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S1 – Estimation method 
The estimation equation for our model (equation 14 in the main paper) is replicated below: 
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This equation predicts the expected number of new infections for day t as a function of past infections 

(to calculate stock of infectious individuals) and past death rates (to calculate the response function). 

We assume the observed infections follow a negative binomial distribution with the given mean from 

this equation and a scale parameter, 𝜖, that is estimated to replicate observed error distributions. The 

negative binomial distribution provides the flexibility to account for heteroscedasticity, over-

dispersion, and fat tails, allowing a robust estimation despite substantial randomness in the data-

generating process.  

The model includes the following unknown parameters: 𝝎 = [𝛽0, 𝛼0, 𝛼𝑓, 𝑡0, 𝜃, 𝜆𝑢, 𝜆𝑑 , 𝛾𝐷 , 𝜖] – 4 

(𝛼0, 𝛼𝑓, 𝑡0, 𝜃) quantify responsiveness and how it changes over time, 2 (𝜆𝑢, 𝜆𝑑) specify the risk 

perception delays, 𝛽0 estimates the initial rate of infectious contacts per day per index case, and 𝛾𝐷 

estimates the potential under-valuation of Infection Fatality Rates (f values) for each country . Besides 

the f values (see IFR calculation below for details) the model includes two other given parameters, the 

duration of disease (10 days) and the order of the perception delay (2). 

More compactly, the model yields a (log)likelihood for observing the daily reported cases (𝑟𝐼𝑀(𝑡)), 

given a vector of unknown model parameters 𝝎 and the reported daily cases and death rate for each 

country prior to the current date (𝑑𝑁𝑀(𝑡−)) and 𝑟𝐼𝑀(𝑡−)): 𝐿𝐿𝑁𝑒𝑔𝐵𝑖𝑛(𝑟𝐼𝑀(𝑡)|𝝎, 𝑟𝐼𝑀(𝑡−), 𝑑𝑁𝑀(𝑡−)) 

The estimation process seeks to identify the values for 𝝎 that maximise this likelihood or are likely to 

be observed given that peak.  

We estimate the model separately for each country. Separating countries significantly speeds up 

estimation and makes it feasible to conduct the full analysis within days on a 48-core server.  For each 

country, we estimate the parameter vector 𝝎 using the Powell direction search method implemented 

in Vensim™ DSS simulation software, restarting the optimization at 20 random points in the feasible 

parameter space. From the resulting optimum, we use MCMC to explore the payoff landscape to 

identify the high-likelihood region of parameter space. The MCMC algorithm used is designed for 

exploring high-dimensional parameter spaces; for more details see (Vrugt et al. 2009). We draw a total 

of 500000 samples for each country, of which the first 300000 are discarded (the burn-in period); by 

the end of the burn-in, the chains are well-mixed and stable (Gelman-Rubin PSRF statistic < 1.1). We 

use the remaining 200000 samples to derive credible intervals for parameter and outcome estimates. 

S2 – Data processing 
Data on daily confirmed cases and deaths come from the OurWorldInData (OWID) global COVID-

19 database (Roser et al. 2020), which draws on the Johns Hopkins University CSSE COVID 



dashboard (Dong et al. 2020). The CSSE dashboard in turn aggregates its data primarily from official 

sources such as the US Centres for Disease Control and Prevention (CDC), the European CDC, the 

World Health Organization, and national health ministries, updating at least daily. 

We use OWID’s 7-day rolling averages for new cases (‘new_cases_smoothed’) and deaths per million 

population (‘new_deaths_smoothed_per_million’). COVID-19 case and death reporting data show 

strong weekly cycles in many countries, as well as occasional anomalous spikes due to e.g. irregularities 

in test reporting or redefinitions by government statistical agencies; using the rolling average data 

smooths out these cycles, which we are not attempting to model here, to better reflect underlying 

trends. 

Our analysis includes all countries in the dataset with at least 10000 cumulative cases reported, and at 

least 20 days of data. We exclude countries with fewer than 10000 cumulative cases to avoid skewing 

the results with outliers. The minimum datapoint requirement helps ensure robust estimation. In total, 

118 countries meet these criteria as of 02 December 2020. 

For countries included, we utilise data starting from the date when they exceed 100 cumulative cases 

reported. Excluding early data entails a tradeoff. Excluding it makes estimating the true basic 

reproduction number (R0) more difficult – as discussed in the main text, after forceful outbreaks in 

the first countries, most others adopted various precautions that brought down R0 below its pre-

pandemic level. Furthermore, excluding the early data may cut out the initial dynamics of infection. 

As a result, our estimated values for initial reproduction number are likely underestimates of basic 

reproduction number, and thus the g estimates may tend to be larger than the true changes in the 

contact rates compared to pre-pandemic levels. On the other hand, many of the early cases reported 

in most countries were due to travellers, and often identified and isolated early on. The data during 

this earliest ‘importation’ stage therefore do not accurately reflect community transmission dynamics 

we are modelling. Rapid changes in the testing coverage also impact our ability to use assume 

ascertainment rates are stable in the 𝜏 time horizon as needed in our derivations (see equation 12 in 

the main text). We selected the 100 case cut-off to balance reasonably estimating R0 with correctly 

reflecting transmission dynamics rather than travel networks, which are out of scope for this model. 

For mobility data we use Google's COVID-19 Community Mobility Reports 

(https://www.google.com/covid19/mobility). We access this data as compiled by OWID 

(https://ourworldindata.org/covid-mobility-trends) which provides consistent mapping for country 

names to other data we use. 

Data are downloaded and processed with Python 3 code, using Pandas and NumPy packages. For the 

full data processing code, see https://github.com/tseyanglim/CovidRiskResponse. 

IFR calculation 

Most countries’ reported case counts substantially under-estimate the true magnitude of the epidemic 

(Rahmandad et al. 2020). To estimate the remaining susceptible fraction (Sf) for each country over 

time, we therefore rely on reported deaths, which while still variable are more reliable, multiplying 

cumulative reported deaths by an estimated country-specific under-reporting ratio (𝛾𝐷) and using 

country-specific infection fatality rates (IFR) to calculate cumulative infections. 

https://www.google.com/covid19/mobility/
https://ourworldindata.org/covid-mobility-trends
https://github.com/tseyanglim/CovidRiskResponse


Age strongly influences IFR, with older patients far more likely to die of COVID-19 (Verity et al. 

2020). We therefore calculate country-specific IFRs based on each country’s age structure. 

We use data from the World Bank’s World Development Indicators (World-Bank 2014) on the age 

distribution of each country’s population in 10-year age strata to calculate an age-weighted average of 

the IFRs for COVID patients by 10-year age group estimated in (Verity et al. 2020). The resulting 

demography-adjusted country-specific IFRs range from 0.14% (Uganda) to 1.51% (Japan), with a 

mean of 0.54% and median of 0.44% (Lebanon). For the handful of countries for which up-to-date 

demographic data are unavailable, we use a baseline IFR of 0.50%.  

We incorporate an estimated multiplier for actual to calculated deaths, 𝛾𝐷, to account for potential 

undercounts of death and reductions in IFR compared to early values estimated from the methods we 

used. In estimation we restrict this multiplier to be between 1 and 4. 

S3 – Full results 
Figure S1 shows fits to data for simulated infection rates for all 118 countries. Blue lines show model-

generated daily infection rates, while red lines show 7-day rolling average infection rates from OWID. 

The correspondence between model and data is very close for most countries, with a few outliers 

bringing down the quality of fit a bit; yet over the full sample of 118 countries, R2 for infections against 

data is 0.936, while the mean absolute errors normalized by mean (MAEN) are 13.2%. The quality of 

fit should not come as a total surprise: the model uses infection rates from the past 10 days to predict 

current-day infections, and thus to the extent that infections are auto-correlated, the estimation 

process can use this anchor to offer close approximations for the number of new cases. However, the 

behavioural response function does add significant value in terms of quality of fit, which we 

demonstrate in the sensitivity analysis section by comparing results against estimates that do not 

account for behaviour responses. 

Table S1 summarises estimated parameter values across the 115 countries which met the quasi-

equilibrium condition (Sf > 1/R0). 3 of the 118 total countries estimated (ARG: Argentina, JOR: 

Jordan, OMN: Oman) no longer meet this condition as of 02 December 2020, and were excluded 

from further analyses. For the full table of country-by-country parameter estimates, see 

https://github.com/tseyanglim/CovidRiskResponse. 

Figure S2 shows 90% credible intervals estimated for each country for the two main outcome 

measures, quasi-equilibrium normalized contact rate (geq) and quasi-equilibrium daily death rate per 

million (𝑑𝑁𝑀
𝑒𝑞

). 

Figure S3 shows reported daily death rates per million against change in visits to workplaces and retail 

& recreation venues respectively, relative to pre-pandemic levels, averaged over 180 days from 05 June 

2020-02 December 2020. (The figure showing the combined index is in the main paper.) The 

correlation between deaths and relative daily visits is non-positive in all cases: Pearson’s R2 for 

averaged index = -0.371 (p = 0.0002); workplaces = -0.516 (p = 1.01E-07); retail & recreation venues 

= -0.249 (p = 0.016). 

 

https://github.com/tseyanglim/CovidRiskResponse


 

Figure S1 - Comparison of simulated infection rates with data across all 118 countries 

 

  



 

Table S1 - Summary statistics of estimated parameter values 

Parameter Symbol Mean StDev Median Med. IQR 

Reference effective contact rate β0 0.17 0.034 0.16 0.008 

Initial responsiveness α0 3.87 4.01 1.91 0.97 

Final responsiveness αf 1.46 2.79 0.19 0.064 

Responsiveness inflection point t0 197 84 211 13 

Responsiveness scaling factor θ 16.1 22.0 5.1 5.4 

Time to upgrade risk λU 12.2 9.8 8.9 3.9 

Time to downgrade risk λD 58 38 61 11 

Death underreporting multiplier γD 2.52 1.29 2.35 1.66 

Likelihood scaling factor ϵ 0.058 0.150 0.022 0.004 

 

 

 

Figure S2 - 90% credible intervals for estimates of normalized contact rate and log10 daily deaths per million in quasi-equilibrium. 

 



 
Figure S3 – Reported daily death rates per million against change in daily visits to workplaces (left) and retail & recreation venues (right) 
relative to pre-pandemic levels, averaged over the last 180 days from 05 June 2020-02 December 2020.



S4 – Sensitivity results 

Disease Duration 

We specify the average disease duration (τ) at 10 days, constant across all countries. This duration is 

consistent with prior findigns (He et al. 2020, Wolfel et al. 2020). To test for sensitivity to this 

parameter, we re-ran model estimation and analysis with τ = 8 and 14 days. 

Figure S4 and Figure S5 show the main result for τ = 8 and 14 days respectively. The primary insight 

has not changed – expected deaths and normalized contact rates in quasi-equilibrium conditions have 

no positive correlation (for τ = 8 and 14 days respectively, Pearson’s r = -0.044, p = 0.647 and r = 

0.099, p = 0.303; for log(𝑑𝑁𝑀
𝑒𝑞

), r = -0.130, p = 0.177 and r = -0.238, p = 0.012), with if anything a 

slight negative correlation as per the main result. 

The model is still able to fit the data reasonably well with changes in disease duration. Table S2 and 

Table S3 summarise estimated parameter values with τ = 8 and 14 days respectively. On average, 

reducing τ to 8 days results in a 10.0% absolute change in estimated parameter values, while increasing 

it to 14 days results in a 7.4% absolute change. The fit between simulated infections and data 

deteriorates slightly at τ = 14 days (R2 = 0.930, MAEN = 14.7%) compared to baseline (R2 = 0.936, 

MAEN = 13.2%). Fit improves slightly at τ = 8 days (R2 = 0.950, MAEN = 11.5%). The primary 

driver of infection rates is the number of currently infected people, which is calculated exogenously 

from the data based on the specified disease duration. As such, some inverse relationship between 

quality of fit and disease duration is to be expected, as shorter durations allow autocorrelation in the 

[smoothed] infection data to exert a stronger influence on the accuracy of model predictions. 

These results indicate that both overall model performance, and more importantly, the main results 

of this analysis, are robust to alternative specifications of average disease duration within a broadly 

reasonable range. 

 



 

Figure S4 - Normalized contacts vs. expected deaths for τ = 8 days 

 



 

Figure S5 - Normalized contacts vs. expected deaths for τ = 14 days 

 



 

Table S2 - Summary of parameter estimates for τ = 8 days, with change in mean & median estimates 

Parameter Symbol Mean Change Median Change 

Reference effective contact rate β0 0.20 0.187 0.19 0.195 

Initial responsiveness α0 4.30 0.111 2.12 0.109 

Final responsiveness αf 1.30 -0.114 0.21 0.098 

Responsiveness inflection point t0 190 -0.031 197 -0.068 

Responsiveness scaling factor θ 14.1 -0.127 5.0 -0.012 

Time to upgrade risk λU 11.6 -0.052 7.4 -0.175 

Time to downgrade risk λD 60 0.036 63 0.030 

Death underreporting multiplier γD 2.42 -0.039 2.21 -0.059 

Likelihood scaling factor ϵ 0.046 -0.202 0.017 -0.205 

 

 

Table S3 - Summary of parameter estimates for τ = 14 days, with change in mean & median estimates 

Parameter Symbol Mean Change Median Change 

Reference effective contact rate β0 0.14 -0.16 0.13 -0.174 

Initial responsiveness α0 3.95 0.02 1.70 -0.109 

Final responsiveness αf 1.65 0.13 0.35 0.848 

Responsiveness inflection point t0 201 0.02 214 0.016 

Responsiveness scaling factor θ 13.3 -0.18 5.0 -0.013 

Time to upgrade risk λU 12.7 0.04 10.3 0.160 

Time to downgrade risk λD 59 0.02 61 0.007 

Death underreporting multiplier γD 2.66 0.06 2.85 0.214 

Likelihood scaling factor ϵ 0.060 0.04 0.030 0.386 

 

Estimation without behavioural response 

We estimate the model with the endogenous behavioural response deactivated, i.e. α = 0. In the 

absence of behavioural response, the fit of simulated infections to data deteriorates by 38% (R2 = 

0.914, MAEN = 18.2%), as expected, indicating that the behavioural response mechanism does 

improve the quality of fit. As the primary driver of infection rates is the number of currently infected 

people, which is calculated exogenously from the data, overall model fit remains notably good. 

 



S5 – Model equations listing 
1) AdjIFR[Rgn] = GET VDF CONSTANTS('InputConstants.vdf', 'AdjIFR[Rgn]', 1) 

2) alp[Rgn] = 0.1  This parameter is 1 over the number of failures in negative binomial before 

experiment is stopped. A value between 0 and 1 (excluding zero) is legitimate calibraiton parameters here. 

3) alpha[Rgn] = alpha 0[Rgn] + 1 / ( 1 + exp ( timesens[Rgn] ) ) * ( alpha f[Rgn] - alpha 0[Rgn] )  

4) alpha 0[Rgn] = 1 

5) alpha f[Rgn] = 2 

6) BaseIFR = 0.005 

7) beta[Rgn] = 0.1 

8) CumulativeDpm[Rgn] = INTEG( DeathsOverTime[Rgn] , 0)  

9) DataFlowOverTime[Rgn] = if then else ( new cases[Rgn] = :NA:, :NA:, new cases[Rgn] )  

10) DataIncluded[Rgn] = 1 

11) DataStartTimeCases[Rgn] = INITIAL( GET DATA FIRST TIME ( new cases[Rgn] ) ) 

12) DataStartTimeDeaths[Rgn] = INITIAL( GET DATA FIRST TIME ( new dpm[Rgn] ) ) 

13) DeathReportingRatio[Rgn] = 500 

14) DeathsOverTime[Rgn] = if then else ( Time < DataStartTimeDeaths[Rgn] , 0, new dpm interpolated[Rgn] )  

15) DeathsOverTimeRaw[Rgn] = if then else ( new dpm[Rgn] = :NA:, :NA:, new dpm[Rgn] )  

16) Di[Rgn] = DataFlowOverTime[Rgn]  

17) DiseaseDuration = 10 

18) dn[Rgn] = SMOOTH N ( DeathsOverTime[Rgn] , if then else ( dn[Rgn] < DeathsOverTime[Rgn] , PMean[Rgn] 

, PMeanRelax[Rgn] ) ,0, PMeanOrder )  

19) eps = 0.01 

20) eqDeath[Rgn] = ZIDZ ( ln ( beta[Rgn] * DiseaseDuration * SFrac[Rgn] ) , alpha[Rgn] )  

21) FINAL TIME = 334  The final time for the simulation. 

22) g death[Rgn] = exp ( - alpha[Rgn] * dn[Rgn] )  

23) IFR[Rgn] = INITIAL( if then else ( AdjIFR[Rgn] = -1, BaseIFR , AdjIFR[Rgn] ) )  Note: -1 is 

placeholder value for missing data in InputConstants.vdf 

24) inf exp[Rgn] = beta[Rgn] * roll[Rgn] * g death[Rgn] * SFrac[Rgn]  

25) InfShift[Shft] := - Shft 

26) INITIAL TIME = 0   initial time for the simulation. 

27) Mu[Rgn] = Max ( eps , inf exp[Rgn] )  

28) NBL1[Rgn] = if then else ( DataFlowOverTime[Rgn] = 0, - ln ( 1 + alp[Rgn] * Mu[Rgn] ) / alp[Rgn] , 0)  

 This is the part of negative binomial distribution calcualted when outcomes are zero. 

29) NBL2[Rgn] = if then else ( DataFlowOverTime[Rgn] > 0, GAMMA LN ( Di[Rgn] + 1 / alp[Rgn] ) - GAMMA 

LN ( 1 / alp[Rgn] ) - GAMMA LN ( Di[Rgn] + 1) - ( Di[Rgn] + 1 / alp[Rgn] ) * ln ( 1 + alp[Rgn] * Mu[Rgn] ) 

+ Di[Rgn] * ( ln ( alp[Rgn] ) + ln ( Mu[Rgn] ) ) , 0)   This is the second piece in the loglikelihood for 

negative binomial which only applies to non-zero data points. 

30) NBL3[Rgn] = if then else ( Di[Rgn] > 0, - GAMMA LN ( Di[Rgn] + 1) - ( Di[Rgn] + 1 / alp[Rgn] ) * ln ( 1 + 

alp[Rgn] * Mu[Rgn] ) + Di[Rgn] * ( ln ( alp[Rgn] ) + ln ( Mu[Rgn] ) ) , 0)  

31) NBLLFlow[Rgn] = ( NBL1[Rgn] + NBL2[Rgn] ) * DataIncluded[Rgn]  

32) new cases[Rgn] :RAW:  

33) new dpm[Rgn] :RAW:  

34) new dpm interpolated[Rgn] := new dpm[Rgn]  

35) PMean[Rgn] = 5 

36) PMeanOrder = 2 

37) PMeanRelax[Rgn] = 20 

38) Pssn : (p1-p100) 

39) Re[Rgn] = beta[Rgn] * g death[Rgn] * DiseaseDuration * SFrac[Rgn]  

40) Rgn : AFG, AGO, ALB, ARE, ARG, ARM, AUS, AUT, AZE, BEL, BGD, BGR, BHR, BIH, BLR, BOL, BRA, 

BWA, CAN, CHE, CHL, CHN, CIV, COD, COL, CPV, CRI, CYP, CZE, DEU, DNK, DOM, DZA, ECU, 

EGY, ESP, EST, ETH, FIN, FRA, GBR, GEO, GHA, GIN, GRC, GTM, HND, HRV, HUN, IDN, IND, IRL, 

IRN, IRQ, ISR, ITA, JAM, JOR, JPN, KAZ, KEN, KGZ, KOR, KWT, LBN, LBY, LKA, LTU, LUX, LVA, 



MAR, MDA, MDG, MDV, MEX, MKD, MLT, MMR, MNE, MOZ, MYS, NAM, NGA, NLD, NOR, NPL, 

OMN, PAK, PAN, PER, PHL, POL, PRY, PSE, QAT, ROU, RUS, SAU, SDN, SEN, SGP, SLV, SRB, SVK, 

SVN, SWE, TJK, TUN, TUR, UGA, UKR, USA, UZB, VEN, XKX, ZAF, ZMB, ZWE 

41) roll[Rgn] = if then else ( Time < DataStartTimeCases[Rgn] , 0, sum ( SelectRoll[Shft!] * 

ShiftedInfection[Rgn,Shft!] ) )  

42) SAVEPER = TIME STEP  [0,?]  The frequency with which output is stored. 

43) SelectRoll[Shft] = if then else ( Shft > DiseaseDuration , 0, 1)  

44) Series : Infection 

45) SFrac[Rgn] = Max ( 1e-06, 1 - ( CumulativeDpm[Rgn] * DeathReportingRatio[Rgn] / IFR[Rgn] ) / 1e+06)  

46) Shft : (S1-S20) 

47) ShiftedInfection[Rgn,Shft] := TIME SHIFT ( new cases[Rgn] , InfShift[Shft] )  

48) t0[Rgn] = 20 

49) theta[Rgn] = 1 

50) TIME STEP = 1 [0,?]  The time step for the simulation. 

51) timesens[Rgn] = MIN ( 50, - ( Time - t0[Rgn] ) / theta[Rgn] ) 
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