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A: Covariance Matrices for Kalman Filtering

For data variance, consider standard Gaussian measurement noise around signal x: xd ∼ N(x, σ2
d). Assume

xd = x(1 + nDU) where U is uniform white noise on [-0.5,0.5]. So data variance:

σ2
d = x2n2Dσ

2
U = x2n2D · 0.0833, (1)

where 0.0833 is the variance of U. nD is to be estimated; x corresponds to measured variables: ER, IR, or
RR. This is for the variance-scaled case; for the variance-unscaled case, σ2

d = c2n2D · 0.0833, where constant
c is derived from prior tests, similar to the formulation in GS (see Scaling of variance).

For drive variance, variances on stocks come from the driving noise in the three flow terms ER, IR, RR.
The stochastic system is: 

Ṡ(t) = −ER+ εER

Ė(t) = ER− IR+ εER + εIR

İ(t) = IR−RR+ εIR + εRR

Ṙ(t) = −RR+ εRR.

(2)

We investigate two options for the specific noise structure. Again, x corresponds to measured variables: ER,
IR, or RR.

(A) The noise structure is inherited from the data generation process: Poisson[x(1 + nRAU)] where AU is
the autocorrelated noise constructed from U. So drive variance:

σ2
p = V ar(Poisson[x(1 + nRAU)]) = x(1 + nRAU). (3)

nR is to be estimated. Note we use uniform AU while set the amplitude open to vary the noise level.

(B) Assume we inherit no knowledge from the data generation process and consider standard Gaussian
process noise. Similar to the Gaussian measurement noise, we have x(1 + nRU). So drive variance

σ2
p = x2n2Rσ

2
U = x2n2R · 0.0833. (4)

nR is to be estimated. Note here we may alternatively assume AU instead of U , i.e., autocorrelated Gaussian
process noise (still different from Option (A) as no Poisson process is assumed). In this case only σ2

U → σ2
AU ;

nothing changes besides a constant.

In Kalman filtering, the ratio of data variance to drive variance matters in determining the Kalman gain.

For Option (B),
σ2
d

σ2
p

=
x2n2Dσ

2
U

x2n2Rσ
2
U

= (
nD
nR

)2.. (5)
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Only one degree of freedom exists, so we only need to estimate either nD or nR. We estimate nD in our
experiments.

For Option (A),
σ2
d

σ2
p

=
x2n2Dσ

2
U

x(1 + nRAU)
, (6)

which could not break down to a function of nD/nR, so we need to estimate both nD and nR.

Variances on the four stocks are linked to variances on the flows (σ2
p → σ2

ER/IR/RR):
ΣS = σ2

ER(∆t)2

ΣE = (σ2
ER + σ2

IR)(∆t)2

ΣI = (σ2
IR + σ2

RR)(∆t)2

ΣR = σ2
RR(∆t)2

(7)

where ∆t is the simulation time step. The four terms are the diagonal elements of Σx. For the covariance
between stocks, there is corr(S,E) = corr(E, I) = corr(I,R) = 1 since the driving noises come from the
flow terms. Thus the following off-diagonal elements in Σx are non-zero:

ΣSE = ΣES = σ2
ER(∆t)2

ΣEI = ΣIE = σ2
IR(∆t)2

ΣIR = ΣRI = σ2
RR(∆t)2.

(8)

Initial drive variances ΣS/E/I/R = σ0 are set at a relatively large value (1E6) in order that model series are
drawn close to data relatively quickly. Initial off-diagonal elements of Σx are 0.

For Option (A), we need to include three extra stocks to the model to account for noise autocorrelation.
The drive variances of these noise stocks are exogenous. There is no covariance between these new stocks
with the four original stocks, or between themselves.

Gaussian log-likelihood function under multi-variate Kalman Filtering

For multi-variate Kalman Filtering, the Gaussian log-likelihood function (10) is amplified to the matrix
form. Noting (13) and (14), the observed variables y = Dx + Σy follow the multi-Gaussian distribution,

i.e., yd ∼ N(y,Σd), where the covariance Σd = D∆̂DT + Σy. Therefore, for each data point along the time
series, the multivariate likelihood function is:

−1

2
(
x− xd
σd

)2 − log(σd)⇒ −(y − yd)Σ−1
d (y − yd)T − log(|Σd|)

⇒ −(Dx−Dxd)Σ−1
d (Dx−Dxd)T − log(|Σd|).

(9)

Payoffs are accumulated along the time series, with x (thus y) and ∆̂ (thus Σd) updated at each t.

B: Different Strength of Noise Autocorrelation

At Stage 4, we generate very noisy data series and use them in estimation. The noise level is drastically
amplified (nD/R = 2), and the series show low-frequency but high-amplitude fluctuations around the signals
(Figure S1). The noisiness of our synthetic data may exceed the noise level of actual epidemics datasets
(e.g., Figure S5). We further tested different strength of noise autocorrelation in the data: noise correlation
time is 2, 5 (for the results in Table 3 and Figure 9), or 8 days. Tests show that the estimation performance
of studied schemes largely converges and is generally invariant to this change (Table S1; sensitivity analysis
results when noise correlation time = 2 or 8 are almost identical to Figure 9 and are not shown).
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(a) Infection rate (b) Recovery rate

Figure S1: Sample noise level of synthetic data used in Stage 4 experiments. Showing the true signals (solid)
and signals with noise (dotted) on (a) infection rate IR and (b) removal rate RR.

Est. Scheme c λE λI

Stage 4: Noise correlation time: 2 days

#GS 5.124 (0.790) 9.802 (2.272) 10.279 (2.042)

#NB 5.135 (0.846) 10.084 (2.010) 10.694 (1.991)

#KFSA 5.054 (2.669) 9.988 (5.551) 12.043 (5.475)

#KFSB 5.455 (1.556) 9.062 (4.404) 11.172 (4.996)

Stage 4: Noise correlation time: 5 days

#GS 5.174 (0.995) 10.021 (4.151) 10.955 (3.576)

#NB 5.121 (1.037) 10.707 (3.375) 11.320 (3.408)

#KFSA 5.446 (2.736) 8.270 (5.000) 11.429 (5.186)

#KFSB 5.622 (2.041) 9.248 (5.474) 11.888 (6.022)

Stage 4: Noise correlation time: 8 days

#GS 5.269 (1.126) 9.940 (4.320) 10.504 (3.924)

#NB 5.200 (1.058) 10.365 (3.694) 11.329 (3.739)

#KFSA 5.022 (2.694) 8.861 (4.962) 11.570 (4.947)

#KFSB 5.520 (1.894) 9.993 (5.613) 11.723 (6.427)

Table S1: Estimation performance of selected schemes under different levels of noise autocorrelation in the
data (Stage 4). Noise correlation time is 2, 5, or 8 days. Best results at each stage are shown in bold fonts.

C: Uncorrelated Measurement Noise

For sanity checks, we replicate Stage 4 experiments with a new dataset where the measurement noise is
assumed to be uncorrelated, i.e., U instead of AU in (4), which could still be viewed as correlated noise but
with infinitesimal correlation time. The other conditions are the same as in Stage 4 (e.g., noise correlation
time = 5 days). The performance of investigated schemes is in general invariant to this change (Table S2
and Table 3), with KFSB performing slightly better this time, since now the noise structure is closer to its
standard multivariate i.i.d. Gaussian buildup.
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Est. Scheme c λE λI

Stage 4: Uncorrelated measurement noise

#GS 5.114 (0.964) 10.176 (3.767) 10.815 (2.596)

#NB 5.106 (1.029) 10.703 (3.254) 11.226 (2.976)

#KFSA 4.643 (2.761) 9.599 (5.592) 11.248 (5.104)

#KFSB 5.338 (1.563) 9.983 (5.182) 10.760 (4,482)

Table S2: Estimation performance of selected schemes with uncorrelated measurement noise (Stage 4 replica).

Figure S2: Estimation performance at Stage 2. Histograms of 100 instances of parameter estimates. ground-
truth values are shown in red bars. Black dots/bars show mean/standard deviation of estimates over all
instances.
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Figure S3: Estimation performance at Stage 3 (first scenario). Histograms of 100 instances of parameter
estimates. ground-truth values are shown in red bars. Black dots/bars show mean/standard deviation of
estimates over all instances.

Figure S4: Estimation performance at Stage 4. Histograms of 100 instances of parameter estimates. ground-
truth values are shown in red bars. Black dots/bars show mean/standard deviation of estimates over all
instances.
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*source:  John's Hopkins University Covid Database

Figure S5: Daily new COVID cases in the US (2020-01-22 to 2021-04-03). Source: John’s Hopkins University
COVID database.

D: Details of Model Setup and Experimental Procedures

D1: Data generation Model

The model is used to generate simulated time series that serve as the datasets for the followed model
estimation. Stochasticity is added to the model through white noise, autocorrelated noise and the Poisson
process (see main text).

List of model parameters

For noise amplitudes, the large the value is, the noisier the generated time series are. In Stage 1-3 experiments,
we use an amplitude 0.5; in Stage 4 experiments, we use an amplitude 2 to generate very noisy data (see
Figure S1).
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Table S1: Parameters of data generation model

Model equations

Key model equations are explained in the main text. Extra equations used in the model:

Total population P = S + E + I +R = S0 + E0 (10)

White noise (i.e., Noise W in the Vensim model, U in the main text) is uniform over [-0.5, 0.5]; the au-
tocorrelated noise (i.e., Noise P in the Vensim model, AU in the main text) is constructed from the white
noise:

dNoise P

dt
=

Noise W −Noise P
Noise correlation time

Noise W = Noise P STD(24
Noise correlation time

TIME STEP
)0.5 ∗ U [−0.5, 0.5]

(11)

Reported Datasets

In the model, we maintain the options of reporting either the flow data (new cases on each day) or the stock
data (cumulative cases on each day). For each option, we have three scenarios of data availability: perfect
reporting, medium reporting and poor reporting.

Table S2: Data reporting options
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D2: Estimation Model

The model is used to conduct estimation experiments, using simulated datasets generated from the data
generation model. Multiple likelihoods (G, GS, GL, P, NB), two types of reported data (stock data & flow
data) and four variants of Kalman filtering are opted in the estimation scheme.

List of model parameters

Table S3: Parameters of estimation model

Initial drive variances of stock variables are required in Kalman filtering. A large value is often used to
quickly drift the model towards the data. A scaling constant (discussed in the main text) determined from a
priori runs is used for the variance-unscaled Gaussian likelihoods. For variance-scaled Gaussian, a minimum
variance σmin is used (discussed in the main text). Values of these two system parameters are different
for using stock data or flow data in estimation and are determined from prior runs. r is used in negative
binomial likelihoods and is estimated in the experiments; results suggest that a value around 0.1 is desirable.
Two noise levels nD and nR are estimated.

Note that conceptually, a σmin also applies to constant-variance Gaussian likelihoods to prevent corner
solutions. The lower bound is embodied in the search range of nD during optimization, whose minimum
value nD ensures that nDσ0 > σmin. In the experiments we make sure that this boundary value is not so
small as to be falsely chosen by the optimization engine.

Model equations

Model formulations are explained in the main text. Different payoff functions are constructed manually
(i.e., as policy payoffs) instead of using default Vensim formulations, for different likelihoods (G stands for
Gaussian, S stands for variance-scaling, P stands for Poisson, NB stands for negative binomial), for the usage
of either flow data (noted by F in variable names) or stock data (noted by S in variable names), and for
each data-availability condition (noted by EIR, IR or I in variable names; EIR stands for ERd, IRd, RRd,
IR stands for IRd, RRd, and I stands for IRd only). Kalman filtering formulations are explained in the
Appendix, which have two options in the process noise structure.

Overall, for each estimation scheme, we specify the following options:
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Table S4: Options of the estimation scheme

Optimization

Three model parameters (c, DE , DI) and certain auxiliary parameters (r, nD, nR) are estimated. The upper
bound and lower bound of the search range are determined at proper values, centering at the ground-true
values. Multiple initial parameter values are tested and estimation results are largely invariant to initial
search points.

Table S5: Optimization parameters

Tests suggest that the following system parameters (for two optimizers, respectively) ensure the convergence
of results with a relatively economical computational burden.

V ensim Powell optimizer : RESTART MAX = 10(with Kalman Filtering)/40(no Kalman Filtering)

V ensim MCMC optimizer : MCLIMIT = 5000,MCBURNIN = 3000
(12)

The convergence of MCMC chains can be indicated by the potential scale reduction factor (PSRF), and in
particular its multivariate version, although the metrics do not always guarantee convergence. Typically, a
PSRF near 1 suggests the convergence of MCMC, and values larger than 1.2 signify that more time is required
to converge to steady state. Confirming the convergence of MCMC chains is key to reliable estimation.

D3: Sample Results from Gaussian Estimation Schemes

Sample parameter estimates from four estimation schemes (Figure S6): least squares on stocks, least squares
on flows, Gaussian with log transform, and variance-scaled Gaussian. The aggregated absolute difference
with respect to the ground truth (||∆||1, summing over all three parameters) is reported for each scheme.
At each row, the best result is in bold font.
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Figure S6: Sample Results from Gaussian Estimation Schemes.

D4: Notes on the Negative Binomial Estimator

When using the negative binomial estimator, the choice of r needs some special attention. Look closely at
the likelihood function (bottom row of equation (10) in the main text): at around r = x/e, the U-shape
likelihood function reaches its trough. Therefore, for a series of different x, to keep uniform monotonicity,
one chooses a small rather than a large value for r. This is consistent with its definition as the number of
cases missing in the reported data (so r is not supposed to be as large as in the higher end of a group of
U-curves). However, when we let r be small, the likelihood function is approximated to:

xdlog(
x

x+ r
) + rlog(

r

x+ r
) + log(Γ(xd + r))− log(Γ(xd))− log(Γ(r)) =⇒ rlog(

r

x
)− 1. (13)

In this case, data xd is not playing a role, and to yield a large likelihood one seeks x ∼ 0, which may lead
to incorrect optima. This is similar to the discussion on σmin: since along the U-shape of the likelihood
function, the largest likelihood is obtained at the lower bound of r at this region of r (i.e., r � x ∼ xd), we
need to make sure that r is not too small. Per these two considerations (i.e., r should be neither too large
nor too small), in the experiments we found that r around 0.1 is a good choice; a larger or smaller r often
lead to inferior results. It is thus also reasonable to take r out of optimization and use the fixed value; tests
suggest that whether putting r in optimization or not generally has little influence on the performance of
negative binomial estimators.

D5: Automation and Model Documentation

Estimation is automated using Python scripts which conduct the same experiment for multiple runs where
the simulated data series are generated with different random seeds. The scripts are fully parameterized and
are compiled into i/o format. For the purpose of reproducing the current study, one does not need to access
the main scripts, and all experimental setups and variants could be made in params.py.

Figures and statistics are drawn/computed with Matlab. Scripts automatically take in python output files
and produce the two major types of figures in the main text (i.e., Figure 3 and 4 types). Complete models
(in Vensim .mdl format) and scripts (python and Matlab) are publicly available at
https://github.com/TimothyLi0123/LRS Estimation.
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