which	is	not	our	focus	here,	48	articles	remain.	
The	 vast	 majority	 of	 these	 papers	 use	 the	 concept	 of	 elasticity	 to	 directly	 represent	 existing	
notions	in	mainstream	economics	(e.g.,	elasticities	of	demand/supply	to	price/income)	without	
making	any	direct	references	to	the	notion	itself.	It	should	be	noted	though,	that	this	search	was	
limited	to	SDR,	whereas	SD-based	articles	are	also	published	elsewhere	and	thus	we	cannot	rule	
out	a	higher	use	of	elasticities	there.		

Perhaps	the	earliest	reference	to	the	concept	of	elasticity	within	the	SD	literature	was	before	the	
formal	 conception	of	 the	 field.	 In	 a	1956	manuscript,	where	 Jay	Forrester	 (1956	published	 in	
2003)	gives	a	glimpse	into	his	earliest	ideas	leading	to	the	genesis	of	the	field,	elasticity	in	systems,	
along	with	delays,	momentum,	stocks,	and	accelerations,	is	mentioned	as	one	of	‘the	fundamental	
quantities	 which	 differential	 equations	 have	 been	 developed	 to	 describe’	 and	 as	 one	 of	 ‘the	
quantities	which	 we	wish	 to	 use	 for	 our	 underlying	 principles	 of	 the	 economic	 world.’	 Here,	
however,	 elasticity	 is	 referred	 to	 as	 a	 property	 of	 systems	 rather	 than	 a	 technique	 used	 in	
modelling	non-linear	relationships.	

Some	of	the	early	references	to	elasticities	as	model	variables	are	within	an	econometric	context	
(Nathan	Forrester	1987,	Arif	and	Saeed	1989,	Wirl	1991).	Andersen	(1990)	criticises	the	use	of	
elasticities	in	econometric	models	for	being	not	readily	interpretable	by	the	layperson,	and	for	
requiring	non-trivial	mathematical	computations	and	interpretations	so	they	can	be	turned	into	
estimates	that	are	informative	to	lay	intuition.	Within	the	SD	literature,	both	constant	(Kampmann	
and	Sterman	2014,	Pierson	and	Sterman	2013)	and	dynamic	(Brady	2009,	Jung	and	Strohhecker	
2009)	elasticities	have	been	used.	However,	a	salient	theme	where	elasticities	are	mentioned	is	
criticising	 constant	 elasticities	 and	 advocating	 for	 dynamic	 and	 endogenous	 elasticities	 (van	
Ackere	and	Smith	1999,	Moxnes	1990,	Ulli-Beer	et	al.	2010).	Moxnes	(1990),	for	instance,	presents	
a	 model	 of	 fuel	 substitution	 for	 electricity	 production	 where	 he	 uses	 endogenously	 driven	
elasticities	which,	he	asserts,	make	his	model	 ‘more	closely	related	to	reality	than	the	ordinary	
constant-elasticity	models.’	Van	Ackere	and	Smith	(1999)	build	an	SD	model	of	the	UK’s	National	
Health	 Service	waiting	 list,	 taking	 an	 economics	perspective.	They	 similarly	 consider	 constant	
elasticities	 as	a	 limitation	 and	 introduce	 an	 elasticity	 of	 demand	with	 respect	 to	waiting	 time	
which	varies	with	waiting	time.	Furthermore,	a	distinction	is	often	made	between	short-run	and	
long-run	elasticities	(Cavana	and	Clifford	2006,	Inman	et	al	2020).	Inman	et	al	(2020)	present	a	
technique	 for	 generating	 supply	 and	demand	 curves	 from	system	dynamics	models	and	 show	
results	which	indicate	that	the	elasticity	of	supply	with	respect	to	price	can	be	time	dependent,	
such	 that	 supply	 is	 relatively	 inelastic	 in	 the	 short	 term	 and	more	 elastic	 in	 the	 longer	 term,	
reflecting	inherent	supply-side	delays	commonly	observed.	

Some	 authors	 have	 argued	 in	 support	 of	 the	 use	 of	 elasticities	 for	 being	 well-known	 and	
established	concepts.	Van	Ackere	and	Smith	(1999)	argue	that	 ‘it	 is	more	appropriate	to	use	a	
secure	econometric	estimate,	rather	than	to	attempt	to	formulate	a	more	speculative	behavioural	
structure.’	Inman	et	al	(2020)	similarly	argue	for	the	benefit	of	the	use	of	elasticities	for	being	
‘more	commonly	accepted	terminology	(particularly	with	respect	to	the	lingua	franca	of	supply,	
demand,	 and	 elasticities)	 employed	 by	 many	 stakeholders	 who	 are	 familiar	 with	 basic	
microeconomic	principles.’	

Beyond	the	limited	mention	of	elasticity	formulations	indicated	above,	which	mostly	refer	to	their	
use	in	the	context	of	economic	systems,	our	review	indicates	that	this	potentially	useful	tool	is	
used	very	little	in	our	field.	While	we	recognize	that	many	historical,	cultural,	and	factors	might	
explain	the	underutilization	of	such	a	practical	tool,	we	believe	that	a	proper	description	of	CE	
formulations	and	their	properties	is	necessary	in	order	to	facilitate	their	use.	In	the	remainder	of	
the	paper	we	discuss	the	underlying	mathematical	concepts	to	such	formulation;	when	and	how	



its	use	is	appropriate;	as	well	as	what	its	main	advantages,	critiques	and	limitations	are.	We	will	
also	provide	a	few	examples	of	applications.	

2. Constant	 Elasticity	 Formulations	 and	
their	use	

From	the	general	definition	of	elasticities,	in	this	section	we	derive	relevant	expressions	that	can	
be	used	to	(A)	estimate	the	value	of	an	elasticity	in	a	dataset	(or	existing	table	function);	and	(B)	
implement	a	constant	elasticity	formulation	in	a	model	(Equations	12	and	9,	respectively).	

By	 definition,	 an	 elasticity	 is	 the	 ratio	 of	 proportional	 change	 in	 one	 variable	 relative	 to	 the	
proportional	change	in	another	variable.	In	simple	terms,	the	elasticity	(𝜀)	of	Y	to	change	in	X	can	
be	expressed	as:	

𝜀 =
#$%#&
#$

'$%'&
'$

			 Equation	1	

When	applied	to	discrete	points	(e.g.	on	dataset),	the	measurement	of	elasticity	is	carried	out	on	
an	arc,	and	 thus	such	 estimation	would	provide	 the	average	elasticity	over	an	arc,	or	 the	“arc	
elasticity”.	 Instead,	when	 Equation	 1	 above	 is	 applied	 to	 very	 small	marginal	 increments,	we	
calculate	the	elasticity	for	a	specific	point	on	a	curve,	i.e.	the	“point	elasticity”.		

For	infinitely	small	increments	𝑑𝑥		and	𝑑𝑦	we	can	write	the	same	equation	as:	

𝜀 =
56
6
57
7

	 Equation	2	

Which	is	a	point	elasticity.	This	can	be	rearranged	as:	
9:
:
= 𝜀 ∙ 9<

<
	 Equation	3	

Now	if	we	solve	this	equation	for	y,	using	integration	and	assuming	constant	elasticity:	

∫ ?
:
∙ 𝑑𝑦 = 𝜀 ∙ ∫ ?

<
∙ 𝑑𝑥	 Equation	4	

Which	results	in:	

𝑙𝑛 (𝑦) 	= 𝜀 ∙𝑙𝑛 (𝑥) 	+𝑙𝑛 (𝑎) 	=𝑙𝑛 (𝑎 ∙ 𝑥G)	 Equation	5	
Where	 𝑙𝑛 (𝑎)		 is	a	constant	term	added	as	a	result	of	 the	 indefinite	 integration.	This	gives	our	
dependent	variable	y	as	a	function	of	x:	

𝑦 = 𝑎 ∙ 𝑥G	 Equation	6	

Now,	if	we	know	the	value	of	y	at	a	certain	reference	point	𝑋𝑟	(i.e.	𝑌M)	,	we	can	obtain	the	constant	
𝑎,	as	follows:	

𝑌M = 𝑎 ∙ 𝑋MG		⇒		𝑎 =
OP
QPR
	 Equation	7	

Next,	if	we	replace	this	known	𝑎	in	Eq.	6,	our	dependent	‘effect’	variable	is	given	as	follows,	as	a	
function	of	the	cause	variable	x,	a	constant	arc	elasticity	𝜀,	and	the	known	point	(Xr,	Yr):	

𝑦 = OP
QPR
∙ 𝑥G 		 Equation	8	

Or,	in	more	simplified	terms:	

𝑦 = 𝑌M ∙ U
<
QP
V
G
	 Equation	9	



In	other	words,	the	 ‘effect’	variable	y,	equals	its	known	value	at	a	reference	point	𝑌M 	(often	the	
initial	 point	 in	 simulation),	 times	 the	 value	 of	 the	 cause	 variable	 relative	 to	 its	 value	 at	 the	
reference	point	 <

QP
	,	to	the	power	of	the	constant	elasticity	𝜀.	This	CEF	equation	form	can	be	used	

in	system	dynamics	models	to	capture	certain	non-linear	relationships	where	a	power	function	
form	appears	appropriate,	as	will	be	further	discussed	below.	

A	power	 function	 is	 also	 reasonable	because	 it	 is	 known	 to	be	 isoelastic,	 i.e.	 its	mathematical	
property	is	that	it	has	a	constant	elasticity	if	the	exponent	is	constant3.		

Equation	9	can	be	used	 to	represent	non-linear	relationships	 in	SD	models	using	an	elasticity,	
where	x	is	the	input	variable	and	y	is	the	output	variable.	

In	 order	 to	 test	 to	 what	 degree	 a	 table	 function	 or	 other	 functional	 relationship	 meets	 the	
important	prerequisite	of	constant	elasticity	we	can	solve	equation	9	for	𝜀	(equation	12).	This	is	
achieved	by	first	rearranging:	
:
OP
= U 𝒙

𝑿𝒓
V
𝜺
	 Equation	10	

And	then	taking	the	natural	logarithm	of	both	sides:	

𝑙𝑛 U:
OP
V = 𝑙𝑛 UU <

QP
V
G
V = 𝜀 ∙ 𝑙𝑛 U <

QP
V	 Equation	11	

Finally,	solving	for	𝜀	we	obtain:	

𝜀 =
]^	U 6#P

V	

]^U 7'P
V
	 Equation	12	

Equation	 12	 can	 be	 used	 to	 estimate	 an	 elasticity	 to	 be	 used	 in	 place	 of	 a	 different	 model	
expression,	(e.g.	table	function	or	equation),	as	will	be	shown	in	the	example	further	below.		

In	contrast	to	equation	2	(point	elasticity)	equation	12	is	an	arc	elasticity	that	is	estimated	based	
on	two	data	points	(the	reference	point	and	the	point	that	is	changing).	This	definition	is	more	
limited	in	application	than	the	point	elasticity	in	that	its	application	in	models	(CEF	as	in	equation	
9)	hinges	on	the	assumption	of	constant	elasticity.	If	the	non-linear	relationship	in	reality	did	not	
have	a	constant	elasticity,	estimating	the	elasticity	of	different	sets	of	points	would	yield	different	
values	 for	 the	 elasticity.	 This	 fact	 allows	 checking	whether	 the	 elasticity	 implied	 by	 the	 table	
function	(or	an	algebraic	formulation)	is	constant	or	not	by	depicting	it	in	a	graph	over	time.	This	
is	useful	since	constancy	of	an	elasticity	is	a	prerequisite	for	using	Equation	9	instead	of	the	table	
function	in	the	model.	

Equation	9	can	be	extended	to	include	multiple	inputs,	typically	in	a	multiplicative	form4,	in	which	
case	their	relationship	can	be	represented	as	in	Sterman	(2000	p.	526-527):	the	elasticities	εi	of	
the	affected	variable	Y	to	several	factors	Xi	influencing	Y	are:	

𝑦 = 𝑦M ⋅ ∏ UU <a
<aP
V
Ga
V^

bc? 	 Equation	13	

As	 the	 equation	 indicates,	 this	 reference	point	has	 to	be	 conceptually	 the	 same	 for	 all	 xi	 ,	 e.g.	
referring	to	the	value	of	x	for	the	same	reference	year.	Typically,	the	initial	year	of	the	simulation	
is	used,	although,	in	special	cases	another	prominent	reference	point	may	suggest	itself	or	even	
be	needed.	One	example	of	the	latter	is	when	the	variable	that	is	calculated	is	not	defined	or	has	
zero	value	before	a	certain	point	in	time		(after	the	simulation	start).		

As	for	the	wording	of	the	variable	names	we	have	found	the	following	convention	to	be	useful	in	
modelling	practice:	Elasticity	variable	name:	“Elasticity	of	y/yr	to	xi/xr”,	e.g.:	“Elasticity	of	relative	
																																																													
3	https://en.wikipedia.org/wiki/Isoelastic_function	
4	In	some	cases,	an	additive	form	can	also	be	appropriate	when	effects	of	xi	on	y	are	expected	to	be	highly	
independent	of	each	other	in	reality,	(see	Sterman	2000,	p.528)	



road	construction	cost	per	km	to	relative	road	density”.	Note	that	the	term	“relative”	in	the	input	
and	output	variables	road	density	and	road	construction	cost	per	km	respectively,	indicates	that	
the	normalised	form	is	used	(with	respect	to	the	reference	value).		

To	get	an	idea	as	to	which	functional	forms	can	be	represented	with	this	formulation,	consider	
Figure	1.	

	

	

					 	

						 	
Figure	1:	Top:	two	kinds	of	inputs	a)	decreasing	by	half	b)	increasing	two-fold	over	the	time	horizon.	Second	
row:	 output	 variable	 over	 time	 for	 inputs	 a	 (left)	 and	 b	 (right),	 each	 for	 different	 elasticities	 Third	 row:	
Functional	form	of	the	output	variable	for	inputs	a	(left)	and	b	(right),	each	for	different	elasticities	.	

If	 for	example,	 the	 input	variable	doubles	over	a	certain	amount	of	 time,	 then	an	elasticity	>1	
implies	that	the	output	variable	will	more	than	double.	It	should	be	kept	in	mind	that	the	example	
above	uses	a	linearly	in-/decreasing	input,	so	that	the	response	function	could	look	different	for	
more	generalized	inputs.		

The	functional	forms	in	Figure	1	can	be	summed	up	in	the	following	rules:			

● |ε|<1		 :	underproportional	reaction	of	the	output	variable	
● |ε|=1		 :	proportional	reaction	of	the	output	variable	
● |ε|>1		 :	overproportional	reaction	of	the	output	variable	
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● ε=0		 :	no	reaction	
● ε>0	 :	reaction	of	the	output	variable	in	the	same	direction	as	the	change	of	the	input	

variable	
● ε<0	 :	reaction	of	the	output	variable	in	the	opposite	direction	as	the	change	of	the	input	

variable	

The	simplicity	of	constant	elasticity	formulations,	and	the	broad	range	of	response	curves	they	
can	generate,	make	them	a	powerful	modeling	tool.	Nevertheless,	they	should	only	be	used	when	
the	relationship	to	be	represented	fulfills	certain	criteria,	as	discussed	below.		

Prerequisites	for	using	elasticity	formulations	
A. The	 underlying	 relationship	 has	 to	 be	monotonic,	 that	 is,	 a	 positive	 change	 in	 a	 given	

direction	 of	 X	 is	 always	 associated	 with	 a	 change	 in	 a	 certain	 direction	 of	 Y,	 i.e.	 the	
derivative	of	the	function	is	not	changing	its	sign.	 		
This	implies	that	a	contraindication	for	elasticity	use	would	e.g.	be	a	variable	that	reacts	
strongest	for	intermediate	values	of	the	input,	but	weakly	to	both	low	and	high	value	of	
the	input.	

B. The	 relationship	must	 have	 an	 elasticity	 that	 is	 close	 to	 constant.	 If	 the	 elasticity	was	
changing	over	time,	that	could	cause	sudden	jumps	in	output	

C. The	relationship	does	not	involve	sudden	jumps,	e.g.	sharp	threshold	values	
The	 underlying	 causal	 relationship	 should	 be	 such	 that	 if	 the	 input	 variable	 does	 not	 change	
neither	should	the	output	(ceteris	paribus).	

Further	 implementation-aspects	 of	 elasticity	
formulations:	
A	negative	input	(relative	x)	limits	elasticities	to	integers	for	simulation	software	that	can	typical	
not	handle	complex	numbers.	Note	that	this	is	only	a	problem	for	inputs,	where	a	negative	value	
can	occur	by	definition	in	reality,	e.g.	temperature	in	Celsius/Fahrenheit,	bank	account	balance,	
electric	charge.	Often	 times	however,	 the	problem	can	be	avoided	 through	a	modified	variable	
definition:		temperature	can	be	measured	in	Kelvin	instead,	Trust	can	be	defined	as	ranging	from		
0	 to	 1	 	 instead	 of	 from	 -1	 to	 1	 (complete	 distrust	 to	 complete	 trust,	 respectively	 for	 each	
definition),	a	bank	account	balance	may	be	divided	into	two	variables	one	for	debt	and	one	for	
money	actually	owned	(which	may	make	sense	anyway	because	human	decisions	may	react	very	
differently	for	changes	in	debt	as	compared	to	changes	in	money	owned…).		

Alternatively,	 a	 workaround	 can	 be	 used	 where	 inputs	 can	 go	 negative	 by	 formulating	 the	
dependent	variable	as	a	stock	and	letting	the	independent	variable(s)	drive	the	rate	of	changes	in	
the	stock.	In	this	way,	the	derivative	(with	respect	to	time)	of	the	elasticity	equation	(Equation	9)	
is	used,	which	allows	the	elasticity	to	be	multiplied	by	relative	changes	in	x,	rather	than	used	in	a	
power	function	form,	as	used	for	example	in	Dianati	(2022,	p184-185).	

Functional	 forms	 that	 have	 a	 known	 non-zero	 roof/floor	 (saturation	 effects)	 for	 the	 affected	
variable	cannot	readily	be	represented	by	elasticities.	At	least	strictly	speaking,	the	monotonically	
in-	or	decreasing	property	of	the	effect	modeled	by	an	elasticity	formulation	will	surpass	any	roof	
when	time	goes	to	infinity.	However,	since	elasticities	with	an	absolute	value	between	0	and	1	
have	 diminishing	 returns	 as	 a	 property,	 properly	 chosen	 values	 can	 still	 approximate	 such	
functional	forms	to	some	degree	within	a	given	range	of	input	values	and	simulation	time.			

As	 indicated	 above,	 the	 decision	 whether	 or	 not	 an	 elasticity	 formulation	 can	 be	 used	 is	 not	
dichotomous,	some	cases	stretch	the	concept	more	than	others,	sometimes	the	functional	form	
that	can	be	generated	by	an	elasticity	formulation	is	a	more	or	less	rough	approximation	of	what	
the	true	functional	form	probably	looks	like.	Sometimes	additional	equation	syntax	can	enable	
using	an	elasticity	formulation	that	would	otherwise	not	be	applicable.	



Mandatory	normalization	
One	 important	 difference	 between	 using	 elasticities	 and	 using	 table	 functions	 is	 that	
normalization	is	necessary	when	using	elasticities,	while	for	table	functions	it	is	only	recommended	
to	normalize	inputs	and	conceptualize	the	table	function	so	that	it	produces	a	normalized	output.	
This	 recommendation	 is	 not	 always	 followed	 and	using	 dimensioned	 in-	 or	 outputs	 does	 not	
necessarily	 lead	 to	 inconsistencies	 if	 applied	with	 care.	 In	 line	with	 that	 reasoning,	modeling	
softwares	do	not	produce	errors	if	dimensioned	arguments	are	used	as	input	to	table	functions	or	
dimensioned	outputs	are	produced	by	them	(some	softwares	e.g.	Vensim,	do	give	out	warnings	
but	not	errors	in	such	cases	though).		

When	using	elasticities	normalization	is	necessary	because	the	formulation	can	only	be	expected	
to	produce	useful	outputs	if	the	inputs	are	normalized	(with	a	reference	value,	typically	the	initial	
value)	and	then	using	the	reference/initial	value	of	the	output	to	multiply	the	normalized	output	
with	(see	equations	9	and	12).			

Cases	where	 the	 input	 is	undefined	 for	a	while	after	 the	onset	of	 the	
simulation	
There	are	cases	where	the	input	of	the	formulation	is	not	defined	at	the	onset	of	the	simulation.	
Consider	for	example	we	desire	to	model	the	effect	of	a	pesticide	on	the	mortality	of	a	certain	
species,	but	the	pesticide	has	come	into	use	only	a	certain	time	after	the	onset	of	the	simulation.	
This	 implies	 however,	 that	 if	 the	 initial	 value	 of	 the	 input	 is	 zero,	 it	 cannot	 be	 used	 for	
normalization	 purposes.	 Hence,	 in	 such	 cases	 the	 value	 of	 the	 input	 variable	 at	 some	 other	
reference	time	must	be	used	instead.	In	the	example	above	we	could	use	for	normalization	the	
amount	of	the	pesticide	that	was	used	in	a	period	where	a	solid	estimation	was	made,	and	the	
mortality	at	that	point	in	time	for	the	output.		

Although	not	always	recommended,	the	first	available	value	for	the	input	variable	can	be	used	for	
normalization.	 The	 benefit	 of	 such	 practice	 is	 that	 it	 can	 be	 automated	 in	 some	 modeling	
softwares.	 Different	 applications	 may	 differ	 in	 their	 abilities	 to	 implement	 this;	 in	 Vensim	 a	
sample-if-true	formulation	can	be	used,	where	instead	of	an	initial	variable	the	first	value-variable	
used	for	initialization	jumps	from	zero	to	the	first	appearance	of	the	value	and	then	stays	there	
for	the	rest	of	the	simulation.	In	applications	where	this	is	not	available,	if-then-else	formulations	
could	be	used	together	with	a	stock	that	serves	as	memory	of	the	value	at	the	previous	time	step.	
However,	one	important	limitation	of	using	the	first	available	value	for	normalization	is	that	some	
process	(e.g.	economic	production)	that	might	exhibit	constant	elasticity	in	the	long-run,	might	
still	behave	differently	at	the	very	outset	of	the	process	(e.g.	because	production	technology	is	not	
mature	yet).	It	is	therefore	better	to	choose	as	anchor	for	normalization	a	later	value	of	the	input.	

Issues	of	scale	
Because	constant	elasticity	formulations	do	not	describe	the	actual	mechanics	that	lead	from	a	
change	in	input	to	a	change	in	output,	but	aggregates	it	into	a	single	equation,	it	can	be	argued	that	
the	 evaluation	of	whether	or	not	using	an	 elasticity	 formulation	 is	appropriate	depends	 to	 an	
extent	 on	 the	 choice	 of	 level	 of	 aggregation	 and	 model	 boundary.	 However,	 an	 elasticity	
formulation	 can	 also	 be	 used	 to	 represent	 micro-scale	 causal	 relationships	 in	 some	 cases.	
Mathematically,	the	requirement	is	a	constant	ratio	of	delta	input	to	delta	output,	irrespective	of	
aggregation	level.	For	example,	if	a	model	is	built	solely	to	represent	and	replicate	developments	
in	fertility	rate,	perhaps	using	an	elasticity	for	the	effect	of	e.g.	income	or	education	might	not	be	
‘operational’	and	transparent	enough	for	this	particular	purpose,	not	least	because	you	are	losing	
the	dynamics	of	how	the	drivers	impact	fertility	rate.	If	however,	the	goal	is	a	model	of	national	
development	on	various	fronts,	at	the	scale	of	T21/iSDG5	for	example,	then	it	 is	not	feasible	to	
delve	 into	 the	operational	nitty-gritty	of	all	mechanisms,	and	therefore	 for	 this	case	 the	use	of	
																																																													
5https://www.isdgs.org/isdg	



elasticity	formulations	can	be	a	good	choice,	given	its	other	advantages	(ease	of	calibration,	ease	
of	communication	to	other	disciplines,	etc.).	

Other	implementation	aspects	
Sterman	(2000	Table	14-1	p.553)	argues	that	rigor	must	be	applied	to	the	formulation	of	table	
functions	in	terms	of	thinking	of	reference	points,	the	functional	form,	thresholds	etc.	It	is	highly	
advisable	 to	 apply	 the	 same	 rigor	 to	 the	use	of	 elasticities.	Most	 importantly,	 they	 should	not	
simply	be	auto-calibrated	by	the	modeling	software	with	a	search	range	from	−∞	to	+∞.,	but	the	
search	range	should	be	limited	to	plausible	ranges.	It	can	to	the	very	least	be	reasoned	first	about	
the	sign	and	whether	the	absolute	value	of	the	elasticity	is	<	or	>1	(see	rules	derived	from	Figure	
1	above).		

Moreover,	if	in	doubt	on	whether	an	elasticity	formulation	can	be	used	instead	of	a	table	function,	
it	 is	advisable	 to	 first	build	a	table	 function	and	then	assess	whether	an	elasticity	 formulation	
could	alternatively	be	used,	e.g.	by	calculating	the	elasticity	from	the	table	function	model	using	
equation	12	as	shown	in	the	example	further	below.	In	fact,	testing	the	model	results	obtained	
with	an	elasticity	formulation	versus	those	obtained	using	a	table	function	is	also	advisable.		

Also,	similarly	to	the	case	of	implementing	table	functions,	the	identification	and	quantification	of	
elasticities	can	benefit	from	expert	knowledge,	to	be	elicited	according	to	best	practices		(Sterman	
2000	Table	14.5	p.585ff).	In	particular,	expert	knowledge	can	be	used	to	define	reasonable	ranges	
for	elasticities,	in	absolute	terms,	and	also	in	relative	terms	(e.g.	elasticity	“a”	is	larger	than	“b”).	
Note	 that	 auto-calibration	 mechanisms	 on	 standard	 SD-software	 are	 typically	 not	 able	 to	
incorporate	such	conditional	logic,	which	means	that	some	degree	of	manual	calibration	is	not	
only	 advisable	 but	 often	necessary	 to	 yield	meaningful	 results	 (This	 is	 also	 a	 call	 to	 software	
developers	to	alleviate	this	shortcoming…).		

3. A	Classic	Example	
In	order	to	test	the	applicability	of	elasticity	formulations	in	place	of	table	functions,	we	use	a	well-
known	model:	the	World-3-03	model	that	was	used	for	the	study	Limits	to	Growth	-	the	30	year	
update	(Meadows	et	al.	2004).	This	also	has	 the	advantage	 that	 the	model	 is	 freely	and	easily	
available	as	part	of	the	documentation	of	the	Vensim-software.	We	first	review	an	example	of	a	
table	function	within	that	model	that	can	very	well	be	replaced	by	an	elasticity	formulation;	and	
then	 cover	 some	 examples	 where	 this	 does	 not	 seem	 appropriate	 without	 further	 structural	
changes.		

We	will	show	that	an	elasticity	can	appropriately	replace	the	table	function	completed	multiplier	
from	perceived	lifetime	table	shown	in	the	Figure	2	below	(original	formulation	of	World-3-03).		

	
Figure	2:	Table	function	formulation	of	completed	multiplier	from	perceived	lifetime	table	in	World-3-03	(color	
emphasis	added)	
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Figure	3	below	shows	the	quantification	and	functional	form	of	this	table	function	in	World-3-03.	
It	can	be	seen	that	the	slope	is	downward	and	the	curvature	is	convex	all	along	the	ranges	given	
by	 the	 table	 function	 (input	perceived	 life	 expectancy:	 [0,80]	 output	 completed	multiplier	 from	
perceived	 lifetime:	 [1,3].	The	 functional	 form	 is	close	 to	what	can	be	produced	by	an	elasticity	
formulation	(see	Fig.	1).	It	is	thus	a	good	candidate	for	replacement	with	an	elasticity	formulation.	

	

	
Figure	3:	table	function	completed	multiplier	from	perceived	lifetime	table	in	World-3-03	

Figure	 4	 below	 shows	 a	 modified	 structure	 using	 an	 elasticity	 of	 fertility	 multiplier	 to	 life	
expectancy.	It	can	be	seen	that	the	reference	points	used	are	the	initial	values	of	the	simulation	
(i.e.	year	1900	here).	

	

	
Figure	4:	modified	structure	in	World-3-03	using	an	elasticity	of	fertility	multiplier	to	life	expectancy	and	initial	
and	relative	versions	of	in-	and	outputs	based	on	initial	values	of	the	in-	and	outputs	

Of	course,	the	original	model	can	also	be	used	to	calculate	an	elasticity	using	equation	12.	In	Figure	
5	below	it	can	be	seen	 that	the	elasticity	derived	 from	the	 table-function	version	of	 the	model	
(yellow)	is	nearly	constant,	which	is	an	important	prerequisite	of	using	an	elasticity	in	place	of	a	
table	function.		
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Figure	5:	Comparison	of	elasticity	derived	from	the	table-function	version	of	the	model	(dark	yellow)	and	the	
constant	elasticity	used	in	the	modified	model	with	an	elasticity	formulation	(purple).	The	initial	value	of	1	can	
be	ignored6	

The	value	used	for	the	elasticity	in	the	modified	model	version	(purple	line	in	figure	above)	could	
be	derived	from	the	calculated	one.	However,	in	real	world	applications,	an	elasticity	value	will	
often	be	derived	without	a	pre-existing	table	function	simply	by	calibrating	it	to	yield	a	good	fit	
with	the	output,	for	which	data	hopefully	exists.	Here,	manual	calibration	was	used	to	get	a	good	
fit	 to	 the	output	 from	 the	 table	 function	using	 the	 synthesim	 feature	 in	Vensim	 (elasticity	 of	 -
0.3375).	The	resulting	fit	of	the	completed	multiplier	from	perceived	lifetime	appears	more	than	
satisfactory	(see	Figure	6	below	purple	being	the	elasticity	formulation	and	dark	yellow	being	a	
simulation	resulting	from	the	original	table	function).		

	
Figure	6:	Comparison	of	the	development	of	the	fertility	multiplier	in	the	original	model	with	table	function	
(dark	yellow)	and	the	modified	model	with	the	elasticity	formulation	(purple)	

Figure	7	below	shows	that	 the	 fit	 is	even	better	 for	 the	next	variable	 in	 the	causal	chain	 total	
fertility.			

																																																													
6	The	elasticity	has	been	set	to	an	arbitrary	value	of	1	when	both	the	relative	input	and	output	are	=0	,	i.e.	
initially,	because	otherwise	the	simulation	stops	before	it	starts	because	of	an	error	due	to	a	division	by	0	
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Figure	7:	Comparison	of	the	development	of	the	total	fertility	in	the	original	model	with	table	function	(dark	
yellow)	and	the	modified	model	with	the	elasticity	formulation	(purple)	

It	was	noted	before	that	in	some	cases	other	reference	points	besides	the	initial	values	may	be	
used.	In	this	example	a	meaningful	reference	point	would	be	the	threshold	life	expectancy	(80	
years)	at	or	above	which	total	fertility	is	no	longer	higher	than	desired	completed	family	size,	in	
other	words,	at	or	above	this	age	realized	family	size	is	no	longer	adjusted	upward	due	to	child	
mortality	(reference	life	expectancy	without	influence	on	total	fertility	in	the	figure	below).			

Hence	the	elasticity	formulation	could	also	be	based	upon	this	reference	point	as	can	be	seen	in	
figure	8	below.	Note	that	in	this	case	the	reference	value	for	the	output	completed	multiplier	from	
perceived	lifetime	at	reference	life	expectancy	is	naturally	=1.	

	
Figure	8:	modified	structure	in	World-3-03	using	an	elasticity	of	fertility	multiplier	to	life	expectancy	and	initial	
and	relative	versions	of	in-	and	outputs	based	on	a	reference	(saturation)	life	expectancy	

A	reasonable	fit	could	be	obtained	using	an	elasticity	of	-0.35	as	can	be	seen	in	figure	9	below.	

	
Figure	9:	Comparison	of	the	development	of	the	fertility	multiplier	(left)	and	of	the	total	fertility	(right)	in	the	
original	model	 with	 table	 function	 (dark	 yellow)	 and	 the	 modified	 model	 with	 the	 elasticity	 formulation	
(purple)	based	on	a	reference	(saturation)	life	expectancy	
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However,	when	using	a	table-function	it	is	important	to	also	consider	how	the	model	will	behave	
beyond	the	range	of	its	definition.	In	this	case	beyond	the	reference	age	of	80	years,	Vensim7	will	
simply	keep	the	 last	value	(=1)	constant.	For	 this	case	 that	 is	actually	meaningful	because	 the	
underlying	assumption	as	stated	above	is	that	at	or	beyond	this	reference	age,	parents	will	get	
more	children	just	because	of	child	mortality	(which	is	implicitly	assumed	to	drop	with	increasing	
life	expectancy).		

In	 the	 standard-run	 of	 Limits	 to	 Growth	World-3-03,	 the	 life	 expectancy	 of	 80	 years	 is	 never	
surpassed,	because	 it	 is	an	overshoot-and-collapse	scenario.	Hence	 this	run	does	not	allow	for	
comparing	the	two	different	formulations	with	respect	to	model	behavior	beyond	the	reference	
point.	However,	the	W303S13	Scenario8	does	exhibit	life	expectancy	surpassing	80	years.	Using	
this	 scenario,	 figure	10	below	examines	how	 the	 completed	multiplier	 from	expected	 lifetime	
develops	beyond	the	range	of	the	table	function,	i.e.	beyond	the	reference	point	of	80	years	for	
this	 scenario:	The	dark	yellow	 curve	 represents	 the	 simulation	with	 the	 table	 function	model	
whereas	the	purple	curve	shows	the	simulation	with	the	elasticity	formulation.	It	can	be	seen	that	
the	latter	falls	below	1,	which	is	not	meaningful	with	respect	to	the	above-mentioned	assumption	
that	beyond	a	certain	reference	age,	child	mortality	is	no	longer	an	issue	with	respect	to	family	
size.		

	
Figure	10:	Comparison	of	the	development	of	the	fertility	multiplier	in	the	original	model	with	table	function	
(dark	yellow)	and	the	modified	model	with	the	elasticity	formulation	(purple)	in	the	W303S13	Scenario	

However,	one	should	not	take	the	rest	of	the	model	for	granted	when	doing	this	sort	of	structural	
validity	testing.	We	should	ask	ourselves:	beyond	80	years:	will	there	really	be	no	influence	at	all	
of	child	mortality	on	total	fertility,	or	will	that	influence	more	likely	just	get	less	and	less?	When	
considering	 family	planning	only,	 the	assumption	that	below	a	certain	child	mortality,	parents	
would	no	longer	consider	having	extra	children	as	“backup”	(sorry	for	the	formulation)	seems	
justified	at	first	sight.	But	does	that	really	apply	to	ALL	parents?	Or	could	there	be	a	minority	who	
would	 still	 consider	 this	 (e.g.	 because	 they	 are	 anxious	 by	 nature,	 live	 in	 more	 dangerous	
circumstances	than	other	families	etc.)?	In	addition,	total	fertility	could	differ	from	desired	family	
size	not	 only	because	of	 family	planning	but	 also	as	a	 reaction	 to	 child	mortality.	 Even	under	
medical	conditions	much	better	than	today,	some	children	may	still	die,	because	of	accidents	(incl.	
those	caused	by	dangerous	hobbies,	drugs…)	or		because	of	a	few	remaining	diseases	that	can	still	
not	be	cured	even	in	a	very	optimistic	future.	Hence,	 if	what	is	in	the	model	desired	completed	
family	size,	was	redefined	as	reference	desired	completed	family	size	and	this	was	defined	to	be	at	
a	life	expectancy	of	80	years,	there	are	arguments	in	favor	of	an	elasticity	formulation	to	yield	
results	closer	to	real-world	conditions	than	the	table	function	could!		

																																																													
7	While	some	modeling	softwares	do	allow	alternative	assumptions	beyond	the	range	of	a	table	function,	
constancy	is	always	an	option	and	typically	the	default	assumption	
8	This	scenario	comes	with	the	model	as	part	of	the	Vensim	documentation,	but	is	not	equivalent	to	any	
scenario	in	the	book.		
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Even	 if	 one	 was	 to	 disagree	 with	 the	 above-mentioned	 argumentation	 of	 an	 influence	 of	 life	
expectancy	beyond	80years	on	desired	completed	family	size,	it	also	matters	to	what	degree	the	
direct	output	of	the	elasticity	formulation	actually	makes	a	difference	on	the	rest	of	the	model.	The	
impact	is	actually	very	low	on	desired	total	fertility	as	can	be	seen	in	figure	11.	

	
Figure	11:	Comparison	of	 the	development	of	 total	 fertility	 in	 the	original	model	with	 table	 function	(dark	
yellow)	and	the	modified	model	with	the	elasticity	formulation	(purple)	in	the	W303S13	Scenario	

In	addition,	the	elasticity	formulation	could	be	forced	to	behave	the	same	way	as	the	table	function	
beyond	a	desired	life	expectancy	of	80	years,	by	simply	using	an	if-then-else	formulation	that	uses	
the	elasticity	formulation	below	80	years9	and	otherwise	is	=1.	More	sophisticated	equation	terms	
could	probably	be	used	to	smooth	the	transition	between	these	two	ranges	of	the	input	variable	
if	desired.	This	is	a	simple	example	of	how	an	elasticity	formulation	can	be	used	if	augmented	by	
other	equation	syntax.	

Next,	we	look	at	an	example	where	an	elasticity	cannot	easily	replace	a	table	function.	Figure	12	
shows	 the	 original	 structure	 calculating	 an	 effect	 of	 industrial	 production	 on	 life	 expectancy	
(crowding	multiplier	from	industry	table).	In	Figure	13,	the	shape	of	that	table	function	can	be	seen	
that	 as	 industrial	 output	 per	 capita	 increases,	 crowding	 (indicating	 an	 adverse	 effect	 on	 life-
expectancy)		first	decreases	to	even	go	slightly	negative	and	then	slowly	increases	again.		

																																																													
9	In	the	equation	it’s	simpler	to	define	this	using	the	relative	desired	life	expectancy	<1	vs.	else	
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Figure	12:	Model	structure	surrounding	table	function	crowding	multiplier	from	industry	table	in	World-3-03	
(color	emphasis	added)	

	

	
Figure	13:	Table	function	crowding	multiplier	from	industry	table	in	World-3-03		

This	table	function	is	clearly	non-monotonic,	thus	violating	one	of	the	prerequisites	for	use	of	table	
functions.	 In	 addition,	 the	 input	may	go	negative,	which	does	not	work	with	CEFs	 either	 (see	
further	above).		

One	can	calculate	an	elasticity	from	the	simulation	using	Equation	12	using	the	structure	added	
in	Figure	14.	
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Figure	14:	Model	structure	for	calculating	an	elasticity	of	crowding	multiplier	from	Industry	to	industrial	output	
per	capita	(magenta	color)	added	to	the	original	structure	

Implication	 note:	 Additional	 equation	 syntax	 is	 necessary	 to	 avoid	 the	 simulation	 from	
stopping	prematurely.	This	may	depend	on	the	simulation	software	used,	in	Vensim	we	can	
use	the	following	formulation:			

calculated	elasticity	of	crowding	multiplier	from	Ind	to	industrial	output	PC	=		 	
IF	THEN	ELSE	(relative	industrial	output	per	capita	=	1	:AND:	relative	crowding	multiplier	from	industry	=	1,	1,	
IF	THEN	ELSE(relative	crowding	multiplier	from	industry<0	:OR:	relative	industrial	output	per	capita<0,-999,	
LN(relative	crowding	multiplier	from	industry)/LN(relative	industrial	output	per	capita)))	

Note	that	the	number	-999	is	used	here	to	indicate	negative	infinity.		

It	can	be	seen	in	Figure	15	that	the	elasticity	first	decreases	from	just	below	0	going	to	negative	
infinity	for	some	years	(-999	in	the	model	run	actually,	see	note	above)	and	then	increases	again	
to	just	below	0	in	2100.	

	

	
Figure	15:	Development	of	calculated	elasticity	of	crowding	multiplier	from	Industry	to	 industrial	output	per	
capita	
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of	food	reducing	diseases	and	hence	mortality	through	avoidance	of	consumption	of	spoiled	food.				
ideas	behind	the	table	function	may	be	that	as	industrial	output	increases,	there	is	at	first	an	effect	
increase	in	life	expectancy,	but	then	at	very	high	industrial	outputs	there	is	an	effect	decreasing	
life	expectancy	again.	However,	as	GDP	per	capita	grows	to	very	high	numbers,	the	authors	may	
have	assumed	adverse	effects	besides	pollution	on	 life	expectancy,	 .e.g.	 conflicts.	This	suggests	
that	these	effects	could	be	modeled	by	at	least	two	separate	monotonic	table	functions	or	two	
separate	CEF	formulations.		

4. Discussion	
A	 few	arguments	have	been	 raised	 in	 the	past	 against	 the	use	of	 elasticity	 formulations	 in	SD	
models.	In	a	strong	critique,	Olaya	(2015)	suggests	that	this	type	of	formulation	stands	against	
operational	thinking,	which	is	a	cornerstone	of	SD.	In	the	same	vein,	Eskinasi	(2014)	argues	that	
“Elasticity	 represents	 the	 overall	 statistical	 correlation	 strength	 between	 economic	 variables.	
System	dynamics	 is	 focused	on	 finding	 structures	generating	such	 correlations.	 It	 is	 therefore	
arguably	more	natural	to	measure	the	elasticity	of	system	dynamics	simulation	outcomes	ex-post	
than	to	use	elasticity	as	a	model	parameter.	The	former	approach	may	be	helpful	in	demonstrating	
congruence	 between	 system	 dynamics	models	 and	 empirical	 findings	 and	 thus	 in	 integrating	
different	 strands	 of	 research.	 The	 latter	 approach	 is	 suspected	 to	 lead	 to	 unit	 consistency	
problems	and	methodological	discussions	(Eskinasi	2014,	pp125-126).”		

While	we	 recognize	 that	 elasticity	 formulations	 are	 not	 always	 adequate	 to	 represent	 certain	
types	of	relationships,	we	believe	that	the	above	critiques	are	misplaced.	Firstly,	there	is	no	reason	
why	“elasticity”	should	necessarily	refer	only	to	economic	variables:	its	mathematical	definition	
is	universal	and	not	limited	to	a	specific	domain	of	application.	Secondly,	“elasticity”	-	intended	as	
a	property	of	a	relationship,	does	not	measure	correlation:	it	 is	simply	the	ratio	of	change	in	a	
variable	to	the	change	in	another	variable.	When	implementing	a	constant	elasticity	formulation	
in	 a	 causal	 model	 (as	 SD	 models	 are)	 we	 associate	 a	 causal	 meaning	 to	 that	 relationship,	
independently	on	whether	the	elasticity	was	estimated	using	a	regression	model.	In	fact,	the	above	
arguments	may	also	be	used	against	table	functions.	They,	too,	can	be	used	to	depict	correlations,	
where	the	detailed	causal	mechanisms	are	not	known.	

Rather	than	the	generic	criticism	above,	we	find	that	a	practical	discussion	of	pros	and	cons	of	the	
use	of	 this	 type	of	 formulation	in	system	dynamics	models	 is	more	useful.	The	discussion	that	
follows	 is	 based	 on	 the	 mathematical	 properties	 of	 elasticity	 formulations,	 and	 on	 practical	
observations	from	application	in	a	variety	of	fields.	

Advantages	and	disadvantages	of	constant	elasticity	formulations	
While	it	is	clear	that,	for	a	monotonic	relationship	that	exhibits	constant	elasticity,	using	a	CEF	or	
a	table	function	can	provide	very	similar	results,	in	practice	there	are	important	advantages	and	
disadvantages	to	each.	

Pro:	Less	time-consuming	
A	first,	immediate	advantage	of	CEF	with	respect	to	table	functions	is	that	they	can	be	more	rapidly	
developed,	needing	only	one	parameter	to	be	specified,	instead	of	a	series	of	coordinates.	

Pro:	Ease	of	calibration	
Another	advantage	of	the	strength	of	the	relationship	being	represented	by	a	single	value	is	that	
it	 makes	 calibration	 easier	 and	 possibly	 more	 robust,	 as	 it	 supports	 the	 use	 of	 advanced	
calibration	 algorithms.	 It	 should	be	noted	 that	 calibration	 can	 act	 as	 a	powerful	 test	 of	model	
validity.	As	Oliva	(2003,	p557)	points	out	 though:	 “From	an	operational	perspective,	however,	
having	a	complex	error	function	and	multiple	parameters	to	adjust	makes	the	tractability	of	the	
errors	 and	 the	 diagnosis	 of	 mismatches	more	 difficult.”	 The	 latter	 limitation	 applies	 to	 table	
functions	which	consist	of	several	values.	Since	using	elasticities	calibration,	but	also	sensitivity	



analyses	 are	 much	 easier,	 it	 appears	 more	 likely	 that	 such	 rigor	 is	 actually	 applied	 when	
elasticities	are	used	as	compared	to	table	functions.			

Pro:	Unbounded	
Being	defined	over	the	whole	potential	range	of	input	values	(while	table	functions	are	defined	by	
a	finite	set	of	points)	there	is	no	risk	of	the	input	falling	beyond	the	range	of	values	pre-set	in	the	
model.	

Pro:	Smoothness	
Elasticity	formulations	clearly	have	the	advantage	of	built-in	steadiness.	Table	functions	typically	
use	 single	points	and	 linear	 interpolation	 in-between.	This	 implies	a	non-steady	 function	 (the	
points	do	not	have	a	clear	derivative),	even	if	the	real	functional	form	is	known	to	be	steady.	This	
can	lead	to	artifacts	in	the	simulation	outcome.	While	this	can	be	alleviated	for	table	functions	to	
a	certain	degree	by	smoothing	the	curve	using	more	points,	this	is	not	practical,	and	if	 it	 is	not	
supported	by	data	it	may	be	criticized	as	a	pseudo-accuracy.	In	addition	increasing	the	number	of	
points	 in	 a	 table	 function	 exacerbates	 the	 issues	 around	 calibration	 and	 sensitivity	 analyses	
outlined	above.	Hence	the	number	of	points	in	a	table	function	imply	a	trade-off	that	can	be	avoied	
by	using	elasticities.		

Pro:	Easier	communication	
Using	 a	 single	 value	 to	 express	 the	 strength	 of	 a	 relationship	 makes	 it	 easy	 to	 report	 in	
documentation	and	publications	(reporting	one	value	 in	 text	compared	 to	reporting	a	table	or	
even	an	x-y	graph).	Also,	 it	 facilitates	exchange	with	other	disciplines	where	such	a	concept	 is	
broadly	used	(e.g.	economics).		

Con:	Harder	communication	
With	 an	 audience	 who	 is	 not	 aware	 of	 the	 concept	 of	 elasticity,	 using	 a	 table	 function	 that	
graphically	 shows	 the	 shape	 of	 the	 underlying	 curve	 might	 be	 a	 more	 effective	 way	 to	
communicate.	

Con:	Non-negative	input	
Because	of	their	exponential	nature,	CEF	cannot	accept	a	negative	input	(with	a	few	exceptions,	
as	discussed	above).	Input	must	therefore	be	normalized	in	the	positive	domain.	

Con:	Never	saturating	
While	a	relationship	can	fulfill	the	prerequisites	for	using	a	CEF	(discussed	above)	for	a	reasonable	
range	 of	 input	 values,	 in	 reality	 in	many	 cases	 bio-physical	 relationships	would	 exhibit	 some	
saturation	for	extreme	input	values	that	CEF	do	not	capture.	

Con:	Non-zero	reference	points	
Reference	points	for	input	and	output	cannot	be	zero,	otherwise	the	normalization	of	input	and	
output	is	not	possible.	This	might	require	choosing	ad-hoc	normalization	values	that	cannot	be	
easily	justified.	

Con:	Initial	values	as	reference	points	limit	choice	of	timing	for	the	start	of	the	simulation	
Some	points	in	time	are	special	-	out	of	the	ordinary	in	some	way.	When	table	functions	are	used	
that	are	based	on	reference	points	that	are	only	surpassed	by	the	system	later	in	time,	the	initial	
values	of	the	system	may	not	be	very	important	for	system	behaviour	at	later	points	in	time.	If	
however,	elasticity	formulations	are	used	with	initial	values	as	reference	points	the	initial	values	
have	 a	 strong	 influence	 on	 the	 whole	 simulation.	 Hence	 it	 is	 important	 that	 the	 onset	 of	 the	
simulation	is	at	a	time	when	the	system	is	in	a	relatively	normal	condition.	If	e.g.	a	national	model	
of	Germany	was	built,	it	would	not	be	a	good	idea	to	start	the	simulation	right	after	reunification	
in	 1990,	 when	 many	 things	 were	 in	 a	 very	 non-normal	 state.	 Similarly,	 when	 modeling	 a	
production	in	some	way,	starting	the	simulation	right	after	the	introduction	of	a	new	product	may	



not	be	advisable	either.	In	both	cases	starting	the	simulation	somewhat	later	appears	advisable.	
That	 said,	 this	 limitation	 also	 applies	 to	 table	 functions	 if	 these	 are	 normalized	 (as	 it	 is	
recommended,	as	mentioned	further	above).	

5. Conclusions	
One	 of	 the	 strengths	 of	 the	 system	 dynamics	method	 is	 the	 ability	 to	 account	 for	 non-linear	
relationships	 between	 variables.	 Such	 relationships	 are	 typically	 represented	 using	 table	
functions,	which	are	highly	versatile	and	support	the	definition	of	nearly	any	functional	form.	Still,	
in	 some	 cases,	 table	 functions	 are	 cumbersome	 to	 develop	 and	 time-consuming	 to	 calibrate,	
leading	 to	 edgy	 curves	 that	 cover	 only	 a	 limited	 range	 of	 possible	 input	 values.	 When	 the	
relationship	to	be	represented	meets	certain	criteria,	the	concept	of	“elasticity”	can	be	used	and	
applied	 in	 system	 dynamics	 models	 to	 more	 effectively	 formulate	 and	 calibrate	 non-linear	
relationships.	

Elasticity,	 the	 ratio	 of	 the	 proportional	 change	 in	 output	 over	 that	 in	 input,	 can	 provide	 an	
immediate	 measure	 of	 the	 strength	 of	 the	 relationship	 between	 two	 variables.	 When	 such	 a	
relationship	 exhibits	 constant	 elasticity	 throughout,	 a	 simple	 power	 function	 can	 be	 used	 to	
represent	 the	relationship,	a	so-called	Constant	Elasticity	Formulation	(CEF).	Despite	constant	
elasticity	 formulations	 (CEF)	 being	 broadly	 used	 in	 economic	modeling,	 our	 literature	 review	
indicates	that	they	are	hardly	discussed	in	the	system	dynamics	literature,	and	that	little	research	
has	been	carried	out	on	the	implications	of	using	such	formulations	in	our	field.	

Our	 review	of	 the	mathematical	 properties	 of	CEF	 reveals	 that	 they	 can	be	 effectively	used	 in	
system	 dynamics	 models	 to	 represent	 certain	 non-linear	 relationships.	 By	 representing	 the	
strength	of	a	relationship	between	two	variables	with	a	single	number,	CEF	can	be	more	quickly	
formulated	and	calibrated	than	 table	 functions.	 In	addition,	CEF	define	smooth	curves	with	no	
sharp	angles,	and	they	are	defined	for	an	infinite	range	of	input.	The	practical	example	that	we	
have	discussed,	the	application	of	CEF	as	replacement	of	a	table	function	in	the	World-3-03	model,	
shows	 that	 it	 provides	 a	 smoother	 and	 more	 extended	 curve	 than	 the	 corresponding	 table	
function.	

While	 care	 has	 to	 be	 applied	 that	 the	 relationship	 to	 be	 represented	 meets	 the	 criteria	 we	
discussed,	elasticity	formulations	provide	a	useful	alternative	to	table	functions,	complementing	
the	toolbox	of	SD	formulations.	

6. References	
Andersen,	D.	F.	(1990).	Analyzing	who	gains	and	who	loses:	The	case	of	school	finance	reform	in	

new	 york	 state.	 System	 Dynamics	 Review,	 6(1),	 21–43.	
https://doi.org/10.1002/sdr.4260060103	

Arif,	M.	T.,	&	Saeed,	K.	(2019).	Sustaining	economic	growth	with	a	nonrenewable	natural	resource:	
The	case	of	oildependent	Indonesia.	Towards	Sustainable	Development:	Essays	on	
System	Analysis	of	National	Policy,	5(1),	308–331.	

Brady,	M.	P.	(2009).	Advertising	effectiveness	and	spillover:	Simulating	strategic	interaction	using	
advertising.	 System	 Dynamics	 Review,	 25(4),	 281–307.	
https://doi.org/10.1002/sdr.426	

Cavana,	R.	Y.,	&	Clifford,	L.	V.	 (2006).	Demonstrating	 the	utility	of	system	dynamics	 for	public	
policy	analysis	in	New	Zealand:	The	case	of	excise	tax	policy	on	tobacco.	System	
Dynamics	Review,	22(4),	321–348.	https://doi.org/10.1002/sdr.347	



Dianati,	 K.	 (2022)	 London’s	 Housing	 Crisis	 –	 A	 System	 Dynamics	 Analysis	 of	 Long-term	
Developments:	40	Years	into	the	Past	and	40	Years	into	the	Future.	PhD	Thesis.	
University	College	London,	UK.	

Eskinasi,	 M.	 (2014).	 Towards	 Housing	 System	 Dynamics.	 Radboud	 Universiteit	 Nijmegen.	
Retrieved	from	http://hdl.handle.net/2066/129859	

Forrester,	J.	W.	(2003).	Dynamic	models	of	economic	systems	and	industrial	organizations.	System	
Dynamics	Review,	19(4),	329–345.	https://doi.org/10.1002/sdr.284	

Forrester,	N.	B.	(1987).	The	role	of	econometric	techniques	in	dynamic	modeling:	Systematic	bias	
in	the	estimation	of	stock	adjustment	models.	System	Dynamics	Review,	3(1),	45–
67.	https://doi.org/10.1002/sdr.4260030107	

Inman,	D.,	Bush,	B.,	Newes,	E.,	Peck,	C.,	&	Peterson,	S.	(2020).	A	technique	for	generating	supply	
and	 demand	 curves	 from	 system	 dynamics	models.	 System	 Dynamics	 Review,	
36(3),	373–384.	https://doi.org/10.1002/sdr.1663	

Jung,	 T.,	 &	 Strohhecker,	 J.	 (2009).	 Risk-adjusted	 pricing	 strategies	 for	 the	 corporate	 loans	
business:	Do	they	really	create	value?	System	Dynamics	Review,	25(4),	251–279.	
https://doi.org/10.1002/sdr.429	

Kampmann,	C.	E.,	&	Sterman,	J.	D.	(2014).	Do	markets	mitigate	misperceptions	of	feedback?	System	
Dynamics	Review,	30(3),	123–160.	https://doi.org/10.1002/sdr.1515	

Meadowz,	D.,	Randers,	J.,	&	Meadows,	D.	(2004).	Limits	to	growth	the	30-year	update.	White	River	
Junction,	VT:	Chelsea	Green	Publishing.	

Moxnes,	 E.	 (1990).	 Interfuel	 substitution	 in	 OECD-European	 electricity	 production.	 System	
Dynamics	Review,	6(1),	44–65.	

Olaya,	 C.	 (2016).	 Cows	 ,	 agency	 ,	 and	 the	 signi	 fi	 cance	 of,	 31(4),	 183–219.	
https://doi.org/10.1002/sdr	

Oliva,	R.	(2003).	Model	calibration	as	a	testing	strategy	for	system	dynamics	models.	European	
Journal	 of	 Operational	 Research,	 151(3),	 552–568.	
https://doi.org/10.1016/S0377-2217(02)00622-7	

Pierson,	 K.,	 &	 Sterman,	 J.	 D.	 (2013).	 Cyclical	 dynamics	 of	 airline	 industry	 earnings.	 System	
Dynamics	Review,	29(3),	129–156.	

Sterman,	 J.	 (2000).	Business	Dynamics:	Systems	Thinking	and	Modelling	 for	a	Complex	World.	
McGraw-Hill	Higher	Education.	

Ulli-Beer,	 S.,	 Gassmann,	 F.,	 Bosshardt,	M.,	&	Wokaun,	A.	 (2010).	Generic	 structure	 to	 simulate	
acceptance	 dynamics.	 System	 Dynamics	 Review,	 26(2),	 89–116.	
https://doi.org/10.1002/sdr.440	

Van	Ackere,	A.,	&	Smith,	P.	C.	(1999).	Towards	a	macro	model	of	National	Health	Service	waiting	
lists.	 System	 Dynamics	 Review,	 15(3),	 225–252.	
https://doi.org/10.1002/(sici)1099-1727(199923)15:3<225::aid-
sdr171>3.0.co;2-p	

Wirl,	F.	(1991).	Dynamics	of	commodity	taxation:	An	example	of	an	energy	tax.	System	Dynamics	
Review,	7(2),	145–158.	https://doi.org/10.1002/sdr.4260070204	

	


