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Materials and Methods 

1. Data and replication instructions 
All code and data for this research are available at https://github.com/marichig/weather-conditions-

COVID19.  

 

This study spans 3,739 locations ranging from city-scale to national-scale that reported daily cases of 

COVID-19 before April 22, 2020. The breakdown is as follows: 

 

- 3,149 locations from the United States (3,144 counties and 5 territories) 

- 335 locations from China (34 provinces and 301 individual cities) 

- 8 locations from Australia (corresponding to 8 states) 

- 10 locations from Canada (corresponding to 10 provinces) 

- 31 locations from Iran (corresponding to 31 provinces) 

- 206 remaining locations (mostly countries and a few territories).  

 

Any country besides the United States, China, Australia, Canada, and Iran are reported at the country 

level. 

 

The following list of countries describes the 206 remaining locations: Afghanistan; Albania; Algeria; 

Andorra; Angola; Anguilla, United Kingdom; Antigua and Barbuda; Argentina; Armenia; Aruba, 

Netherlands; Austria; Azerbaijan; Bahamas; Bahrain; Bangladesh; Barbados; Belarus; Belgium; Belize; 

Benin; Bermuda, United Kingdom; Bhutan; Bolivia; Bonaire, Sint Eustatius and Saba, Netherlands; 

Bosnia and Herzegovina; Botswana; Brazil; British Virgin Islands, United Kingdom; Brunei; Bulgaria; 

Burkina Faso; Burma; Burundi; Cabo Verde; Cambodia; Cameroon; Cayman Islands, United Kingdom; 

Central African Republic; Chad; Channel Islands, United Kingdom; Chile; Colombia; Congo 

(Brazzaville); Congo (Kinshasa); Costa Rica; Cote d'Ivoire; Croatia; Cuba; Curacao, Netherlands; 

Cyprus; Czechia; Denmark; Djibouti; Dominica; Dominican Republic; Ecuador; Egypt; El Salvador; 

Equatorial Guinea; Eritrea; Estonia; Eswatini; Ethiopia; Falkland Islands (Malvinas), United Kingdom; 

Faroe Islands, Denmark; Fiji; Finland; France; French Guiana, France; French Polynesia, France; Gabon; 

Gambia; Georgia; Germany; Ghana; Gibraltar, United Kingdom; Greece; Greenland, Denmark; Grenada; 

Guadeloupe, France; Guatemala; Guinea; Guinea-Bissau; Guyana; Haiti; Holy See; Honduras; Hungary; 

Iceland; India; Indonesia; Iraq; Ireland; Isle of Man, United Kingdom; Israel; Italy; Jamaica; Japan; 

Jordan; Kazakhstan; Kenya; Korea, South; Kosovo; Kuwait; Kyrgyzstan; Laos; Latvia; Lebanon; Liberia; 

Libya; Liechtenstein; Lithuania; Luxembourg; Madagascar; Malawi; Malaysia; Maldives; Mali; Malta; 

Martinique, France; Mauritania; Mauritius; Mayotte, France; Mexico; Moldova; Monaco; Mongolia; 

Montenegro; Montserrat, United Kingdom; Morocco; Mozambique; Namibia; Nepal; Netherlands; New 

Caledonia, France; New Zealand; Nicaragua; Niger; Nigeria; North Macedonia; ; Norway; Oman; 

Pakistan; Panama; Papua New Guinea; Paraguay; Peru; Philippines; Poland; Portugal; Qatar; Reunion, 

France; Romania; Russia; Rwanda; Saint Barthelemy, France; Saint Kitts and Nevis; Saint Lucia; Saint 

Pierre and Miquelon, France; Saint Vincent and the Grenadines; San Marino; Sao Tome and Principe; 

Saudi Arabia; Senegal; Serbia; Seychelles; Sierra Leone; Singapore; Sint Maarten, Netherlands; Slovakia; 

Slovenia; Somalia; South Africa; South Sudan; Spain; Sri Lanka; St Martin, France; Sudan; Suriname; 

Sweden; Switzerland; Syria; Taiwan; Tanzania; Thailand; Timor-Leste; Togo; Trinidad and Tobago; 

Tunisia; Turkey; Turks and Caicos Islands, United Kingdom; Uganda; Ukraine; United Arab Emirates; 

United Kingdom; Uruguay; Uzbekistan; Venezuela; Vietnam; West Bank and Gaza; Western Sahara; 

Yemen; Yukon, Canada (territory, not a province); Zambia; and Zimbabwe. 

 

For each of the above locations (which all reported cases separately), coordinate and daily case data were 

collected. Case and coordinate data were first taken from JHU’s published case reports, available at 

https://github.com/marichig/weather-conditions-COVID19
https://github.com/marichig/weather-conditions-COVID19
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https://github.com/CSSEGISandData/COVID-19, which covered all locations (counties) in the United 

States and 258 of the 590 locations from outside the U.S., including breakdowns for Canada into 10 

states/territories, and Australia into 8 states.  

 

The remaining locations include 301 Chinese cities and 31 Iranian states; for these, case and coordinate 

data were taken from the Chinese Center for Disease Control and Prevention, Provincial Health 

Commissions in China, and Iran’s state level reports.  

Some locations included in the U.S. case reporting data were dropped from the main analysis. Namely:  

- Cases from the cruise ships Diamond Princess, Grand Princess, and MS Zaandam were discarded. 

- Cases labelled as “Out of [State]” or “Unassigned, [State]” were discarded. 

- Cases from Michigan Department of Corrections and Federal Correctional Institute, Michigan were 

dropped since they reflect unique spread dynamics and carried no coordinate data. 

- Cases attributed to the Utah Local Health Departments (Bear River, Central Utah, Southeast Utah, 

Southwest Utah, TriCounty, and Weber-Morgan) were discarded; as of 4/22/2020, only 291 cases 

were reported from these sources compared to 3154 from all Utah counties. These health 

departments span several counties and reporting from them only began on 4/19/2020. 

Errors in the reported coordinate data were also identified and resolved manually. (For instance, Congo-

Brazzaville was reported to have the same coordinates as Congo-Kinshasa.) With this coordinate data, 

weather data is collected primarily through World Weather Online (WWO), which provides an API for 

data collection – the Python “wwo-hist” package <https://pypi.org/project/wwo-hist/> was used to access 

this API. Historical weather data were collected for each day between 1/23/2019 thru 4/22/2020, with 

data from 2019 being used for future projection. Pollution data are collected from the European Centre for 

Medium-Range Weather Forecasts (ECMWF)’s CAMS-Near Real Time service from 1/1/2019 – 

4/22/2020, with solely 2019 data used for projection, since 2020 data is not representative due to 

disruption of human activity from the pandemic. 

 

The following weather variables were collected: maximum daily temperature (degrees Celsius (°C)), 

minimum daily temperature (°C), average daily temperature (°C), precipitation (millimeters), humidity 

(percentage (%)), atmospheric pressure (millibars), windspeed (kilometers per hour (km/h)), sun hours 

(i.e., hours of sunshine received), total snowfall, (centimeters) cloud cover (percentage) ultraviolet (UV) 

index (measured within one hour of noon local time), moon illumination (%) (i.e., percentage of moon 

face lit by the sun), local sunrise and sunset time; local moonrise and moonset time; dew point (°C), 

"Feels Like" (°C), wind chill (°C) wind gust (i.e., peak instantaneous speed) (km/h), visibility 

(kilometers), and wind direction degree, clockwise degrees from due north.  

 

The pollutant variables collected were ozone (parts per billion volume (ppb (v)), nitrogen dioxide (ppb 

(v)), sulfur dioxide (ppb (v)), and particulate matter of diameter less than 2.5 micrometers (micrograms 

per cubic meter). 

 

For countries or provinces with cities of population larger than 500,000 reported by Demographia, 

weather and pollution aggregates were produced by performing a weighted average of variables over all 

cities in the country to avoid data from sparsely populated areas. This affected 137 out of 590 locations 

from the global dataset (mostly countries). For the remaining global locations, as well as for all US 

counties, data were drawn from the coordinate of the centroid of that location, which we think is 

representative of the region given that the vast majority of these locations are sufficiently small and 

weather variables would not vary significantly within the location. 

 

Descriptions of the weather variables are available at 

<https://www.worldweatheronline.com/developer/api/docs/historical-weather-api.aspx>. The ultraviolet 

https://github.com/CSSEGISandData/COVID-19
https://pypi.org/project/wwo-hist/
https://www.worldweatheronline.com/developer/api/docs/historical-weather-api.aspx
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(UV) index data were not consistently reported from WWO, and were instead gathered using 

OpenWeatherMap <https://openweathermap.org/> and the Python “pyowm” package 

<https://pypi.org/project/pyowm/>.  

 

We interpolated over any missing entries in the temperature, UV, and pollution data provided. The 

reported temperature data were missing for most (but not all) locations for a handful of days: 9/15-

17/2019, 10/22/2019, 11/27/2019, and 12/15/2019, which were then interpolated using five-day moving 

averages. UV data were missing for less than 0.1% of date-location pairs, with the main gaps occurring on 

6/2/2019, 8/13/2019, 12/2/2019, 2/18/2020, and 2/21/2020, which were interpolated using three-day 

moving averages. The averaging of temperature and UV data should not impact the analysis given that 

most of the above dates fall outside the pandemic’s date-range. Furthermore, across all pollution 

variables, less than 0.1% of date-location pairs were interpolated for US locations, and less than 0.2% of 

pairs were interpolated for global locations. 

 

Population density data was sourced from Demographia (Cox., W, Demographia World Urban Areas, 15th 

Edition, The Public Purpose), which provided data for urban areas with population greater than 500,000; 

the United States Census (U.S. Census Bureau, data.census.gov/cedsci); the Iran Statistical Centre; the 

United Nation’s Projections; City Population (citypopulation.de); and official published estimates for 

countries not covered by these sources. For data sourced from Demographia, population densities 

reported are urban densities, whereas other sources primarily reported overall density (spanning urban and 

non-urban areas). The urban and overall densities are largely on different orders, which weakens the 

inclusion of population density as an independent variable. 

2. Estimating the detection delay distribution 
Reported data on daily detected COVID-19 infections do not reflect the true infection rate on a given day; 

rather, it lags behind the true infections due to both the incubation period (during which patients are 

asymptomatic and less likely to be tested) and the delays between onset of symptoms, testing, and 

incorporation of test results into official data. We need estimates for the true infection rates for each day 

to calculate the daily reproduction number (i.e., 𝑅̂(𝑡)), therefore identifying the lag structure between 

measured infection (𝐼𝑀) and true infection (𝐼𝑁), which we call “detection delay” is key to back-tracking 

from measured infection to estimates of true infection rate. 

Prior research has provided several estimates for subsets of overall detection delay. Incubation period, the 

time between infection to onset of symptoms, has been estimated by several teams. Li and colleagues 

(38), using data from 10 early patients in China, find the mean incubation period to be 5.2 days, and the 

delay from onset to first medical visit to be 5.8 days for those infected before January 1st and 4.6 days for 

the later cases. Lauer and colleagues (32) use data from 181 cases to estimate incubation period with 

mean of 5.5 and median of 5.1, and offer fitted distributions using Lognormal, Gamma, Weibull, and 

Erlang specifications. In a supplementary graph, they also provide a figure that includes the lags from the 

onset of symptom to official case detection. Guan et al. (35) use data from 291 patients and estimate 

median incubation period of four days with interquartile range of 2 to 7 days. Linton and colleagues (33) 

use data from 158 cases to estimate the incubation period with a mean (standard deviation) of 5.6 (2.8) 

days. This delay goes down to 5 (3) when Wuhan patients are excluded. They also report onset to hospital 

admission delay of 3.9 (3) days for living patients (155 cases). They provide their full data in an online 

appendix, where we calculated the onset to case report lag with mean of 5.6 days, median of 5, and 

standard deviation of 3.8 days. A New York Times article (39) reports that the Center for Disease Control 

estimates the lag between onset of symptoms to case detection to be four days. Finally, a Bayesian 

estimation of the detection delay using abrupt changes in national and state policies by Wibbens and 

colleagues find the mode of the delay to be 11 days and ranging between 5 and 20 days (40).  

Overall, these findings are consistent and point to an incubation period of about 5 days and an onset to 

detection lag of about the same length. We use Lauer et al. estimates for a Lognormal incubation period 

https://openweathermap.org/
https://pypi.org/project/pyowm/
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with parameters 1.62 and 0.418 (leading to mean (standard deviation) of 5.51 (2.4) days), and another 

Lognormal distribution with parameters 1.47 and 0.52 (resulting in 5 (2.8) days) for onset to detection 

delay. Combining these two distributions using 10 million Monte-Carlo simulations, we generate the 

following detection delay lag structure that is used in the analysis. The code calculating this distribution is 

found at <https://github.com/marichig/weather-conditions-COVID19/>. 

 

 
Figure S1: Distribution of Detection Delay 

3. Algorithmic estimation of true infection rate 
Here we develop an algorithm that provides a more accurate estimation of true exposure than a fixed shift 

in reported data or averaging data over a time period. We later compare our algorithm’s performance with 

simpler, more common, methods. We find that accurate estimation of effects of weather variables hinges 

directly on accurately estimating true infections, making the algorithm in this section key to overall 

estimation.   

Using the delay structure specified in the previous section, one can estimate true infection rates using 

various methods. The most common solution is to just shift the official infections based on the average, 

median, or mode of the detection delay (9 to 11 days). This approximation may suffice in steady state but 

becomes less accurate when estimating time series with exponential growth; the detected infections today 

are more likely to be from (the many more) recent infections than (the fewer) 10 days ago.  

The main objective of our algorithm is to find better estimates for the true infection. This can be seen as 

deconvolution of detection delay from true infection, when together they produce the observed data. We 

first calculate the expected number of daily detected cases, given a series of actual infections unknown in 

the real world. Given the actual infection on day 𝑡, 𝑋(𝑡), and the detected infections on day 𝑡, 𝐼(𝑡). The 

following equation would relate the two constructs: 

𝐸(𝐼(𝑡)) = ∑ 𝑋(𝑡 − 𝑑)𝑝(𝑑)𝐿
𝑑=1    

Where 𝐸(. ) takes the expectation on detected infections, 𝑝(. ) is the probability distribution for the 

detection delay estimated in section 2 of appendix, and the index 𝑑 ranges between 1 to 𝐿 = 17 days to 

account for different delay lengths. This equation does not account for test coverage, but as discussed 

below test coverage cancels out of the final reproduction number calculations, and as such only impacts 

variability of outcomes, having otherwise limited impact on results. Note that this equation is under-

specified; for one value of the known measure 𝐼, one has to find up to 𝐿 values of the unknown 𝑋 (in our 

case, no detection is expected in the first 4 days, so L-4=13 values of 𝑋 contribute to a value of 𝐼 (Figure 

S1)). However, given the overlap on 𝑋’s determining subsequent 𝐼 values, the system of equations 

connecting 𝐼 and 𝑋 values for 𝐼 time series extending over 𝑇 days would include 𝑇 known values (for 𝐼) 

and 𝑇 + 𝐿 unknown 𝑋 values. Different approaches could then be pursued to find approximate solutions 

for this system of equations.  

https://github.com/marichig/weather-conditions-COVID19/
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Using exact Maximum Likelihood suffers from intractability of specifying the Likelihood for highly 

correlated Poisson distributions (Poisson is a natural alternative in this case). We compared two 

alternatives, one using Normally distributed approximations for 𝐼 as a function of 𝑋, and another using a 

direct minimization of the gap between 𝐼 values and their expectation. The latter proves both simpler 

conceptually and more accurate in synthetic data, so we picked that for the main analysis: 

𝑋 = 𝐴𝑟𝑔𝑚𝑖𝑛(∑ (𝐼(𝑡) − ∑ 𝑋(𝑡 − 𝑑)𝑝(𝑑)

𝐿

𝑑=1

)

2

)

𝑇

𝑡=1

 

Given the underspecification of original system of equations, this optimization will include many 

solutions. To identify a more realistic solution from that set, we add a regularization term that penalizes 

the gap between subsequent values for 𝑋. Specifically, we use the following optimization: 

𝑋 = 𝐴𝑟𝑔𝑚𝑖𝑛(∑ (𝐼(𝑡) − ∑ 𝑋(𝑡 − 𝑑)𝑝(𝑑)

𝐿

𝑑=1

)

2𝑇

𝑡=1

+ 𝜆 ∑ (𝑋(𝑡 − 1) − 𝑋(𝑡))
2

𝑇

𝑡=−𝐿+1

) 

𝑠. 𝑡. 𝑋(𝑡) ≥ 0 

The solution to this optimization can be found using standard quadratic programming methods, allowing 

for fast and scalable solutions. We conducted sensitivity analysis to find the regularization parameter, λ, 

offering the best overall ability of the algorithm to find true infections in synthetic data. The algorithm 

that works well is with λ values in the 0.1 to 0.5 range and not very sensitive to exact value; we used a 

value of 0.2 in our analysis. An implementation of this code in MATLAB is available from 

<https://github.com/marichig/weather-conditions-COVID19/>. 

For each location in our dataset, we used this algorithm to estimate the true infections (𝐼𝑁(𝑡) = 𝑋(𝑡)), on 

a daily basis, starting from 17 days before the first detected infection and stopping 5 days before the last 

day with data (because only infections from 5 days or further back could be found in current measures of 

infection; see the detection delay distribution (Figure S1)). These values were then used to create the 

dependent variable, 𝑅̂(𝑡), as discussed in the body of the article: 

 𝑅̂(𝑡) =
𝐼𝑁(𝑡)𝜏

∑ 𝐼𝑁(𝑠) 𝑠=𝑡−1
𝑠=𝑡−𝜏−1

 

We recognize that not all infections are reported, and a large fraction may remain unknown. Assuming 

that only a fraction f (0 ≤ f ≤ 1) of actual infections are reported, IM would be f of total infections that 

could have been detected on a given day, and estimated 𝐼𝑁(𝑡) will be the fraction f of true infections as a 

result. While these underestimations would likely be very significant if we cared about absolute values of 

𝐼𝑁(𝑡), note that 𝐼𝑁(𝑡) values show up both in the numerator and denominator of 𝑅̂(𝑡) equation. Therefore, 

multiplying both by a fixed constant makes no difference in the estimated 𝑅̂(𝑡).  

We also recognize that, early on during the infection, f may increase with expanding test capacity until 

reaching a steady state value. Therefore, as later discussed, we drop the first few data points for each 

region and check the sensitivity of the result to dropping more or fewer days. Finally, our synthetic 

analysis (section 5.2.2.3, Experiment 10) shows results are robust to various trajectories for f over the 

course of epidemic.  

 

4. Statistical sensitivity analyses and robustness checks 
In our main specification we included weather predictors that are (a) of theoretical interest and (b) do not 

cause a collinearity issue when included together (correlations among main weather variables are reported 

in Table S1). Here we report eight different sets of sensitivity tests that assess the robustness of our 

https://github.com/marichig/weather-conditions-COVID19/
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findings to various assumptions, boundary conditions and inclusion of other weather variables.1 Here is a 

summary of the results, before we go into the details:  

1) In our main specification we used a delay of τ=20 days from exposure to virus to resolution (recovery 

or death) to calculate reproduction number R0. Here we tested the robustness of our results over a 

spectrum of reasonable durations of delay from 15 to 25 days, finding no major impact on the results.  

2) We tested our main specification under five additional exclusion criteria and specifications: exclusion 

of the last few days of data (for which true infection estimates may be less reliable), exclusions of top 1% 

R0 of our sample (which may be generated due to reporting issues), exclusions of non-US sample, 

inclusion of date fixed effects (to control for the possible global events impacting outcomes) and 

inclusion of location-specific quadratic trend effects (to control for the possible non-linearity in each 

location’s response over time). The key results on mean temperature, ultraviolet index and precipitation 

are robust across all specifications.  

3) In our main specification we excluded the first 20 days since new infection exceeds 1 for each location 

to account for early-on changes in test coverage and to get stable estimates for reproduction number. Here 

we tested the robustness of our results to other exclusion periods, ranging from first 10 days to 30 days, 

finding no major impact on the key results.  

4) To exclude the possibility that our results are driven by mechanical features of our variable 

construction and model specification, we used a set of placebo weather variables, which are randomly 

permuted across locations and shifted over a specific number of days, and re-estimated our main models 

using these placebo weather variables. We found few significant effects under these placebo tests.  

5) In our main specification we chose a linear spline effect of mean temperature with a knot at 25 degrees. 

Here we tested how our results are sensitive to different choices of knots, finding the 25 degree provides 

the best fit.  

6) In our main specification we found a somewhat counterintuitive U-shaped effect of ultraviolet index. 

To ensure the effect is not driven by observations with extremely large UV indices, we excluded 

observations with top 5% and 10% UV index values in our sample and repeated our analysis. The U-

shaped effect of UV is robust to these exclusions.  

7) We report analyses that include main weather variables in a step-wise fashion, several interaction 

terms, as well as some additional weather variables of interest (e.g., absolute humidity, NO2 and PM2.5). 

Our main results are robust to these inclusions and we did not find significant effects of these additional 

weather variables.  

8) Finally, we assess the overall robustness of projections of relative predicted risk (CRW) using a series 

of different specifications, from using US-only samples, to subsets of specifications reported in other 

analyses. Projections using these different measures are highly consistent across these specifications (with 

correlations above 0.9 in most cases).   

 
Table S1. Correlations among weather variables in the main specification  

 
[Min, Max] 

SO2 (log) O3 (log) 
Windspeed 

(log) 
Pressure 

Precipitation 
(log) 

Relative 
Humidity 

Mean 
temperature 

UV 
index 

Diurnal temperature 

Sulfur dioxide (log) [.00,7.16] 1.00         

Ozone (log) [.01,5.09] -0.51 1.00        

Windspeed (log)  [.69,4.04]    -0.23 0.27 1.00       

Pressure [999,1038] 0.19 -0.14 -0.29 1.00      

                                                 
1 Similar to the main analysis, all models tested here use log(R0) as the outcome and include location fixed effects, 

location-specific linear trends and day of the week effect. All models excluded days with new infections <1 and first 

20 days since new infection exceeds 1 for the first time in each location unless specified otherwise. 
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[Min, Max] 

SO2 (log) O3 (log) 
Windspeed 

(log) 
Pressure 

Precipitation 
(log) 

Relative 
Humidity 

Mean 
temperature 

UV 
index 

Diurnal temperature 

Precipitation (log) [0,5.15] -0.14 0.08 0.16 -0.36 1.00     

Relative Humidity [6,100] -0.16 -0.07 -0.01 -0.18 0.53 1.00    

Mean temperature [-19,36.92] 0.13 -0.07 -0.06 -0.31 0.01 -0.05 1.00   

UV index [.78,17.64] 0.04 0.00 -0.05 -0.22 0.08 0.01 0.79 1.00  

Diurnal 
temperature 

[0,22] 
-0.02 -0.03 -0.29 0.10 -0.28 -0.27 0.07 0.10 1.00 

 

4.1. Sensitivity to duration of disease (15, 20, 25) 

Table S2 presents the results using our main specification with R0 calculated from 15, 20 and 25 days of 

delay respectively. The coefficients and significance level for each weather variable are largely 

unchanged and consistent across different durations, especially for ozone, precipitation, mean temperature 

and ultraviolet index. 

 
Table S2. Regression results with various duration of delay to calculate R0  

 R0 calculated 
from 

R0 calculated 
from 

R0 calculated 
from 

 15 days 20 days 25 days 

    

Sulfur dioxide (log) 0.0260** 0.0301** 0.0286** 

 (0.00960) (0.00937) (0.00926) 

Ozone (log) 0.0304** 0.0349*** 0.0324*** 

 (0.00983) (0.00959) (0.00948) 

Wind speed (log) 0.0454*** 0.0323** 0.0219 

 (0.0128) (0.0125) (0.0123) 

Air pressure 0.00209* 0.00217* 0.00172* 

 (0.000891) (0.000870) (0.000859) 

Precipitation (log) 0.0278*** 0.0265*** 0.0246*** 

 (0.00507) (0.00495) (0.00489) 

Humidity -0.000855 -0.000602 -0.000481 

 (0.000459) (0.000448) (0.000442) 

Mean temperature below 25 -0.00253 -0.00399** -0.00409** 

 (0.00136) (0.00132) (0.00131) 

Mean temperature above 25 -0.0342*** -0.0377*** -0.0366*** 

 (0.00955) (0.00932) (0.00920) 

Ultraviolet index 0.00391 0.00886 0.00783 

 (0.00898) (0.00877) (0.00866) 

Ultraviolet index^2 0.00565*** 0.00533*** 0.00595*** 

 (0.00146) (0.00142) (0.00141) 

Diurnal Temperature 0.00449** 0.00421** 0.00378* 

 (0.00158) (0.00154) (0.00152) 

Observations 19,222 19,221 19,216 

R-squared 0.691 0.740 0.770 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.2. Sensitivity to exclusion criteria and including additional controls  

Table S3 presents the results when we excluded the last 4 days of our data (19% of the total sample in our 

main specification), top 1% R0, used a US-only sample, or included date fixed effects or location-specific 
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quadratic trend effects. Across specifications we observed robust and consistent estimates of the positive 

effect of precipitation, linear spline effect of mean temperature, and U-shaped effect of ultraviolet index. 

Other weather effects are somewhat less robust; the positive effects of air pollutants (i.e., SO2 and O3), 

while robust to excluding last 4 days of data, extreme R0, and the inclusion of date fixed effects, went 

away when we only used US locations or with the inclusion of location-specific quadratic trends. The 

positive effect of wind speed, while robust to both exclusion criteria, is no longer significant with 

additional controls. The positive effects of air pressure and diurnal temperature are only robust to using 

US data and excluding extreme R0, but not to other tests. We note that including a quadratic trend term 

adds another location-specific parameter, which would further absorb variations in weather and air-

pollutants in each location, and as such is expected to attenuate the parameter estimates further.  

 
Table S3. Regression results with various exclusion criteria and specifications 

      
 Exclude last 4 

days of data 
Exclude top 1% 

R0 

Only using US 
sample 

Including date 
fixed effects 

Including 
location-specific 
quadratic trend 

      
Sulfur dioxide (log) 0.0276** 0.0287** 0.00756 0.0302** 0.0149 
 (0.00998) (0.00928) (0.0112) (0.00931) (0.00804) 
Ozone (log) 0.0234* 0.0367*** 0.0163 0.0287** 0.0148 
 (0.00991) (0.00953) (0.0112) (0.00948) (0.00822) 
Wind speed (log) 0.0422** 0.0348** 0.0455** 0.00555 0.00541 
 (0.0132) (0.0124) (0.0146) (0.0126) (0.0107) 
Air pressure 0.00175 0.00261** 0.00308** -0.00138 -0.00109 
 (0.000948) (0.000867) (0.00103) (0.000905) (0.000799) 
Precipitation (log) 0.0322*** 0.0258*** 0.0312*** 0.0155** 0.0195*** 
 (0.00531) (0.00491) (0.00531) (0.00496) (0.00428) 
Humidity -0.000836 -0.000464 6.02e-05 -0.000221 -0.000814* 
 (0.000489) (0.000444) (0.000488) (0.000459) (0.000395) 
Mean temperature below 25 -0.000286 -0.00406** -0.00533*** -0.00577*** -0.00269* 
 (0.00144) (0.00131) (0.00143) (0.00145) (0.00117) 
Mean temperature above 25 -0.0374*** -0.0371*** -0.0555*** -0.0384*** -0.0275*** 
 (0.00999) (0.00928) (0.0134) (0.00913) (0.00805) 
Ultraviolet index -0.00523 0.00952 -0.000405 0.00199 0.00288 
 (0.00988) (0.00868) (0.00985) (0.00904) (0.00772) 
Ultraviolet index^2 0.00519*** 0.00528*** 0.00882*** 0.00467** 0.00540*** 
 (0.00155) (0.00142) (0.00233) (0.00142) (0.00128) 
Diurnal Temperature 0.00302 0.00425** 0.00553*** 0.00304 0.000710 
 (0.00168) (0.00153) (0.00160) (0.00157) (0.00132) 
Observations 15,595 19,031 13,953 19,216 19,221 
R-squared 0.771 0.730 0.720 0.778 0.840 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.3. Sensitivity to shifting the data start date after first exposure 

Table S4 presents the results when we excluded first 10, 15, 20, 25, and 30 days since new infection 

exceeds 1 for the first time in each location. Overall, we observed robust and consistent estimates of the 

positive effect of precipitation, U-shaped effect of UV index, and linear spline effect of mean 

temperature, except when we excluded the first 30 days of data for each location, where we would lose 

more than half of our sample as compared to the main specification (first 20 days excluded). It is possible 

that by constraining our estimation on later periods, we are focusing on periods when lockdown and 

social distancing are fully in effect and thus there are few variations left in R0 that can be explained by 

environmental factors. However, the coefficients for these effects are still consistent and have the same 
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sign. For example, with the first 30 days excluded, we estimated that with a one degree increase in mean 

temperature after 25 degrees, the estimated R0 will still decrease by ~2%. The positive effects of SO2, O3, 

wind speed, air pressure, and diurnal temperature were less robust and no longer significant when we 

excluded the first 25 or 30 days. 
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Table S4. Regression results with various exclusion criteria for initial periods  
      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude first 30 

days 

      
Sulfur dioxide (log) 0.00558 0.0185* 0.0301** 0.0220* 0.0169 
 (0.00777) (0.00858) (0.00937) (0.0106) (0.0128) 
Ozone (log) 0.00977 0.0192* 0.0349*** 0.0317** 0.0217 
 (0.00780) (0.00872) (0.00959) (0.0110) (0.0129) 
Wind speed (log) 0.0935*** 0.0853*** 0.0323** 0.00949 -0.00411 
 (0.0100) (0.0112) (0.0125) (0.0143) (0.0175) 
Air pressure 0.00853*** 0.00652*** 0.00217* 0.000893 0.00164 
 (0.000696) (0.000786) (0.000870) (0.000989) (0.00119) 
Precipitation (log) 0.0325*** 0.0345*** 0.0265*** 0.0181** 0.0216** 
 (0.00390) (0.00441) (0.00495) (0.00572) (0.00704) 
Humidity -0.000526 -0.000740 -0.000602 -9.62e-05 -0.000353 
 (0.000360) (0.000403) (0.000448) (0.000515) (0.000637) 
Mean temperature below 25 -0.000714 -0.00316** -0.00399** -0.00434** -0.00215 
 (0.00108) (0.00120) (0.00132) (0.00153) (0.00192) 
Mean temperature above 25 -0.0208* -0.0299** -0.0377*** -0.0370*** -0.0190 
 (0.00873) (0.00919) (0.00932) (0.00990) (0.0110) 
Ultraviolet index 0.0135 0.00740 0.00886 0.0125 0.00677 
 (0.00712) (0.00793) (0.00877) (0.00990) (0.0119) 
Ultraviolet index^2 0.00731*** 0.00789*** 0.00533*** 0.00639*** 0.00826*** 
 (0.00121) (0.00132) (0.00142) (0.00158) (0.00183) 
Diurnal Temperature 0.00661*** 0.00707*** 0.00421** 0.00389* 0.00241 
 (0.00123) (0.00138) (0.00154) (0.00177) (0.00219) 
Observations 32,232 25,913 19,221 13,670 9,071 
R-squared 0.699 0.705 0.740 0.779 0.814 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.4. Placebo tests (random shifts of weather data) 

Placebo tests allow us to ensure that mechanical features of the statistical estimation method are not 

driving any of the results. The basic intuition is simple: if we feed to the algorithm independent variables 

that are not matched correctly to the estimated exposure rates, we should not observe any major 

correlations. To implement, we first randomly permuted weather variables across locations in our data, 

and then shifted all weather variables in each location to earlier periods by a specific number of days, 

where the number is randomly drawn from a uniform distribution U(0,300). We then performed the 

statistical analysis using these placebo weather variables. As shown in Table S5, most of the weather 

effects are completely gone, especially in our main specification where first 20 days are excluded. The 

only exception is when we observe a negative and significant linear effect of ultraviolet index when first 

10 days are excluded. A single “significant” effect at p=0.05 out of over 50 estimated coefficients is 

expected based on chance alone.  

We also note the relatively large R-squared values in these placebo tests: fixed effects and location trends 

provide much explanatory power regardless of weather and pollution. This observation informed our 

choice to focus our statistical models on simpler and more interpretable linear forms rather than using 

cross-validation or other prediction-driven methods to specify terms and functional forms for statistical 

models. 
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Table S5. Regression results using placebo weather with various exclusion criteria for initial periods 
      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude first 30 

days 

      
Sulfur dioxide (log) -0.00579 -0.00289 0.00508 -0.00214 -0.00534 
 (0.00778) (0.00859) (0.00937) (0.0105) (0.0128) 
Ozone (log) 0.00329 0.000774 -6.36e-05 -0.00873 0.000387 
 (0.00664) (0.00731) (0.00799) (0.00891) (0.0107) 
Wind speed (log) -0.00340 0.00409 0.00783 0.00136 0.00333 
 (0.00920) (0.0102) (0.0111) (0.0124) (0.0151) 
Air pressure 0.000218 0.000262 0.000335 -0.000282 0.000121 
 (0.000592) (0.000655) (0.000713) (0.000802) (0.000970) 
Precipitation (log) 0.00620 0.00337 0.00746 0.00870 0.00791 
 (0.00358) (0.00395) (0.00433) (0.00488) (0.00596) 
Humidity -8.39e-05 -0.000273 -0.000598 -0.000460 -0.000287 
 (0.000317) (0.000349) (0.000381) (0.000429) (0.000514) 
Mean temperature below 25 0.00118 0.000771 0.00138 0.000351 0.000741 
 (0.000837) (0.000924) (0.00101) (0.00114) (0.00138) 
Mean temperature above 25 -0.00154 -0.00176 -0.00447 -0.000397 0.00193 
 (0.00325) (0.00360) (0.00387) (0.00433) (0.00529) 
Ultraviolet index -0.00585* -0.00424 -0.00302 0.000873 -0.000631 
 (0.00273) (0.00300) (0.00327) (0.00367) (0.00449) 
Ultraviolet index^2 0.000218 -1.41e-05 0.000483 0.000401 0.000547 
 (0.000448) (0.000495) (0.000545) (0.000621) (0.000766) 
Diurnal Temperature 0.000695 0.000196 -0.000915 -0.000931 -0.000288 
 (0.00118) (0.00130) (0.00142) (0.00159) (0.00195) 
Observations 32,232 25,928 19,286 13,760 9,137 
R-squared 0.695 0.701 0.738 0.777 0.812 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.5. Different knot for linear spline effect of mean temperature 

In the main specification we used a linear spline effect of mean temperature with a knot at 25 degrees as it 

provides better fit than linear or quadratic effect of temperature. Here we test the sensitivity of our results 

to the choice of knots over a wide range of mean temperatures from -15 degrees to 30 degrees. As shown 

in Table S6, the temperature effect after the knot is statistically significant and much larger at 25 degrees 

(-.0377, p<.001) than knots at other degrees. Hence, we chose the knot at 25 degrees as our main 

specification. Given the limited number of locations with temperature above 30 in our estimation sample, 

increasing the knot beyond that level is not supported by our data.  

 

Table S6. Regression results with different knots for linear spline effect of mean temperature 
 (1) (2) (3) (4) (5) 
 Knot at -15 Knot at -10 Knot at -5 Knot at 0 Knot at 5 

      
Sulfur dioxide (log) 0.0308** 0.0306** 0.0309*** 0.0311*** 0.0312*** 
 (0.00937) (0.00937) (0.00937) (0.00937) (0.00939) 
Ozone (log) 0.0362*** 0.0360*** 0.0363*** 0.0366*** 0.0367*** 
 (0.00959) (0.00959) (0.00959) (0.00959) (0.00960) 
Wind speed (log) 0.0302* 0.0300* 0.0298* 0.0302* 0.0307* 
 (0.0125) (0.0125) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00206* 0.00202* 0.00205* 0.00210* 0.00216* 
 (0.000870) (0.000870) (0.000870) (0.000870) (0.000875) 
Precipitation (log) 0.0266*** 0.0266*** 0.0268*** 0.0269*** 0.0269*** 
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 (1) (2) (3) (4) (5) 
 Knot at -15 Knot at -10 Knot at -5 Knot at 0 Knot at 5 
 (0.00495) (0.00495) (0.00495) (0.00495) (0.00496) 
Humidity -0.000525 -0.000515 -0.000491 -0.000470 -0.000486 
 (0.000447) (0.000447) (0.000447) (0.000449) (0.000450) 
Mean temperature below 25 0.166* 0.0518** 0.0177* 0.00194 -0.00282 
 (0.0823) (0.0186) (0.00873) (0.00526) (0.00325) 
Mean temperature above 25 -0.00498*** -0.00528*** -0.00541*** -0.00525*** -0.00517*** 
 (0.00131) (0.00131) (0.00132) (0.00134) (0.00140) 
Ultraviolet index 0.00909 0.00958 0.00950 0.00888 0.00850 
 (0.00877) (0.00877) (0.00877) (0.00877) (0.00878) 
Ultraviolet index^2 0.00462** 0.00464*** 0.00464*** 0.00466*** 0.00472*** 
 (0.00141) (0.00141) (0.00141) (0.00141) (0.00142) 
Diurnal Temperature 0.00418** 0.00434** 0.00438** 0.00430** 0.00420** 
 (0.00154) (0.00154) (0.00154) (0.00154) (0.00154) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.740 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

Table S6 (Cont’d). Regression results with different knots for linear spline effect of mean 

temperature 
 (1) (2) (3) (4) (5) 
 Knot at 10 Knot at 15 Knot at 20 Knot at 25 Knot at 30 

      
Sulfur dioxide (log) 0.0314*** 0.0306** 0.0296** 0.0301** 0.0308** 
 (0.00938) (0.00937) (0.00938) (0.00937) (0.00937) 
Ozone (log) 0.0372*** 0.0363*** 0.0349*** 0.0349*** 0.0363*** 
 (0.00961) (0.00959) (0.00961) (0.00959) (0.00959) 
Wind speed (log) 0.0322* 0.0324** 0.0338** 0.0323** 0.0303* 
 (0.0125) (0.0126) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00228** 0.00222* 0.00225** 0.00217* 0.00210* 
 (0.000879) (0.000875) (0.000872) (0.000870) (0.000870) 
Precipitation (log) 0.0270*** 0.0266*** 0.0262*** 0.0265*** 0.0267*** 
 (0.00495) (0.00495) (0.00495) (0.00495) (0.00495) 
Humidity -0.000450 -0.000475 -0.000498 -0.000602 -0.000522 
 (0.000450) (0.000449) (0.000447) (0.000448) (0.000448) 
Mean temperature below 25 -0.00244 -0.00351* -0.00344* -0.00399** -0.00482*** 
 (0.00213) (0.00164) (0.00142) (0.00132) (0.00130) 
Mean temperature above 25 -0.00614*** -0.00709*** -0.0130*** -0.0377*** -0.00916 
 (0.00160) (0.00215) (0.00363) (0.00932) (0.0333) 
Ultraviolet index 0.00736 0.00791 0.00825 0.00886 0.00873 
 (0.00882) (0.00879) (0.00877) (0.00877) (0.00877) 
Ultraviolet index^2 0.00508*** 0.00509*** 0.00536*** 0.00533*** 0.00461** 
 (0.00145) (0.00145) (0.00144) (0.00142) (0.00141) 
Diurnal Temperature 0.00408** 0.00403** 0.00401** 0.00421** 0.00417** 
 (0.00154) (0.00154) (0.00154) (0.00154) (0.00154) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.740 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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4.6 Excluding observations with high ultraviolet index 

Table S7 report the estimates of UV index effects when excluding observations in the top 5% (13.25) and 

top 10% (10.66) UV index in our sample. Results show that the U-shaped effect of UV index is 

significant and consistent across specifications and largely robust to the exclusion of observations with 

large UV index, showing that our results are not solely driven by extreme values. In fact, if anything, the 

curvature of UV impact becomes sharper (more positive) when we exclude those extreme values. While 

we lack a theoretically strong justification for the increasing part of the U-shaped effect, one could 

speculate that it relates to shift of social interactions to riskier indoor environments when UV index is 

very high. We cannot directly test this or other alternative hypotheses in our data.  

 

Table S7. Regression results excluding observations with top 5% UV index under various exclusion 

criteria for initial periods 

      
 Exclude first 10 

days 
Exclude first 15 

days 
Exclude first 20 

days 
Exclude first 25 

days 
Exclude 
first 30 
days 

      
Sulfur dioxide (log) 0.00194 0.0144 0.0249** 0.0180 0.0117 
 (0.00788) (0.00874) (0.00962) (0.0110) (0.0133) 
Ozone (log) 0.00564 0.0147 0.0323** 0.0310** 0.0202 
 (0.00791) (0.00888) (0.00985) (0.0114) (0.0135) 
Wind speed (log) 0.0950*** 0.0879*** 0.0339** 0.0116 0.000673 
 (0.0100) (0.0112) (0.0125) (0.0145) (0.0177) 
Air pressure 0.00857*** 0.00665*** 0.00228** 0.000923 0.00177 
 (0.000692) (0.000782) (0.000868) (0.000990) (0.00119) 
Precipitation (log) 0.0351*** 0.0372*** 0.0281*** 0.0191** 0.0229** 
 (0.00393) (0.00446) (0.00503) (0.00584) (0.00725) 
Humidity -0.000653 -0.000850* -0.000701 -0.000116 -0.000441 
 (0.000360) (0.000403) (0.000450) (0.000519) (0.000643) 
Mean temperature 
below 25 

-0.000564 -0.00285* -0.00364** -0.00406** -0.00186 

 (0.00108) (0.00119) (0.00132) (0.00152) (0.00192) 
Mean temperature 
above 25 

-0.0455*** -0.0479*** -0.0478*** -0.0439*** -0.0194 

 (0.0100) (0.0104) (0.0104) (0.0109) (0.0120) 
Ultraviolet index 0.0196** 0.00976 0.00809 0.00777 0.00290 
 (0.00734) (0.00814) (0.00901) (0.0102) (0.0124) 
Ultraviolet index^2 0.0117*** 0.0106*** 0.00594** 0.00466* 0.00774** 
 (0.00163) (0.00180) (0.00199) (0.00223) (0.00270) 
Diurnal 
Temperature 

0.00714*** 0.00753*** 0.00451** 0.00426* 0.00334 

 (0.00123) (0.00138) (0.00154) (0.00178) (0.00221) 
Observations 30,871 24,738 18,259 12,915 8,477 
R-squared 0.706 0.711 0.743 0.780 0.816 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table S7 (Cont’d). Regression results excluding observations with top 10% UV index under various 

exclusion criteria for initial periods 

      
 Exclude first 

10 days 
Exclude first 

15 days 
Exclude first 

20 days 
Exclude first 

25 days 
Exclude first 

30 days 

      
Sulfur dioxide (log) 0.0243* 0.0243* 0.0243* 0.0144 0.0122 
 (0.00994) (0.00994) (0.00994) (0.0114) (0.0140) 
Ozone (log) 0.0319** 0.0319** 0.0319** 0.0289* 0.0188 
 (0.0101) (0.0101) (0.0101) (0.0118) (0.0141) 
Wind speed (log) 0.0309* 0.0309* 0.0309* 0.0120 -0.00624 
 (0.0128) (0.0128) (0.0128) (0.0147) (0.0180) 
Air pressure 0.00256** 0.00256** 0.00256** 0.00140 0.00199 
 (0.000877) (0.000877) (0.000877) (0.000994) (0.00120) 
Precipitation (log) 0.0309*** 0.0309*** 0.0309*** 0.0229*** 0.0284*** 
 (0.00516) (0.00516) (0.00516) (0.00599) (0.00749) 
Humidity -0.000810 -0.000810 -0.000810 -0.000296 -0.000769 
 (0.000457) (0.000457) (0.000457) (0.000526) (0.000655) 
Mean temperature 
below 25 

-0.00335* -0.00335* -0.00335* -0.00370* -0.00179 

 (0.00133) (0.00133) (0.00133) (0.00153) (0.00193) 
Mean temperature 
above 25 

-0.0657*** -0.0657*** -0.0657*** -0.0507** -0.0414* 

 (0.0168) (0.0168) (0.0168) (0.0178) (0.0204) 
Ultraviolet index 0.0104 0.0104 0.0104 0.00857 0.0104 
 (0.00948) (0.00948) (0.00948) (0.0108) (0.0132) 
Ultraviolet index^2 0.00709** 0.00709** 0.00709** 0.00531* 0.0106*** 
 (0.00231) (0.00231) (0.00231) (0.00261) (0.00320) 
Diurnal 
Temperature 

0.00477** 0.00477** 0.00477** 0.00477** 0.00371 

 (0.00157) (0.00157) (0.00157) (0.00180) (0.00225) 
Observations 17,290 17,290 17,290 12,115 7,843 
R-squared 0.740 0.740 0.740 0.779 0.813 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.7 Inclusion of step-wise weather effects, interaction terms and additional variables 

Table S8 reports the regression results where we included the main weather variables in a step-wise 

fashion using our main specification. Specifically, we reported models only that include mean 

temperature, only include UV index, include both mean temperature and UV index, add additional 

weather variables (i.e., wind speed, air pressure, precipitation, and diurnal temperature), and add air 

pollutants (i.e., sulfur dioxide, ozone). Results from all models are consistent with each other (as well as 

the results we reported in the main text), showing that our results are not affected by the relatively high 

correlation between temperature and UV index or different combinations of the weather variables 

included.  

Table S8. Regression results including additional interaction terms and weather effects 

 (1) (2) (3) (4) (5) 
 Only include 

mean 
temperature 

Only include 
UV index 

Include both 
mean 

temperature 
and UV index 

Include 
additional 
weather 
variables 

Include 
additional air 

pollutants 

      
Mean temperature 
below 25 

-0.00471***  -0.00494*** -0.00393** -0.00393** 
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 (0.00100)  (0.00112) (0.00132) (0.00132) 
Mean temperature 
above 25 

-0.0342***  -0.0394*** -0.0382*** -0.0370*** 

 (0.00919)  (0.00928) (0.00930) (0.00930) 
Ultraviolet index  -0.00701 0.0118 0.00484 0.00626 
  (0.00752) (0.00836) (0.00855) (0.00855) 
Ultraviolet index^2  0.00533*** 0.00500*** 0.00543*** 0.00537*** 
  (0.00139) (0.00142) (0.00142) (0.00142) 
Wind speed (log)    0.0378** 0.0347** 
    (0.0115) (0.0123) 
Air pressure    0.00251** 0.00233** 
    (0.000860) (0.000862) 
Precipitation (log)    0.0222*** 0.0232*** 
    (0.00426) (0.00428) 
Diurnal Temperature    0.00478** 0.00455** 
    (0.00151) (0.00152) 
Sulfur dioxide (log)     0.0316*** 
     (0.00931) 
Ozone (log)     0.0365*** 
     (0.00952) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.739 0.739 0.739 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

Table S9 presents the results of including additional weather effects and interaction terms in our main 

specification. We first included additional weather effects of absolute humidity, nitrogen dioxide, 

particulate matter, visibility, wind direction, cloud cover, snow, and moon illumination. We did not 

observe significant effects of these additional weather variables, except for moon illumination, where we 

observed a significant negative effect. But most of our main results are robust to the inclusion of 

additional variables, except for wind speed and air pressure, which are no longer significant with the 

inclusion of moon illumination. We then explored some interaction effects between weather variables. 

We found a significant negative interaction between the quadratic term of UV index and precipitation, 

indicating the U-shaped effect of UV index will be dampened with the increase of precipitation. We also 

found a positive and significant interaction between mean temperature above 25°C and sulfur dioxide, 

indicating the negative effect of temperature will be attenuated by increased sulfur dioxide level. Finally, 

we observed a negative and significant interaction between particulate matter and air pressure, indicating 

the positive effect of particulate matter will attenuate with higher air pressure. While we do not have good 

theoretical explanations for the moon illumination effect and these interaction effects, we reported them 

here to show other weather effects are robust to this additional inclusion and point to possible avenues for 

further investigation. 

 

Table S8. Regression results including additional interaction terms and weather effects 
 (1) (2) (3) (4) (5) 
 Only include 

mean 
temperature 

Only include 
UV index 

Include both 
mean 

temperature 
and UV index 

Include 
additional 
weather 
variables 

Include 
additional air 

pollutants 

      
Mean temperature 
below 25 

-0.00471***  -0.00494*** -0.00393** -0.00393** 

 (0.00100)  (0.00112) (0.00132) (0.00132) 
Mean temperature -0.0342***  -0.0394*** -0.0382*** -0.0370*** 
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above 25 
 (0.00919)  (0.00928) (0.00930) (0.00930) 
Ultraviolet index  -0.00701 0.0118 0.00484 0.00626 
  (0.00752) (0.00836) (0.00855) (0.00855) 
Ultraviolet index^2  0.00533*** 0.00500*** 0.00543*** 0.00537*** 
  (0.00139) (0.00142) (0.00142) (0.00142) 
Wind speed (log)    0.0378** 0.0347** 
    (0.0115) (0.0123) 
Air pressure    0.00251** 0.00233** 
    (0.000860) (0.000862) 
Precipitation (log)    0.0222*** 0.0232*** 
    (0.00426) (0.00428) 
Diurnal Temperature    0.00478** 0.00455** 
    (0.00151) (0.00152) 
Sulfur dioxide (log)     0.0316*** 
     (0.00931) 
Ozone (log)     0.0365*** 
     (0.00952) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.739 0.739 0.739 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

Table S9. Regression results including additional interaction terms and weather effects 
 Include 

additional 
weather 
effects 

Include 
absolute 
humidity 

Include 
moon 

illumination 

Include 
interaction 

between UV 
and 

precipitation 

Include 
interaction 
between 

mean 
temperature 

and SO2 

Include 
interaction 
between 

PM2.5 and 
air 

pressure 

       
Sulfur dioxide (log) 0.0284* 0.0311*** 0.0292** 0.0306** 0.00623 0.0319*** 
 (0.0114) (0.00937) (0.00933) (0.00937) (0.0155) (0.00938) 
Ozone (log) 0.0352*** 0.0362*** 0.0332*** 0.0326*** 0.0310** 0.0350*** 
 (0.0103) (0.00956) (0.00956) (0.00961) (0.00963) (0.00961) 
Wind speed (log) 0.0333* 0.0346** 0.0160 0.0295* 0.0338** 0.0324** 
 (0.0131) (0.0123) (0.0125) (0.0125) (0.0125) (0.0125) 
Air pressure 0.00211* 0.00233** 0.000543 0.00232** 0.00240** 0.00805*** 
 (0.000879) (0.000862) (0.000879) (0.000875) (0.000874) (0.00173) 
Precipitation (log) 0.0272*** 0.0239*** 0.0231*** 0.0377*** 0.0259*** 0.0252*** 
 (0.00555) (0.00465) (0.00494) (0.00557) (0.00495) (0.00496) 
Relative Humidity -0.000421  -0.000686 -0.000814 -0.000539 -0.000633 
 (0.000517)  (0.000446) (0.000451) (0.000448) (0.000448) 
Mean temperature 
below 25 

-0.00423** -0.00339 -0.00162 -0.00393** -0.00470** -0.00441** 

 (0.00141) (0.00193) (0.00134) (0.00133) (0.00155) (0.00136) 
Mean temperature 
above 25 

-0.0377*** -0.0362*** -0.0365*** -0.0437*** -0.0733*** -0.0396*** 

 (0.00935) (0.00953) (0.00928) (0.00941) (0.0129) (0.00933) 
Ultraviolet index 0.00798 0.00663 0.00449 0.00836 0.00765 0.0112 
 (0.00888) (0.00861) (0.00874) (0.00886) (0.00877) (0.00878) 
Ultraviolet index^2 0.00540*** 0.00545*** 0.00595*** 0.00717*** 0.00542*** 0.00544*** 
 (0.00143) (0.00144) (0.00142) (0.00147) (0.00142) (0.00142) 
Diurnal Temperature 0.00371* 0.00446** 0.00345* 0.00405** 0.00439** 0.00405** 
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 Include 
additional 
weather 
effects 

Include 
absolute 
humidity 

Include 
moon 

illumination 

Include 
interaction 

between UV 
and 

precipitation 

Include 
interaction 
between 

mean 
temperature 

and SO2 

Include 
interaction 
between 

PM2.5 and 
air 

pressure 
 (0.00165) (0.00154) (0.00154) (0.00154) (0.00154) (0.00155) 
Absolute Humidity  -0.00109     
  (0.00284)     
Moon illumination   -0.0018***    
   (0.000160)    
Nitrogen dioxide 
(NO2) (log) 

0.00260      

 (0.0118)      
Particulate Matter 
(PM2.5) (log) 

0.00299     0.0514*** 

 (0.00596)     (0.0136) 
Visibility -0.00332      
 (0.00466)      
Wind direction -1.59e-05      
 (4.75e-05)      
Cloud cover -0.000269      
 (0.000234)      
Snow (log) -0.00730      
 (0.0140)      
Ultraviolet 
index*Precipitation 

   -0.000456   

    (0.00171)   
Ultraviolet 
index^2*Precipitation 

   -0.0016***   

    (0.000384)   
Mean temperature 
below 25*Sulfur 
dioxide 

    0.00110  

     (0.000897)  
Mean temperature 
above 25*Sulfur 
dioxide 

    0.0248***  

     (0.00634)  
Particulate Matter*Air 
pressure 

     -0.0032*** 

      (0.000807) 
Observations 19,221 19,221 19,221 19,221 19,221 19,221 
R-squared 0.740 0.740 0.742 0.741 0.741 0.741 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

4.8 Overall robustness of projections to various specifications. 

Our last test focuses on the overall robustness of projections to alternative specifications. To do this we 

constructed a sample independent from estimation data consisting of 1072 cities and calculated their 

relative predicted risk (based on weather and air pollution vector from January 23 2019 to January 23, 

2020) relative to the median of predicted risk in our estimation sample across 9 alternative specifications. 

These predictions are similar to CRW measures we report with two notable caveats: first, we use daily, 

rather than 15-day, averages for this set of projections. The use of much more variable daily inputs will 
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significantly increase the variance in predictions and elicit any differences between alternative models 

more clearly. Second, we use the median, rather than 95th percentile of the estimation sample, to 

normalize these measures so that the comparisons are centered around the same point at the value of 1. 

We then calculate correlations and mean absolute errors (MAE) between projections from several 

alternative models and report them in Table S10 (see the model specifications compared below the table). 

Results show that there are high correlations (average correlation =.945, SD=.034) and low MAEs 

(average MAE=.047, SD=.023) across various CRWs, showing that risk projections and our results are 

robust to different exclusion criteria and inclusion of additional variables.   
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Table S10. Correlation and mean absolute error of relative risk projection for 1072 urban cities over 1 

year across 9 specifications (correlation reported in lower diagonal (blue), MAE between specifications in 

upper diagonal (orange), MAE against a constant value of 1 on the diagonal (white)) 
 A B C D E F G H I 

A 
0.10 

(0.113) 
0.007 

(0.007) 
0.010 

(0.007) 
0.032 

(0.032) 
0.055 

(0.050) 
0.080 

(0.068) 
0.017 

(0.018) 
0.031 

(0.041) 
0.036 

(0.029) 

B 0.997 
0.101 

(0.106) 
0.010 

(0.007) 
0.036 

(0.032) 
0.055 

(0.050) 
0.079 

(0.066) 
0.019 

(0.018) 
0.031 

(0.041) 
0.037 

(0.029) 

C 0.996 0.997 
0.101 

(0.104) 
0.040 

(0.035) 
0.056 

(0.052) 
0.076 

(0.064) 
0.017 

(0.017) 
0.030 

(0.039) 
0.039 

(0.030) 

D 0.966 0.955 0.947 
0.109 

(0.130) 
0.044 

(0.039) 
0.095 

(0.074) 
0.041 

(0.039) 
0.052 

(0.061) 
0.034 

(0.030) 

E 0.946 0.941 0.941 0.952 
0.139 

(0.155) 
0.072 

(0.063) 
0.056 

(0.050) 
0.061 

(0.071) 
(0.058) 
(0.051) 

F 0.942 0.948 0.961 0.873 0.922 
0.169 

(0.175) 
0.065 

(0.059) 
0.080 

(0.076) 
0.094 

(0.077) 

G 0.995 0.993 0.993 0.946 0.932 0.956 
0.112 

(0.121) 
0.032 

(0.044) 
0.045 

(0.042) 

H 0.929 0.932 0.937 0.859 0.878 0.906 0.932 
0.103 

(0.104) 
0.053 

(0.051) 

I 0.961 0.957 0.956 0.960 0.941 0.936 0.953 0.877 
0.092 

(0.101) 
*A: main specification as reported in the main text 
 B: main specification + additional weather variables ( 

Table S8. Regression results including additional interaction terms and weather effects 

 (1) (2) (3) (4) (5) 
 Only include 

mean 
temperature 

Only include 
UV index 

Include both 
mean 

temperature 
and UV index 

Include 
additional 
weather 
variables 

Include 
additional air 

pollutants 

      
Mean temperature 
below 25 

-0.00471***  -0.00494*** -0.00393** -0.00393** 

 (0.00100)  (0.00112) (0.00132) (0.00132) 
Mean temperature 
above 25 

-0.0342***  -0.0394*** -0.0382*** -0.0370*** 

 (0.00919)  (0.00928) (0.00930) (0.00930) 
Ultraviolet index  -0.00701 0.0118 0.00484 0.00626 
  (0.00752) (0.00836) (0.00855) (0.00855) 
Ultraviolet index^2  0.00533*** 0.00500*** 0.00543*** 0.00537*** 
  (0.00139) (0.00142) (0.00142) (0.00142) 
Wind speed (log)    0.0378** 0.0347** 
    (0.0115) (0.0123) 
Air pressure    0.00251** 0.00233** 
    (0.000860) (0.000862) 
Precipitation (log)    0.0222*** 0.0232*** 
    (0.00426) (0.00428) 
Diurnal Temperature    0.00478** 0.00455** 
    (0.00151) (0.00152) 
Sulfur dioxide (log)     0.0316*** 
     (0.00931) 
Ozone (log)     0.0365*** 
     (0.00952) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.739 0.739 0.739 0.740 0.740 
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Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

Table S9 column 1)  

 C: main specification + absolute humidity ( 

Table S8. Regression results including additional interaction terms and weather effects 

 (1) (2) (3) (4) (5) 
 Only include 

mean 
temperature 

Only include 
UV index 

Include both 
mean 

temperature 
and UV index 

Include 
additional 
weather 
variables 

Include 
additional air 

pollutants 

      
Mean temperature 
below 25 

-0.00471***  -0.00494*** -0.00393** -0.00393** 

 (0.00100)  (0.00112) (0.00132) (0.00132) 
Mean temperature 
above 25 

-0.0342***  -0.0394*** -0.0382*** -0.0370*** 

 (0.00919)  (0.00928) (0.00930) (0.00930) 
Ultraviolet index  -0.00701 0.0118 0.00484 0.00626 
  (0.00752) (0.00836) (0.00855) (0.00855) 
Ultraviolet index^2  0.00533*** 0.00500*** 0.00543*** 0.00537*** 
  (0.00139) (0.00142) (0.00142) (0.00142) 
Wind speed (log)    0.0378** 0.0347** 
    (0.0115) (0.0123) 
Air pressure    0.00251** 0.00233** 
    (0.000860) (0.000862) 
Precipitation (log)    0.0222*** 0.0232*** 
    (0.00426) (0.00428) 
Diurnal Temperature    0.00478** 0.00455** 
    (0.00151) (0.00152) 
Sulfur dioxide (log)     0.0316*** 
     (0.00931) 
Ozone (log)     0.0365*** 
     (0.00952) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.739 0.739 0.739 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

Table S9 column 2) 

 D: main specification with top 5% R0 excluded 
 E: main specification with first 15 days excluded (Table S4 column 2) 
 F: main specification with US-only sample 
 G: main specification with top 5% UV index excluded (Table S7 column 3) 
 H: main specification + interaction between UV index and precipitation ( 

Table S8. Regression results including additional interaction terms and weather effects 

 (1) (2) (3) (4) (5) 
 Only include 

mean 
temperature 

Only include 
UV index 

Include both 
mean 

temperature 
and UV index 

Include 
additional 
weather 
variables 

Include 
additional air 

pollutants 

      
Mean temperature -0.00471***  -0.00494*** -0.00393** -0.00393** 
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below 25 
 (0.00100)  (0.00112) (0.00132) (0.00132) 
Mean temperature 
above 25 

-0.0342***  -0.0394*** -0.0382*** -0.0370*** 

 (0.00919)  (0.00928) (0.00930) (0.00930) 
Ultraviolet index  -0.00701 0.0118 0.00484 0.00626 
  (0.00752) (0.00836) (0.00855) (0.00855) 
Ultraviolet index^2  0.00533*** 0.00500*** 0.00543*** 0.00537*** 
  (0.00139) (0.00142) (0.00142) (0.00142) 
Wind speed (log)    0.0378** 0.0347** 
    (0.0115) (0.0123) 
Air pressure    0.00251** 0.00233** 
    (0.000860) (0.000862) 
Precipitation (log)    0.0222*** 0.0232*** 
    (0.00426) (0.00428) 
Diurnal Temperature    0.00478** 0.00455** 
    (0.00151) (0.00152) 
Sulfur dioxide (log)     0.0316*** 
     (0.00931) 
Ozone (log)     0.0365*** 
     (0.00952) 
Observations 19,221 19,221 19,221 19,221 19,221 
R-squared 0.739 0.739 0.739 0.740 0.740 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

 

Table S9 column 4) 

 I: main specification with location-specific quadratic trend (Table S3 column 5) 

 

5. Specification and validation using synthetic data 
We conducted extensive synthetic analyses to inform the selection of a reliable statistical method and to 

build confidence in our final estimation method. These analyses could be divided into those focused on 

specifying the estimation method (5.2), and those designed to validate our method in a study wherein the 

analyst was blinded to the true specification (5.3). After providing an overview in 5.1, we explain these 

two sets of analyses. Detailed codes are available at <https://github.com/marichig/weather-conditions-

COVID19/>. 

 

5.1. Summary of our approach and findings 

Before providing the details of the analysis, we review the main objectives, approach and findings of this 

test. We then provide more details about the analysis in sections 5.2 and 5.3.  

• Approach: To build and validate our method and examine its sensitivity to different assumptions, we 

created synthetic data from simulated epidemics with several different assumed temperature effects 

on infection. The true exposure, exact detection delays, and temperature functions were hidden from 

our estimation method to objectively assess the method’s success. Our objectives were two-fold and 

we created a task allocation among researchers to meet those objectives. First, investigator HR used 

the iterations of this process to improve our statistical estimation method and ensure that it was able 

to find temperature functions under various assumptions (Section 5.2.2). Second, we used a more 

realistic individual-level model of infection (stochastic agent-based model) built by two other 

investigators (NG and MG) not involved in the first synthetic data analysis (used for method design) 

to assess if our statistician (RX), who was unaware of true functional forms or the second model 

https://github.com/marichig/weather-conditions-COVID19/
https://github.com/marichig/weather-conditions-COVID19/
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structure, could correctly identify effects in this different simulation environment (section 5.3). This 

design addressed the risk that a method fine-tuned on synthetic data may perform well under the 

assumed simulation setting but fail in other environments.  

• Results: The key finding from these experiments (further elaborated below) include: 1) Our preferred 

model specification could accurately identify correct weather impacts if true infection was 

observable; 2) In the absence of data on true exposure (which is the case in COVID-19 due to testing 

delays), however, estimation of weather impact becomes complicated, and many intuitive 

specifications used in other studies fail to recover true impacts. This challenge may afflict many 

attempts to identify the link between weather and COVID-19 transmission; 3) Our algorithm for 

uncovering the true exposure along with the specification we selected offer a potentially conservative 

but qualitatively informative view of the true underlying impacts; 4) Our preferred specification is 

robust to a few key uncertainties that may vary between simulated numbers and the actual epidemic; 

and 5) A statistician blinded to true data generating process was able to use this method to identify 

true weather effects from synthetic data generated from a different, more detailed, agent-based model 

of COVID-19 epidemics. Given these results from the analysis of the synthetic data, we can have 

more confidence in the analysis using the actual data.  

 

5.2. Statistical specification using synthetic data 

Our approach consists of building a simulation model of the epidemic to generate synthetic data (with 

known weather impact functions) followed by estimating various statistical specifications to assess their 

ability in identifying the true functional forms.  

 

5.2.1. Simulation model 

We used a simple SIR-based simulation model to generate synthetic epidemics. This model was applied 

across various locations (with different vectors of weather variables (𝑊(𝑡)) impacting epidemic curve 

based on 𝑔(𝑊(𝑡))) to generate the raw data going into alternative statistical methods to identify the 

function 𝑔 below. Equations of the simulation model are presented in Table S11. 

 

Table S11. Equations of the SIR-based stochastic simulation model of epidemics 
 

Iterates daily until epidemic ends or until t=50 is reached. 
𝐼𝑁(𝑡)

= 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (
𝑏𝑆(𝑡)𝐶𝐼(𝑡)

𝑆(0)
𝑝(𝑡)𝑔(𝑊(𝑡))) 

New infections assumed Poisson based on susceptible stock 
(𝑆), Infectious stock (𝐶𝐼), force of infection (𝑏), impact of 
distancing policies (p(t)), and weather effect (g(W(t))). We 
focused on mean temperature as the variable going into the g 
function. 

𝑝(𝑡) = 𝑀𝑖𝑛(1, 𝑒−𝑠(𝑡−𝑡0)) Distancing policies reduce risk of infection by a fixed fraction (s) 
per day, beginning the first day with a confirmed case (t0). 
Parameter s is drawn uniformly from 0.03-0.05 range. 

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝐼𝑁(𝑡) 
 

Updating susceptible stock for next period 

𝑅(𝑡 + 1: 𝑡 + 21)+
= 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼𝑁(𝑡), 𝐷𝑅𝑐𝑣) 

 

Adding to future daily recovery rates (𝑅) to incorporate the 
recovery of all those infected today using a multinomial 
distribution. 𝐷𝑅𝑐𝑣 is the recovery delay distribution, assumed 
Poisson with mean of 20 days. The “+=” operator adds to the 
existing vector on the left-hand side values on the right hand. 

𝐼𝑀(𝑡 + 1: 𝑡 + 18)+
= 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑜𝑢𝑛𝑑(𝐼𝑁(𝑡)
∗ 𝑓), 𝐷𝐷𝑡𝑐) 

  

Adding to future measurement of detected cases (𝐼𝑀) to 
incorporate fraction f of those infected today in future detection 
data. A multinomial distribution is used following the Detection 
Delay lag structure (𝐷𝐷𝑡𝑐; see section 2 of Appendix). In our 

baseline model we use 𝑓 = 0.1 and test more complex 
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functional forms where f increases over time from zero to a 
maximum of 0.3 in response to measured infections in 3 
different scenarios. 

𝐶𝐼(𝑡 + 1) = 𝐶𝐼(𝑡) + 𝐼𝑁(𝑡) − 𝑅(𝑡) Updating next period stock of infectious based on recovery and 
new infections. Initial infectious population of 3 is assumed so 
that few epidemics die out due to stochasticity. 

 

Initialization and functional assumptions  

𝑆(0)

= 𝑀𝑎𝑥(1000, 𝑁𝑜𝑟𝑚𝑎𝑙(5𝑒5,2𝑒5)) 

   

For different simulated locations we initialize the susceptible 
population to vary a wide range. In lieu of explicit response 
mechanisms, these different sizes represent different slow down 
trajectories in the new infections over time.  

𝑏 =
4

20
𝑁𝑜𝑟𝑚𝑎𝑙(1,0.3)ℎ(𝑊) 

For different simulated locations the baseline force of infection is 
drawn from a normal distribution, set to have an expected basic 
reproduction number of 4, and to be potentially correlated with 
weather variables (using ℎ(𝑊) term) to ensure robustness of 
results to such correlations. Note that parameter b is a daily 
factor, and thus divided by 20 to capture the expected duration 
of illness. 

𝑔(𝑊) We use different g functions, including quadratic and linear 
forms. We focus on temperature as the primary 𝑊 variable that 
is read from data and input into the synthetic data.  

ℎ(𝑊) In our main synthetic analysis, we use:  

ℎ(𝑊) =
40 + 𝑀𝑒𝑎𝑛(𝑊(1: 50))

50
  

This creates a positive correlation of 0.47 between temperature 
that affects transmission rates and the reproduction number for 
a specific location. 

𝑊 We use mean daily temperature data from a start date uniformly 
picked between January 23rd 2019 and March 25th 2019 for t=1 
for each location, and continue accordingly. 2019, rather than 
2020, temperature data are used to ensure sufficient data are 
available for full epidemic to unfold. 

 
Using these specifications, we then conducted multiple experiments to identify a viable specification. In 

each experiment we simulated the model for 20 iterations (with different random realizations) for a 

sample of 500 locations randomly drawn from our 3,739 locations with their actual temperature data. 

Temperature data started from a random day between January and March, and then were fed into 𝑊.  

We summarize the results from each experiment using a graph of the shape of the estimated relationship 

between temperature and natural logarithm of estimated reproduction number, as we do in our main 

statistical analysis. This estimate is then compared with the true relationship (𝑙𝑛(𝑔(𝑤)), represented by 

the thick dashed line in figures below). The success measure for our method is to have the estimated 

relationship from our method close to the thick dashed line. Effects falling between the true curve and the 

horizontal line at zero would be conservative, and those falling outside this range may be misleading. Our 

actual temperature data in the simulation period are bounded to smaller ranges (90% of data falls between 

-10 and 20 degree Celsius) than reported in these figures. Therefore, extrapolations outside this range are 

not necessarily indicated by the data, rather, emerge from the estimated functional forms. Nevertheless, 

we graph a much wider temperature range (-30 to 50) to highlight the errors of such extrapolation. We 

also report the means of estimated parameters for 𝑙𝑛(𝑔(𝑤)), 95% confidence interval, coefficient of 

determination (r2), and sample size for each experiment.   
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5.2.2. Synthetic experiments 

In the rest of this section, unless specified in the top row of a figure, we focus on quadratic equations for 

𝑙𝑛(𝑔(𝑤)). The main specification uses 𝑙𝑛(𝑔(𝑤)) = −0.01𝑤 − 0.002𝑤2. We also conduct sensitivity 

analysis to other functional forms for 𝑙𝑛(𝑔(𝑤)). We summarize the results of these synthetic analyses 

under 10 experiments, which could be categorized in three subsets. Experiments 1 to 3 (sections E1-E3 

below) introduce the main challenges in correctly associating weather with reproduction number, 

concluding that while not an impossible task, the best one can expect from similar efforts may be to find 

estimates that are conservative but not misleading. Next, in experiments E4 to E6 we show support for the 

chosen statistical specification against other plausible alternatives. Finally, experiments E7 to E10 show 

the robustness of the preferred specification to a variety of assumptions. 

 

5.2.2.1. The complexity of inferring the true impact of weather conditions 

 

E1) Endowed with true, deterministic infections, the method finds the correct impact of weather. 

Relaxing either assumption deteriorates results. 

In Figure S2, we compare three different scenarios. In the first two (A and B), the estimation method is 

provided with the actual true infections (rather than those estimated using the method discussed above). 

Moreover, the first experiment (A) also assumed deterministic infection rate (that is, 𝐼𝑁(𝑡) = 𝐸(𝐼𝑁(𝑡)) in 

Table S11). Plot C shows results using our baseline specification: estimating true infections using 

quadratic programming, including location-specific trend lines and fixed effects, dropping days with 

estimated exposure below 1, as well as the first 20 days after the estimated exposure first reaches 1, and 

excluding the outlier estimated reproduction numbers (those above 95%). The two assumptions on using 

deterministic infection and true infections in the first two experiments are not realistic. Instead, they 

reassure us that the method, given correct exposures, would find the true functional forms. Moreover, 

they inform the challenges to unbiased estimation of reproduction number due to stochasticity of 

infections (comparing plots A and B) and estimation of true infections from reported data (comparing 

plots B and C).  

Inspection of these results reveals two major challenges to estimating reproduction number: i) 

Randomness in infection rate leads to weaker identified effects. ii) The imperfect identification of true 

infections from reported cases significantly reduces the magnitude of estimated effects. Both of these 

effects generate a bias towards null estimated effects, even when true effects are very significant. As the 

experiments reported in the following sections show, our baseline model, despite its conservative 

estimates, might be among the best available options to find estimates for the impact of weather on 

transmission rates.  

Note that the true linear and square terms in 𝑙𝑛(𝑔(𝑤)) are reported in the title for each panel in the 

following figures. 

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (C) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01213 -0.01162 -0.0111 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01349 -0.01167 -0.00985 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162 
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Quadratic -0.00197 -0.00194 -0.00192 

Mean N   9742.85 Mean r2 0.982204 
 

Quadrati
c -0.00172 -0.00163 -0.00154 

Mean N   12088.7 Mean r2 0.771026 
 

Quadrati
c -0.00096 -0.00073 -0.00051 

Mean N   5275.05 Mean r2 0.696298 
 

Figure S2: Impact of stochasticity in infections and imperfect estimation of true infections on quality of 

estimated parameters.  

 

E2) Using true infections offers reliable, and slightly conservative, estimates for a range of 

functions. 

Before focusing on the main specification, we report another set of experiments that show the 

performance of estimation method with true infections under three other functional forms (Figure S3). 

The main observation in this set of experiments is that true infection rates, even including randomness in 

infection, would offer close estimates for the underlying impacts of temperature on reproduction number 

across a range of functional forms. So, the statistical method in use is fundamentally sound. 

 
(A) 𝑙𝑛(𝑔(𝑤)) = 0.05𝑇 (B) 𝑙𝑛(𝑔(𝑤)) = −0.05𝑇 (C) 𝑙𝑛(𝑔(𝑤)) = 0.004𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.041662 0.043575 0.045488 

Quadratic 0.000159 0.000241 0.000322 

Mean N   16405.5 Mean r2 0.933976 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.05111 -0.04922 -0.04734 

Quadratic 0.000203 0.000298 0.000392 

Mean N   11622.1 Mean r2 0.839987 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00402 -0.00169 0.000644 

Quadratic 0.003983 0.004088 0.004194 

Mean N   15802.6 Mean r2 0.90471 
 

Figure S3: Performance of estimation method in identifying different functional relationships between 

weather and reproduction number when provided with true infections. 

 

E3) Using proposed estimation method provides conservative, but largely consistent, estimates. 

In the next set of experiments, we test the main estimation method, which uses estimated exposures, to 

find the effect of temperature under the different functional forms introduced in E2. In these experiments, 

we continue to use the same inclusion criteria used in E1. Overall, estimated effects, as shown in Figure 

S4, are qualitatively consistent with the true functional forms, but also show important deviations: i) The 

results include some biases in estimated parameters when the estimated functional form differs from the 

true function (e.g., including quadratic terms that are not in the true function). This is a general feature of 

estimating mis-specified functions. ii) Results are generally conservative (pointing towards null effects) in 

the regions of the temperature actually covered by W data. Based on these observations, the use of the 

estimation method should include appropriate caution. The results may undervalue the true magnitudes of 

weather effects, and if more complex functional forms are estimated, spurious results may be found. For 

this reason, in our main specification we limit the use of more complex interaction terms.  
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 (A) 𝑙𝑛(𝑔(𝑤)) = 0.05𝑇 (B) 𝑙𝑛(𝑔(𝑤)) = −0.05𝑇 (C) 𝑙𝑛(𝑔(𝑤)) = 0.004𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.02771 0.03373 0.03975 

Quadratic -0.0008 -0.00057 -0.00033 

Mean N   12876.35 Mean r2 0.807183 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.02432 -0.02119 -0.01806 

Quadratic 0.000103 0.000277 0.000452 

Mean N   5523.05 Mean r2 0.800788 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00194 0.002524 0.006988 

Quadratic 0.001067 0.00126 0.001453 

Mean N   13029.55 Mean r2 0.799828 
 

Figure S4: Performance of preferred estimation method with realistically available data in identifying 

different functional relationships between weather and reproduction number. 

 

5.2.2.2. Comparing with a few alternative specifications 

 

E4) Results with simple shifting of infections 

Our preferred specification uses the estimated infections based on the quadratic programming method 

discussed in section S3. Here we compare those results against a simpler specification that shifts back 

detected infections each day by 10 days to infer the true infection rate on each day. Results are shown in 

Figure S5. We assess this alternative under the same functional forms discussed in experiment 3 (E3) and 

thus results are directly comparable with that experiment. In short, the simple shift method offers results 

that are comparable with the preferred specification but more conservative (e.g., Panel C) and in some 

cases more biased (e.g., stronger, incorrect, quadratic term in Panel A). In a few other experiments with 

other simulation model setups, we found that this intuitive specification (simple shifting) may 

significantly underperform our calculated exposure method when behavioral responses are more complex.  

 
(A) 𝑙𝑛(𝑔(𝑤)) = 0.05𝑇 (B) 𝑙𝑛(𝑔(𝑤)) = −0.05𝑇 (C) 𝑙𝑛(𝑔(𝑤)) = 0.004𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.031187 0.036978 0.042768 

Quadratic -0.00128 -0.00106 -0.00084 

Mean N   14108.85 Mean r2 0.839037 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01445 -0.01117 -0.00789 

Quadratic -8.1E-05 9.83E-05 0.000278 

Mean N   5294.75 Mean r2 0.819517 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.0002 0.004002 0.0082 

Quadratic 0.000339 0.000507 0.000675 

Mean N   14726 Mean r2 0.826531 
 

Figure S5: Impact of using a simple shift of measured infections on performance of estimation 

under various functional forms.  
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E5) Using other combinations of location specific effects 

In this experiment, we compare three settings in which we exclude fixed effects but keep location specific 

trends (Figure S6, panel A), exclude trends but include fixed effects (panel B), and exclude both fixed 

effects and trends (panel C). These experiments are directly comparable with our preferred specification 

where both trends and fixed effects are included (Panel C in Figure S2).  

The overall performance deteriorates significantly when location specific trends are removed (e.g., panels 

B or C compared with baseline results). This should be expected; the positive trend in temperature during 

the spread of epidemic in late winter and early spring likely correlates with behavioral and other 

responses that temper the spread in each location. Thus, excluding location trends would lead regression 

results to pick up that spurious correlation and inflate the impact of temperature, creating illusory and 

misleading results. Thus, including location specific trends is a necessity. 

The results of excluding fixed effects but including location-specific trends are comparable with our 

baseline findings and somewhat stronger (closer to true effects) in this experiment (but also in some other 

experiments not reported here). Therefore, one could argue for inclusion of only location-specific trends 

rather than both fixed effects and location-specific ones. The theoretical logic for such recommendation is 

that two different location-specific parameters absorb much of the variations in weather between and 

within locations, and combined with errors in the identification of true infections from reported data, very 

modest signal remains to estimate the weather function leading to weak coefficients.  

The risk with excluding fixed effects is that we would not be able to provide appropriate controls for a 

host of unobserved location-specific characteristics, from cultural norms in interaction and eating, to 

public transportation use, comorbidities, and age distribution, which may conceivably interact with 

transmission and be correlated with some of our weather and pollution variables (thus introducing 

unknown biases). Moreover, R-squared drops substantially in panel A in comparison to the baseline of 

Panel C in Figure S2 (with fixed effect and location-specific trend effect), showing that there are cross-

regional variations missed if we do not control for fixed-effect variation. We therefore decided to select 

the more conservative specification (with both fixed effects and location specific trends) as our primary 

model.  

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝐿𝑙(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (C) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.01027 -0.0073 -0.00433 

Quadratic -0.00092 -0.00073 -0.00053 

Mean N   5155.4 Mean r2 0.586775 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.06042 -0.05548 -0.05054 

Quadratic -0.00043 -0.00015 0.000135 

Mean N   5215.2 Mean r2 0.222102 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.02965 -0.02605 -0.02244 

Quadratic -0.00028 -4.6E-05 0.000189 

Mean N   5251.4 Mean r2 0.074705 
 

Figure S6: Comparing the use of only trend effects (A), only fixed effects without trends (B), 

and no location specific fixed or trend effects (C). 

 
 

E6) Weighting data points in regression do not improve performance. 

One potential issue in the current specification is that locations with larger outbreaks are weighted the 

same way as locations with smaller outbreaks. The data from larger outbreaks may well be more reliable, 

and the estimates of R calculated from that data thus more reliable. We assess if a correction for this issue 
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can improve estimation results. To do so we use simulations to estimate how the variance in the 

dependent variable 𝑙𝑛(𝑅) scales with the number of estimated daily true infections and use that estimated 

variance to conduct weighted least square regressions. Results, reported in Figure S7-panel A (panel B 

showing baseline replicated from experiment 1), show more conservative outcomes and dispersion 

compared to the unweighted regressions and no significant improvements. Hence, we do not pursue this 

correction in our main specification.  

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

  

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00196 0.000775 0.003506 

Quadratic -0.00102 -0.00084 -0.00067 

Mean N   5140.15 Mean r2 0.645874 
 

 

Mean 
(2.5%) Mean Estimate Mean (97.5%) 

Linear -0.00328 0.000939 0.005162 

Quadratic -0.00096 -0.00073 -0.00051 

Mean N   5275.05 Mean r2 0.696298 
 

Figure S7: Impact of using weighted regression (A) vs. unweighted (B) 

 

5.2.2.3. Robustness to various features of data 

E7) Results are robust to variance in susceptible population. 

In the baseline simulations, the location-specific population size, which partially controls the speed of 

spread, is normally distributed with mean of 500,000 and standard deviation of 200,000 (with 1,000 

population minimum). In Figure S8, we compare that baseline (panel B) against standard deviation of 0 

and 400,000. The impacts are largely negligible, suggesting that the variance in speed by which the 

spread slows down due to herd immunity does not impact the findings much. This is largely expected, as 

in most simulated epidemics the transmission halts as a result of behavioral response and not herd 

immunity dynamics. 

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (C) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00141 0.002697 0.006801 

Quadratic -0.00096 -0.00074 -0.00053 

Mean N   5258.8 Mean r2 0.692384 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162 

Quadrati
c -0.00096 -0.00073 -0.00051 

Mean N   5275.05 Mean r2 0.696298 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00258 0.00178 0.006138 

Quadratic -0.0009 -0.00067 -0.00044 

Mean N   4921.55 Mean r2 0.699527 
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Figure S8: Impact of various variances in population size per location. (A) No variance (mean is 

1e5). (B) Baseline (Standard deviation of 200,000). (C) Standard deviation of 400,000. 

 
E8) Variations in basic reproduction number do not impact the findings. 

In the baseline simulations (E1), the location-specific basic reproduction number had a mean of 4 and 

variance of 1.2 (normally distributed with a minimum of 0, but also positively correlated with average 

temperature in the location). In Figure S9, we compare that baseline (reproduced in panel B) against 

standard deviations of 0 (Panel A) and 2 (Panel C) across locations. The impacts are largely negligible, 

suggesting that the variance in speed by which the spread grows does not impact the findings.  

 
(A) 𝐿𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝐿𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (C) 𝐿𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00417 -0.00023 0.00372 

Quadratic -0.00069 -0.00047 -0.00024 

Mean N   4950.15 Mean r2 0.643934 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00328 0.000939 0.005162 

Quadrati
c -0.00096 -0.00073 -0.00051 

Mean N   5275.05 Mean r2 0.696298 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00185 0.002454 0.006756 

Quadratic -0.00102 -0.00081 -0.00059 

Mean N   5747.8 Mean r2 0.717136 
 

Figure S9: Impact of different variances in basic reproduction number. (A) Standard deviation of basic 

reproduction number is 0, with mean of 4. (B) Standard deviation of basic reproduction number is 1.2. (C) 

Standard deviation of basic reproduction number is 2. 

 

 

E9) Correlation between basic reproduction rate and temperature has limited impact on results. 

Another variant on the distribution of basic reproduction number considers its correlation with the 

temperatures informing the weather function. In the baseline specification and all the experiments so far, 

we used a correlated version of that relationship (with a correlation of 0.47 between basic reproduction 

number and average temperature; see simulation model specification in Section 5.2.1). Here we compare 

that setup (reproduced in Figure S10, Panel B) with the uncorrelated version where basic reproduction 

number is independently drawn for each location with a mean of 4 and standard deviation of 1.2 (Panel 

A). Results have limited sensitivity to this potential correlation. 

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 
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Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00267 0.001664 0.005999 

Quadratic -0.00094 -0.00071 -0.00047 

Mean N   4582.9 Mean r2 0.688808 
 

 

Mean 
(2.5%) Mean Estimate Mean (97.5%) 

Linear -0.00328 0.000939 0.005162 

Quadratic -0.00096 -0.00073 -0.00051 

Mean N   5275.05 Mean r2 0.696298 
 

Figure S10: Impact of including correlation between basic reproduction number and average location-

specific temperature (baseline; reproduced in Panel B) vs. having no correlation (panel A). 

 
E10) Changes in test coverage do not change the results. 

The simulation model so far assumed a constant test fraction of f = 0.1, that is, in expectation only 10% of 

infections were detected. This ratio may change over time as test capacity ramps up in response to 

infection measures in practice. Here, we explore results under three such ramp-up scenarios. In Figure 

S11 panels A-C, the following ramp-up scenarios are assumed as a function of confirmed infections (IM): 

A) 𝑓 = 𝑀𝑖𝑛(0.2,0.001𝐼𝑀); B) 𝑓 = 𝑀𝑖𝑛(0.2,0.05Log10(𝐼𝑀 + 1)); and C) 𝑓 = 𝑀𝑖𝑛(0.2,0.01√𝐼𝑀). 

Overall, results are rather insensitive to these very different test fraction numbers, suggesting robustness 

to this consideration.  

 
(A) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (B) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 (C) 𝑙𝑛(𝑔(𝑤)) = −0.01𝑇 − 0.002𝑇2 

   

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.003626 0.010222 0.016818 

Quadratic -0.00145 -0.00112 -0.00079 

Mean N   4865 Mean r2 0.780333 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.00044 0.004366 0.009169 

Quadratic -0.00118 -0.00093 -0.00069 

Mean N   5568.25 Mean r2 0.73142 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.004246 0.009824 0.015403 

Quadratic -0.00144 -0.00116 -0.00088 

Mean N   5221.65 Mean r2 0.754417 
 

Figure S11: Impact of three different test coverage functions. 

 

5.2.2.4. Summary of Synthetic Experiments 

The key finding from these experiments include: 1) The model specification we use could identify correct 

weather impacts if true infection were observable; 2) In the absence of that data, estimation of weather 

impact becomes complicated, and many intuitive specifications fail to recover true impacts. This may be a 

general challenge afflicting any attempt to identify the link between weather and COVID-19 

transmission; 3) The specification we selected offers a conservative but qualitatively sound view of the 

true underlying impacts. For example, in most estimations the quadratic term is estimated at about half its 

true value; and 4) This specification is largely robust to the key uncertainties that may vary between 

simulated numbers and the actual epidemic. 

 

5.3. Blinded study specification and results 

 

In this last step of synthetic data analysis, our objective was to use a more detailed individual-level model 

of infection (stochastic agent-based model) of interacting individuals to create synthetic data of reported 

cases, distort the outcome with a delay function to represent test/report, and examine whether our 

statistical methods are still capable of finding our weather functions. Two of our co-authors (NG and MG) 
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created synthetic data and hid their assumed temperature effect functions from our statistician (RX), 

whose task was to discover the assumed temperature effect function.  

To that end, we created an agent-based simulation model of infection and simulated the model for 100 

hypothetical towns of different populations, different R0s (potentially due to different contact rates and 

population density), different start days of infection, and different temperatures. We started from the 

generic individual model of infection (available on the NetLogo library) that is consistent with the basic 

SIR model at individual level. We modified the model using parameter values that are more consistent 

with COVID-19, and included several features needed to import and export data to the model. We 

modified the infection function to include the temperature effect on the probability of infection. We used 

three major scenarios for temperature effect (inverse U-shaped effect, linear increasing effect, and no 

effect (placebo)). The scenarios included actual temperature values coming from a sample of 100 regions 

from the real-world data. The ABM model’s output was generated using a detection delay with Poisson 

distribution with mean of 10 days. These data were used to estimate true infections with the method 

discussed in section 3. The model codes are available at https://github.com/marichig/weather-conditions-

COVID19/. Figure S12 shows an example of creating synthetic data (scenario 1, explained in the 

following) with Panel A showing the true cumulative infections and panel B showing the reported values. 

 
(A) (B) 

  
Figure S12: An example of the synthetic data generation process with an assumed temperature effect 

function hidden from our statistician. True cumulative cases (A) and cumulative number of confirmed 

cases (B).   

 

The tests (scenarios) included quadratic (S1), no effect (S2), and positive linear effect (S3). For all 

scenarios we tested models both including fixed and trend effects (Si1) and those with only trend effects 

(Si2). In non-fixed-effect tests, in order to make a control variable consistent with our main regression, 

we added one extra variable, a hypothetical variable of “population density,” to represent variations in 

locations correlated with basic reproduction number. In this setup, population density was correlated with 

the basic reproduction number excluding temperature-related factors (𝜌 = .8). Our statistician did not 

know the true temperature function, so he used both linear and quadratic terms to map the predicted 

temperature effect in all cases, even when the effect was linear.  

Results are graphically summarized in Figure S13; for each scenario the results are compared with the 

“true” function of temperature (darker lines). Overall, our statistician was able to correctly estimate the 

sign and magnitude of temperature effect in all cases, while the effect was generally underestimated 

further supporting the proposition that the method offers conservative estimates (e.g., in Figure S13, left 

panel, compare S11, and S12 curves with the true effect of “S1-true effect”). Also, in line with the 

previous section, we find that including fixed effects may lead to somewhat more conservative estimates 
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than excluding it, but results are less prone to other biases. Higher R-squared values were obtained with 

fixed-effect models. 

 
(A) 𝑙𝑛(𝑔(𝑤)) = 1 − (

𝑇+5

15
)2 (B) 𝑙𝑛(𝑔(𝑤)) = 0 (C) 𝑙𝑛(𝑔(𝑤)) = 0.03𝑇 

   
S11 - With fixed-effect S21 - With fixed-effect S31- - With fixed-effect 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear -0.0173 -0.0064 0.0045 

Quadrati
c -0.0022 -0.0017 -0.0011 

N   1382 R2 0.912 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.0028 0.0112 0.0195 

Quadrati
c -0.0005 -0.0002 0.0001 

N   2496 R2 0.893 
 

 

Mean 
(2.5%) 

Mean 
Estimate 

Mean 
(97.5%) 

Linear 0.0152 0.0223 0.0294 

Quadrati
c -0.00003 0.0003 0.0005 

N   2206 R2 0.881 
 

S12 - No fixed-effect S22- - No fixed-effect S32- - No fixed-effect 

  (2.5%) Estimate  (97.5%) 

Linear -0.0348 -0.0238 -0.0128 

Quadrati
c -0.0037 -0.0032 -0.0027 

N   1382 R2 0.683 
 

  (2.5%) Estimate  (97.5%) 

Linear -0.0239 -0.0158 -0.0078 

Quadrati
c 0.0009 0.0012 0.0015 

N   2496 R2 0.766 
 

  (2.5%) Estimate  (97.5%) 

Linear 0.0062 0.0121 0.018 

Quadrati
c 0.0008 0.0011 0.0014 

N   2206 R2 0.73 
 

Figure S13: A comparison of assumed functions in the agent-based model (dark lines) and the outcome 

of our regression analysis (dashed lines). Y-axis is change in R in comparison to average R. Note: Sij 

represents results from Scenario i under conditions of fixed-effect (j=1), and no fixed effect regressions 

(j=2).  
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6. Global projections over time 
In this section, we report graphs of projected COVID-19 Risk Due to Weather (CRW) at 4 different time 

periods in the coming year (Figure S14-Figure S17). These projections use a 15-day moving window to 

average different weather and pollution variables in the previous year (2019-2020) (for weather) or 2019 

(for pollution, since pollution in 2020 is affected by COVID-19 related behavioral changes) and use those 

averages as the predictor for the coming year (2020-2021). Daily projections year-round for these global 

locations, the largest 1072 cities across the world, and US counties are available at: 

https://projects.iq.harvard.edu/covid19. 

The main drivers of changes observed include temperature and UV effects, which in some regions and 

times of the year pull the estimates in opposite directions (with U-shaped effect for UV, high values of 

UV lead to more transmission while that is also often correlated with higher temperature). This interaction 

creates some of the higher risks in summer for the regions close to the equator. 

 

 
Figure S14: Projected Relative COVID-19 Risk Due to Weather (CRW), averaged for the first half of 

June  

 

Jun 1-15 

https://projects.iq.harvard.edu/covid19
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Figure S15: Projected Relative COVID-19 Risk Due to Weather (CRW), averaged for the first half of 

September  
 

 
Figure S16: Projected Relative COVID-19 Risk Due to Weather (CRW), averaged for the first half of 

December  

Sep 1-15 

Dec 1-15 
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Figure S17: Projected Relative COVID-19 Risk Due to Weather (CRW), averaged for the first half of 

March  

Mar 1-15 


