

2022 International System Dynamics Conference

James Paine jpaine@mit.edu http://jpaine.mit.edu

VALUE OF PUTTING THE 'B' IN 'BOM'

(...in policy development in dynamic decision-making environments)

2022 International System Dynamics Conference

James Paine jpaine@mit.edu http://jpaine.info

- 'Challenge the clouds' of typical
 OM/OR by outright expecting
 non-optimal responses in
 crafting cost reduction policy
- Incorporate dynamic learning into these policies

Behavioral Ordering Models

Modular Simulation Model of the Beer Game

- Discrete time simulation
- Modularized to allow different ordering rules from prior literature
- E.g. Sterman 89 Ordering rule based on four parameters:

$$O_t = MAX(0, L_t + \alpha_S(S' - S_t - \beta SL_t) + \varepsilon_t)$$

where $\hat{L}_t = \theta L_t + (1 - \theta)\hat{L}_{t-1}$

- O = order placed at time t
- L^{2} = smoothed interpolation of the expected outflow of inventory
- Θ = smoothing parameter
- SL = total inbound supply line of inventory
- S = current on-hand inventory (or stock)

S' = analogous to the desired or goal on-hand inventory of the player

 β = weight of supply line

setup of the setup of the

Illustrative Model-Based Result against Step Change in Customer Orders

8

Removing the Model from the Agent: DQN

Framework

- OpenAI Gym custom environment based on same functional-form of Beer Game developed in Model-based optimization
- Environment consisting of:
 - o All supply chain positions in parallel (versus transfer learning in sequence)
 - o Randomly drawn models of real teams (from Sterman '89)
 - o Random but bounded simulation horizons
 - Noisy realizations of order decisions

DQN Architecture

- Dual DQN network (split Action / State Q values)
- Three sequential dense layers with ReLu activation
- Order-plus action space guided by prior model-optimization
- Combination of epsilon-greedy and Boltzmann policy (Wiering 1999)
- Observation space limited to data available in Beer Game (x4 window for sequential memory)

Model-Informed (but still Model-Free) Approach

Training Environment

- Directly built off of a model of human ordering
- 'Physics' of this model are unknown to the agent

Order-Plus Action Space

- Limits ability for agent to deviate from orders received from supply chain partners and creates tractable action space
- Informed by θ observation in model-based approach

Windowed Observation Space

- Observation directly incorporates window of past states
- · Size of windowed observations is same as maximum delivery delay for the system
- Informed by β observation in model-based approach

Agent Structure

- Discrete order quantities supported by DQN approach
 - Dueling Structure value implied prior behavioral model research
 - Prior work shows small deviations from rational ordering shown to induce bullwhip
 - Actions may have similar value, but need to keep track of state and action separately to avoid inducing bullwhip

10

Illustrative DQN Model-Free Result against Step Change in Customer Orders

Model-Aware Agent Structure Pseudo Algorithm

Assume system	t = 0
model	Assume Structural and Dynamic Model of System
structure	Define Agent position in System model
	Define observable space for Agent
	Populate initial assumption of parameterization and initializations
Calibrate to	Define backward calibration memory and forward optimization horizon
observed history	for t in 1:horizon
	Calibrate System Model given history
<i>Optimize</i> based on assumed	ArgMin{System Parameter Estimate}
	Error (Observed space of simulation of System Model, Actual Observed space)
and estimated	Return estimated parameters of System Model
model	Optimize forward given System Model estimate
	ArgMax {Agent Decision Rule}
	Over t:(t+opt horizon): Reward from t:horizon given System Model estimate

Agent at Position 2 in Sterman '89 Team 0

Agent at Position 2 - Wholesaler (in Sterman '89 Team 3)

Applicability in Adjacent (but non-identical) environments

Model-Aware Deep Q-Network Approach

Model-Aware Deep Q-Network Approach

26

Comparing Policy Assumptions and Structure

Comparing Policy Assumptions and Structure

Comparing Policy Assumptions and Structure

Advantage of Heuristic Policy: Interpretability

Gene	eral Shared Features of the Behavioral Agents
	Low values of $\boldsymbol{\theta}$ for the Retailer and high values of $\boldsymbol{\theta}$ for others
	 Determines the degree of smoothing in updating each entity's expectation of future orders (Anchoring and Adjustment)
$\boldsymbol{O}_{t} = \boldsymbol{M}\boldsymbol{A}\boldsymbol{X}\big(\boldsymbol{0}, \widehat{\boldsymbol{L}_{t}} + \boldsymbol{\alpha}_{S}(\boldsymbol{S}' - \boldsymbol{S}_{t} - \boldsymbol{\beta} \boldsymbol{S}\boldsymbol{L}_{t}) + \boldsymbol{\varepsilon}_{t}\big)$	• Low values of θ = slow to update expectations, while high values of θ = is quick to adopt the new order signal
where $\hat{L}_t = \theta L_t + (1 - \theta) \hat{L}_{t-1}$	Retailer dubious about customer orders, all other entities quick to update
	Very high values of $\boldsymbol{\beta}$ (at or near 1.0) throughout
	Directly corresponds to Supply Chain Underweighting
	 Matches existing best practices from literature and counteracts largest hypothesized source of Bullwhip
	Values of S' resembling (full inventory) base-sock replenishment
	 Classic solution to Bullwhip with perfect customer distribution knowledge is base stock replenishment
	 S' at or near 36 in all optimizations (and higher in less stable positions), which matches base stock level under uniform random centered around 8 units with total inventory delay of 4 units of time
22	

32

Discussion and Limitations

Notable Limitations

- This is an empirically grounded simulation, but not an empirically verified one (yet)
- Important concerns in real supply chains (integration, cost sharing, etc.) are ignored here. The definition of 'cost' matters!
- Ordering data from real games implies subtle behavioral differences between 'in-person' and online/hybrid runs. This is ignored (for now!)

