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S1 MODEL STRUCTURE AND KEY FORMULATIONS 
The model simulates the evolution of COVID-19 epidemic, risk perception and response, testing, 
hospitalization, and fatality at the level of a country, and couples all countries in the parameter 
estimation step. Here we explain key equations and structures in each sector, followed by complete 
listing of model equations and parameters in S9. Full model, data, and analysis code is available online 
at https://github.com/tseyanglim/CovidGlobal. 

Population Groups and Transmission Dynamics 

The model is a derivative of the well-known SEIR (Susceptible, Exposed, Infectious, Recovered) 
framework for simulating infection dynamics. Figure S1 provides an overview of key population 
groups and the population movements among them1. 

 
Figure S1- Key population stocks and flows. Rectangles represent stocks (state variables), while arrows and valves represent the flows between them (state 

transitions). Some in the Susceptible population (S) flow into the Pre-Symptomatic Infected stock (P) based on 
the Infection Rate (rSP). After an average Incubation Period (τP), these pre-symptomatic infected flow into 
the Infected Pre-Detection (IP) stock. After a further average Onset to Detection Delay (τT), this group splits 
among multiple pathways. First, if tested positive for COVID-19, they flow into either Infectious 
Confirmed Not Hospitalized (IC) or Hospitalized Infectious Confirmed (ICH). Anyone not tested positive, 
whether for lack of testing or erroneous test results, transitions into either Hospitalized Infectious 
Unconfirmed (IUH) or Infectious Unconfirmed Post-Detection (IU). We assume demand for testing and 
hospitalization are driven by symptoms, so all asymptomatic patients will be in the latter category. 

From these Infectious categories, resolution flows (r…) take individuals to either Recovered (R…) or 
Dead (D…) states, with corresponding subscripts U, C, CH, and UH for stocks and UU, UHCH etc. for flows. 
Given the differences in severity and potential survival extension due to hospitalization, we distinguish 

                                                 

1 In the equations below we use short-hand to simplify mathematical notations. The full model documentation uses full 
variable names. Table S1 provides the mapping between the short-hand and the full names, as well as the sources and 
equations for the variables and parameters discussed below. 
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between resolution delay for those in hospital (Hospitalized Resolution Time; τH) and those not 
hospitalized (Post-Detection Phase Resolution Time; τR). We use first order exponential delays for all lags, 
though sensitivity analyses showed very little impact of using higher order delays.  

The Infection Rate (rSP) controls the flow from S to P and depends on Infectious Contacts (CI), fraction of 
total Population (N) that is susceptible, and Weather Effect on Transmission (W). The latter is a function of 
RW, the country-level projections for impact of weather on COVID-19 transmission risk year-round 
developed by Xu and colleagues (1) and a parameter, Sensitivity to Weather (sW), to be estimated: 

𝑟ௌ௉ ൌ 𝐶ூ𝑊 ቀௌ
ே
ቁ          (1) 

𝑊 ൌ 𝑅ௐ
௦ೈ            (2) 

Infectious contacts depend on the Reference Force of Infection (β), various infectious sub-populations (and 
their relative transmission rates; ma for asymptomatic and mT for confirmed), and Contacts Relative to 
Normal (FC), which captures behavioral and policy responses as a fractional multiplier to baseline 
infectious contacts: 

𝐶ூ ൌ 𝛽𝐹஼ሺ𝑚௔ሺ𝑃௔ ൅ 𝐼௉
௔ ൅ 𝐼௎

௔ሻ ൅ 𝐼௉
௦ ൅ 𝐼௎

௦ ൅ 𝑃௦ ൅ 𝐼௎ு ൅ 𝑚்ሺ𝐼஼ு ൅ 𝐼஼ሻሻ    (3) 

In this equation we separate various stocks (of I and P) into asymptomatic (a superscript) and 
symptomatic (s superscript). That distinction is treated analytically using a zero-inflated Poisson 
distribution that is discussed in the next section. In light of evidence on the short serial interval for 
COVID-19, likely below the incubation period (2, 3), we do not distinguish the infectivity of pre-
symptomatic individuals from those post onset. Contagion dynamics start from Patient Zero Arrival 
Time, T0, another estimated parameter. The key mechanisms regulating the population flows among 
these stocks are discussed below, and a schematic of important relationships is provided in Figure S2. 

Five parameters are estimated in the equations discussed above. One of them (sW) is global (i.e. 
assumed identical across countries; see the estimation section below for details on the distinction 
between global and country-specific parameters) and the remaining four are country-specific: β, mT, 
ma, and T0. 
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Figure S2- Overview of model's mechanisms. Major feedback loops are identified as Balancing (Negative feedback; B) and Reinforcing (Positive feedback; R). 

 

Modeling the Severity of Symptoms 

COVID-19 infection varies in acuity, from asymptomatic to life-threatening. Disease acuity affects 
fatality risk and also testing and hospitalization decisions, which in turn affect official records of 
infection and fatality rates. Since movement between population groups via testing or hospitalization 
is itself a function of acuity, to allow for consistent inference of mean acuity across different 
population groups, we use an analytical framework to track acuity levels. The framework, which we 
adapted from prior research (4), obviates the need to disaggregate the population by different acuity 
levels (which would prohibitively raise the computational costs for estimation).  

Specifically, we represent acuity using a zero-inflated Poisson distribution. This distribution combines 
two subpopulations – one with Poisson-distributed acuity levels with mean Covid Acuity (αC), and 
another Additional Asymptomatic Fraction with zero acuity, which is the zero-inflated component. The 
sum of those with zero acuity from the Poisson part of the population and the second group is the 
Total Asymptomatic Fraction (pa). We assume this asymptomatic group is not given priority in testing or 

hospitalization, and is not at risk of death. Thus they will always follow the 𝑆
௥ೄು
ሱሮ 𝑃

௥ುು
ሱሮ 𝐼௉

௥಺ೆ
ሱሮ 𝐼௎

௥ೆೆ
ሱ⎯ሮ𝑅௎ 

pathway. The pathways for the remaining population depend on acuity and its impacts on testing, 
hospitalization, and death. Note that the concept of acuity defined here only needs to have a 
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monotonic relationship with tangible symptoms and risk factors and it does not have a one-to-one 
relationship with any real-world measure of acuity, and as such is better seen as a mathematical 
construct that informs modeling rather than a real-world variable with clinical definition. 

From this framework two parameters, a and αC, are estimated as country specific parameters with 
limited variability across countries.  

 

Testing 

The testing sector reads the Active Test Rate (Tt) for each country as exogenous input data (see appendix 
S3 for pre-processing details for this data). A fraction of the total test rate, typically small, is allocated 
to post-mortem testing of COVID-19 victims who have not been previously confirmed (Post Mortem 
Tests Total, TPM). Specifically, of the deaths of unconfirmed infectious individuals (whether hospitalized 
or not), a certain Fraction of Fatalities Screened Post Mortem (nPM) will be identified true post-mortem tests. 
We anchor the nPM to Fraction Covid Death In Hospitals Previously Tested (nDCH). The rationale for this 
anchoring is that on the margin if there are many unidentified COVID patients in hospitals, the 
chances are that the system lacks enough testing capacity and thus post-mortem testing should also 
be less thorough:  

𝑛௉ெ ൌ 𝑛஽஼ு            (4) 

We experimented other functional forms with a free parameter connecting the two constructs, but 
following our conservative estimation principle decided against including that free parameter in the 
final model. We feared that absent clear observables to identify this additional parameter (e.g. on 
country-specific policies regulating post-mortem testing) the degree of freedom would improve the fit 
but potentially for the wrong reason.  

The remaining Testing Capacity Net of Post Mortem Tests ሺ𝑇ே௘௧ ൌ 𝑇௧ െ 𝑇௉ெሻ is allocated to test demand 
from two sources. First, symptomatic COVID patients leaving the pre-detection (IP) phase may seek 

testing (Positive Candidates Interested in Testing Poisson Subset: 𝑀஼ ൌ
ூು
ఛ೅
ሺ1 െ 𝑝௔ሻ). Second, COVID-

negative individuals may seek testing due to various perceived risks and other conditions with 
overlapping symptoms such as common cold and influenza-like illnesses (MN, Potential Test Demand 
from Susceptible Population). This “negative” demand includes a Baseline Daily Fraction Susceptible Seeking 
Tests (nST) of the population not previously tested positively (NU), and increases with the Recent Detected 
Infections (TPIR), which is an exponentially weighted moving average of Positive Tests of Infected (TPI). 
COVID-positive and COVID-negative sources of demand add up to create the overall Testing Demand 
(MT): 

𝑀ே ൌ 𝑛ௌ்𝑁௎ ൅𝑚ூ்𝑇௉ூோ          (5) 

𝑀் ൌ 𝑀ே ൅𝑀஼           (6) 

Where the Multiplier Recent Infections to Test (mIT), captures the sensitivity of negative test demand to 
recent infection reports. 
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To allocate the available tests (TNet) between these two sources of demand, we use an analytical logic 
that allocates testing based on symptom severity. Via self-selection and screening by testing centers, 
people who have more symptoms or other signals that correlate with COVID infection (e.g., high 
exposure risk) are more likely to be tested. We assume each unit of acuity increases the likelihood that 
an individual gets tested, based on a variable Prob Missing Symptom, pMS. This variable represents the 
probability that each acuity unit fails to convince the testing decision process to test a given individual, 
i.e. how selectively and sparingly tests are conducted. Specifically, in this model an individual with k 
acuity units is tested with probability: 

𝑝ሺ𝑡𝑒𝑠𝑡|𝑘 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠ሻ ൌ 1 െ 𝑝ሺ𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑘 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠ሻ ൌ 1 െ 𝑝ெௌ
௞     (7) 

We assume the negative test demand is coming from a population with a Poisson-distributed, unit 
average acuity level (αN=1) for symptoms of non-COVID influenza-like illnesses. The test demand 
from COVID patients also comes from a Poisson distribution of acuity, but with mean αC. With the 
Poisson distribution and given a level of α and pMS, one can calculate the fraction of each demand 
source that would be tested: 

𝑝ሺ𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑒𝑠𝑡ሻ ൌ 1 െ 𝑝ሺ𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑡𝑒𝑠𝑡𝑒𝑑ሻ ൌ 1 െ ∑ ௘ഀఈೖ

௞!
𝑝ெௌ
௞௞ୀஶ

௞ୀ଴ ൌ 1 െ 𝑒ିఈሺଵି௣ಾೄሻ  (8) 

We therefore need to find the pMS that allows test supply to match demand that is satisfied, specifically, 
by solving the following equation for pMS*: 

𝑇ே௘௧ ൌ 𝑀ேሺ1 െ 𝑒ିఈಿሺଵି௣∗ಾೄሻሻ ൅ 𝑀஼ሺ1 െ 𝑒ିఈ಴ሺଵି௣∗ಾೄሻሻ      (9) 

Figure S3 provides a graphical summary of the zero-inflated Poisson symptom and testing framework. 
In this figure testing outcomes are graphed for a population where 10% are COVID-positive, 
assuming that Covid Acuity, αC, is 6, and with two different levels of pMS (=0.8 and 0.95). For this figure 
we also assume a 55% asymptomatic fraction for COVID patients. Even with testing that prioritizes 
patients with more symptoms, and despite the large difference in symptom frequency between 
COVID patients and negative cases, the majority of tests are allocated to negative cases with a few 
symptoms. COVID patients with multiple symptoms are likely to be identified if PMS is not very large, 
but when total demand for testing (i.e. the sum of all bars with symptoms>0) is large, PMS , found 
from solving equation 9, may be close to 1, excluding many COVID patients with multiple symptoms 
and thus higher risks of fatality. 
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Figure S3- Schematic overview of zero-inflated Poisson process and test allocation. Red bars represent COVID-positive individuals and blue ones are COVID-
negative. Asymptomatic fraction is assumed to be 55% for COVID patients with the symptomatic cases following a Poisson distribution with mean 6. Color 
coded bars signal fraction of tested individuals with different levels of probability of missing symptoms, PMS. 

 

Having solved for p*MS (numerically), we analytically calculate the average acuity level for those 
positively tested (αCP: Average Acuity of Positively Tested ) and those either not tested or having received 
a false negative result (αCN). Specifically, if test sensitivity was 100%, the average acuity for those not 
tested would be: 

𝛼ே௢௧ ்௘௦௧௘ௗ ൌ ∑ 𝑘 ௘ഀఈೖ

௞!
𝑝ெௌ
∗ ௞௞ୀஶ

௞ୀ଴ =𝛼𝑝ெௌ
∗ 𝑒ିఈሺଵି௣∗ಾೄሻ      (10) 

The acuity level for those tested could then be found based on the conservation of total acuity across 
those positively tested and those not. Starting with this basic specification we further account for the 
Sensitivity of Covid Test (sT) to calculate the values of αCP and αCN. We parametrize sensitivity at 70%, 
which is the estimated sensitivity for the PCR-based tests used as the primary diagnosis method of 
current infections of COVID-19 (5, 6). 

Overall, the testing rates that are determined by solving for 𝑝ெௌ
∗ , combined with sensitivity of tests, 

inform the fraction of COVID positive individuals transitioning from pre-detection (IP) to confirmed 
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vs. unconfirmed states (IC or ICH vs. IU or IUH), while the calculated α values inform the likelihood of 
hospitalization and fatality rates, as discussed next. 

The testing sector includes the following two country level parameters that are estimated: nST, mIT. 

 

Hospitalization 

The hospitalization sector of the model starts with each country’s Nominal Hospital Capacity (hN) in total 
hospital beds. In practice, geographic variation in hospital density and demand creates imperfect 
matching of available beds with cases of COVID-19 at any point in time, e.g. because some potential 
capacity is physically distant from current COVID hotspots. This imperfect matching means some of 
the nominal hospital capacity is effectively unavailable at any time, especially in larger, less densely 
populated countries. We therefore calculate Effective Hospital Capacity (hE) by considering geographic 
density of hospital beds (Bed per Square Kilometer; dH):  

ℎா ൌ ℎே ቀ
ௗಹ
ௗಹ
∗ ቁ

௦ವಹ
           (11) 

Where the 𝑑ு
∗  represents a large Reference Hospital Density of 6.06 beds per km2 (which is the value of 

𝑑ு for South Korea). The parameter sDH (Impact of Population Density on Hospital Availability) is estimated. 

Effective capacity is allocated between Potential Hospital Demand (HCD) from COVID-19 cases and the 
regular demand for hospital beds from all other conditions (which we assume equals pre-pandemic 
effective hospital capacity). We assume that COVID-19 patients will have higher priority for 
hospitalization compared to regular demand. Specifically, we assume that fraction of regular demand 
allocated (mHR) would be the square of that for COVID demand (mHC), 𝑚ுோ ൌ 𝑚ு஼

ଶ , and solve the 
resulting hospital capacity allocation problem analytically: 

ℎா ൌ ℎா𝑚ுோ ൅ 𝐻஼஽𝑚ு஼  ⇒  𝑚ு஼ ൌ
ିு಴ವାටு಴ವ

మ ାସ௛ಶ
మ

ଶ௛ಶ
      (12) 

We determine the COVID demand for hospitalization based on a screening process similar to that 
for testing. Two types of COVID patients may seek hospitalization: those with confirmed test results 
and those without. The former are more likely to seek hospital treatment. We first calculate a 
parameter analogous to pMS in the testing sector that informs the demand from confirmed COVID 
patients for hospitalization. This parameter, the PMAS Confirmed for Hospital Demand (pMHC) is 
determined based on acuity level of confirmed (αCT) and Reference COVID Hospitalization Fraction 
Confirmed (rH), an estimated parameter capturing the overall need for hospitalization among COVID 
patients: 

𝑝ெு஼ ൌ ሺ1 െ 𝑟ுሻ
భ

ഀ಴೅          (13) 

For unconfirmed COVID patients we scale the analogue of this parameter (pMHU) based on how much 
priority non-COVID patients generally receive: 

𝑝ெு௎ ൌ 𝑝ெு஼ ൅ ሺ1 െ 𝑝ெு஼ሻሺ1 െ𝑚ுோሻ        (14) 
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This formulation ensures that: 1) Confirmed COVID patients are more likely to be hospitalized, but 
also that 2) if there is ample hospital capacity (mHR~1), then confirmed and unconfirmed COVID 
patients will receive similar priority for the same level of acuity. In short, the pM. values determine 
hospital demand by confirmed and unconfirmed COVID patients, which add up to HCD. The latter 
determines the fraction of hospital demand that is met. Analogous to the testing sector, this fraction 
along with demand determines the flow of individuals from the pre-detection (IP) state to hospitalized 
vs. non-hospitalized states (ICH or IUH vs. IC or IU). Matching demand to allocated capacity also allows 
us to calculate the realized Probability of Missing Acuity Signal at Hospitals (p*M) for confirmed and 
unconfirmed patients. As in the testing sector, those probabilities let us approximate for the expected 
acuity levels for COVID patients in and out of hospital, as well as tested vs. not-tested, i.e. αCT, αCH, 
αU, and αUH. These average acuity levels in turn inform fatality rates for each group.  

The hospital sector includes two country level estimated parameter with limited variation across 
countries: sDH and rH. 

 

Infection Fatality Rates 

For patients in each of the U, C, CH, and UH groups we specify the Infection Fatality Rate (f), as: 

𝑓ሺ.ሻ ൌ 𝑓௕𝛼ሺ.ሻ
௦೑𝑠ுிሺ. ሻ𝑔஺௚𝑣௙          (15) 

The parameter Base Fatality Rate for Unit Acuity (fb) sets the baseline for fatality rate. Sensitivity of Fatality 
Rate to Acuity (sf) determines how fatality changes with estimated acuity levels; more severe cases are 
expected to have higher fatality rates. Hospitalization reduces fatality rates, expressed as the relative 
Impact of Treatment on Fatality Rate (sHF); Finally, IFR reduction due to heterogenous responses (e.g. high 
risk groups becoming more cautious as cases accumulate), improved treatment with learning curves, 
and other drivers is captured in Time variant change in fatality (vf). 

The 𝑔஺௚ function incorporates the impact of age distribution on fatality rates. For age effect, we 
calculate a risk factor for each country. We use data from the World Bank on the age distribution of 
each country’s population in 10-year age strata to calculate an age-weighted average of the IFRs for 
COVID patients by 10-year age group reported in prior work (7). We normalize this age-weighted 
average IFR against its value for China, where the data on IFRs by age group were originally recorded. 
Normalizing in this way means the age effect is not sensitive to any systematic over- or under-
estimation of the IFR in prior work, only to the relative risk by age group. The resulting normalized 
age effect ranges from 0.271 (Kenya, median age ~20 years) to 2.368 (Japan, median age ~48 years). 
Given the well-established impact of age on fatality, this factor is directly multiplied into the infection 
fatality equations.  

Finally, we formulate the vf factor as a function of cumulative cases to-date in each country using a 
standard learning curve formulation, bounded by a minimum multiplier that is 10% baseline, and starts 
to operate after cases reach 0.5% of population. The Learning and Death Reduction Rate, 𝑙ூிோ, is estimated 
for each country. Specifically: 
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𝑣௙ ൌ Maxሺ0.1, Max ቀ1, େ୳୫୳୪ୟ୲୧୴ୣ େୟୱୣୱ

଴.଴଴ହ∗୔୭୮୳୪ୟ୲୧୭୬
ቁ
ି௟಺ಷೃ

ሻ      (16) 

Overall, the fatality sector includes three parameters that are estimated at the country level, with limited 
variance across countries, those are: 𝑓௕, 𝑠ுி , and 𝑠௙. A fourth country-level parameter, 𝑙ூிோ, is allowed 
to very more widely across different nations.  

Note on comorbidities and fatality: We also explored including three comorbidities but found the estimates 
unreliable and therefore they are not included in the main specification of the model. Those 
comorbidities include obesity, chronic disease, and liver disease. The effects we explored for each 

were: 𝑔ሺ.ሻ ൌ 𝑑ሺ.ሻ
௦ሺ.ሻ೑, where we used the following country-level indicators from the World Health 

Organization (8), normalized by the average across all countries (d(.)):  

For obesity: Prevalence of obesity among adults, BMI ≥30 (age-standardized estimate) (%) 

For chronic health issues: Probability (%) of dying between age 30 and exact age 70 from any of 
cardiovascular disease, cancer, diabetes, or chronic respiratory disease 

For liver disease: Liver cirrhosis, age-standardized death rates (15+), per 100,000 population 

 

Risk Perception, Behavioral Responses, and Adherence Fatigue 

In equation 3 we noted that Contacts Relative to Normal (FC) regulates infection rates. This factor ranges 
between a minimum (Min Contact Fraction; cMin) and 1 as a function of the impact of perceived risk on 
behaviors, F: 

𝐹஼ ൌ ሺ1 െ 𝑐ெ௜௡ሻ𝐹 ൅ 𝑐ெ௜௡          (17) 

𝐹 ൌ e
ି୫ୟ୶ ሺ଴,ఒ௅ೃ௔ಷି

ೞ಴
ೌಷ
ሻ
         (18) 

The impact of perceived risk on response uses an exponential function (eq 18) with exponent 
informed by Perceived Risk of Life Loss (𝐿ோ), which is then moderated by a multiplier (Dread Factor in 
Risk Perception, λ) and Impact of Adherence Fatigue (𝑎௙). This moderated risk is compared to a Risk 

Threshold for Response (
௦಴
௔ಷ

), which itself responds to adherence fatigue. 

 𝐿ோ adjusts to an underlying Indicated Risk of Life Loss (𝐿ோ
∗ ) with a time constant that is asymmetric, i.e. 

Time to Upgrade Risk (τRU) could be different from Time to Downgrade Risk (τRD). The 𝐿ோ
∗  itself depends 

on Perceived Hazard of Death (ZDP) and a discount rate to turn daily costs to life-long ones (γ=0.03/year): 

ௗ௅ೃ
ௗ௧

ൌ ௅ೃ
∗ ି௅ೃ
ఛೃ.

            (19) 

𝐿ோ
∗ ൌ ௓ವು

ఊ
            (20) 

The Perceived Hazard of Death (ZDP) is an average of reported daily hazard of death (with the weight 
Weight on Reported Probability of Infection, wR) and true hazard for death which individuals may perceive 
through word of mouth and their social networks. 
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Finally, we formulate the Impact of Adherence Fatigue based on a 100-day exponential average of relative 
contacts, Recent Relative Contacts (FR) and a country-specific estimated parameter, Strength of Adherence 
Fatigue (sa): 

ௗிೃ
ௗ௧

ൌ ி಴ିிೃ
ଵ଴଴

           (21) 

𝑎௙ ൌ 𝐹ோ
௦ೌ           (22) 

 

Overall, the risk perception and response sector includes the following six country-specific parameters 
that are estimated: cMin, τRU, τRD, λ, wR, and sa. 

Vaccination 

We include a simple vaccination sector in the model to inform policy analyses. This sector was not 
active in the estimation of the model and most of the analyses reported in the paper, but is operational 
for vaccination scenarios reported in future projections. It is formulated using the following 
assumptions: 

- Vaccines are perfect in stopping transmission to vaccinated. Therefore they move individuals 
from the “Susceptible” stock to “vaccinated” where they remain for the rest of simulation. 

- Individuals may opt not to vaccinate. A user of the model can specify a fraction of population 
not accepting the vaccine, and those individuals are assumed to be represented with the same 
fraction across different population stocks. The scenarios simulated in the paper assume this 
fraction is zero but the online simulator allows for changing that fraction.  

- All individuals willing to vaccinate will get vaccinated regardless of their prior COVID 
infection status. However, vaccines are effective only on susceptible individuals, so those 
actively infected at the time of vaccination will not be affected by vaccine. 

- Vaccination rate is set based on a user-specified vaccination period. The rate will ramp up 
linearly for a given fraction of this period, and then will remain constant for the remainder. 
The final rate is specified such that everybody will get the vaccine within the specified 
vaccination period. In the reported simulations, the ramp-up is assumed to be fast and the 
overall period is set to one year, starting from January 2021. In the online simulator the ramp 
up period is assumed to be half the overall vaccination period, and users can input the overall 
period. 

- Vaccination could follow a priority plan in which higher-risk individuals are vaccinated first. 
In the model this mechanism is implemented by tracking a co-flow of acuity for all susceptible 
individuals. Vaccination is allowed to drain this acuity coflow with a rate that exceeds average 
acuity in the susceptible population by a user-specified ratio. In the reported scenarios we use 
a draining factor 1.5 times the average acuity in the stock of susceptibles. The average acuity 
in susceptible population would then be the 𝛼஼ used in the formulations above (with initial 
𝛼஼ starting from the empirically estimated value), and will change dynamically in response to 
vaccination of elderly and other high-risk groups and the potentially faster draining of acuity 
coflow.   
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Summary of Key Equations and Parameters 

Table S1 summarizes the main equations discussed in S1, providing the mapping between full variable 
names and the short forms. It also includes all estimated model parameters, as well as those specified 
based on prior research. 

Table S1- Mapping between full variable names and their short form for the subset of variables and parameters discussed in S1. Also included are equations 
explained above and sources for other variables. 

Short form Full variable name Equation/Source 
Tt Active Test Rate Data (See S4 for pre-processing details) 
𝑚ு஼  Allocated Fraction COVID 

Hospitalized 
ିு಴ವାටு಴ವ

మ ାସ௛ಶ
మ

ଶ௛ಶ
  

𝑚ுோ   Allocated Fration NonCOVID 
Hospitalized 

𝑚ு஼
ଶ   

αCP Average Acuity of Positively Tested See full documentation 
fb Base Fatality Rate for Unit Acuity Estimated 
nST Baseline Daily Fraction Susceptible 

Seeking Tests 
Estimated 

dH Bed per Square Kilometer Data (8) 
mT Confirmation Impact on Contact Estimated 
FC Contacts Relative to Normal 

e
ି୫ୟ୶ ሺ଴,ఒ௅ೃ௔ಷି

ೞ಴
ೌಷ
ሻ
ሺ1 െ 𝑐ெ௜௡ሻ ൅ 𝑐ெ௜௡  

αC Covid Acuity Estimated 
RW CRW Use estimates from (1) 
gAG Demographic Impact on Fatality 

Relative to China 
Use estimates based on (8, 9) 

γ Discount Rate per Day 8.2e-5 /Day 
λ Dread Factor in Risk Perception  Estimated 
hE Effective Hospital Capacity ℎே ቀ

ௗಹ
ௗಹ
∗ ቁ

௦ವಹ
  

nDCH Fraction Covid Death In Hospitals 
Previously Tested 

See full documentation 

nPM Fraction of Fatalities Screened Post 
Mortem 

𝑛஽஼ு  

ICH Hospitalized Infectious Confirmed See full documentation 
IUH Hospitalized Infectious Unconfirmed See full documentation 
τH Hospitalized Resolution Time 20 Days 
sa	 Impact of Adherence Fatigue 𝐹ோ

௦ೌ  
sDH Impact of Population Density on 

Hospital Availability 
Estimated 

sHF Impact of Treatment on Fatality Rate Estimated 
τP Incubation Period 5 days 
𝐿ோ
∗   Indicated Risk of Life Loss 𝐿ோ

∗ ൌ ௓ವು
ఊ

  

IP Infected pre Detection  See full documentation 
IU Infected Unconfirmed Post-

Detection 
See full documentation 
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f(.) Infection Fatality Rate (.) 𝑓௕𝛼ሺ.ሻ
௦೑𝑠ுிሺ. ሻ𝑔஺௚𝑣௙  

rSP Infection Rate 𝐶ூ𝑊 ቀௌ
ே
ቁ  

IC Infectious Confirmed Not 
Hospitalized 

See full documentation 

CI Infectious Contacts 𝛽𝐹஼ሺ𝑚௔ሺ𝑃௔ ൅ 𝐼௉
௔ ൅ 𝐼௎

௔ሻ ൅ 𝐼௉
௦ ൅ 𝐼௎

௦ ൅ 𝑃௦ ൅
𝐼௎ு ൅𝑚்ሺ𝐼஼ு ൅ 𝐼஼ሻሻ  

lIFR Learning and Death Reduction Rate Estimated 
cMin Min Contact Fraction Estimated 
mIT Multiplier Recent Infections to Test Estimated 
hN Nominal Hospital Capacity Data 
τT Onset to Detection Delay 5 Days 
T0 Patient Zero Arrival Time Estimated 
ZIP Perceived Hazard of Infection See full documentation 
𝐿ோ  Perceived Risk of Life Loss ௗ௅ೃ

ௗ௧
ൌ ௅ೃ

∗ ି௅ೃ
ఛೃ.

  

N Population Data (10) 
𝑀஼  Positive Candidates Interested in 

Testing Poisson Subset 
ூು
ఛ೅
ሺ1 െ 𝑎ሻ  

TPM Post Mortem Tests Total See full documentation 
τR Post-Detection Phase Resolution 

Time 
10 Days 

HCD Potential Hospital Demand See full documentation 
MN Potential Test Demand from 

Susceptible Population 
𝑛ௌ்𝑁௎ ൅𝑚ூ்𝑇௉ூோ  

TPI Positive Tests of Infected See full documentation 
P Pre-Symptomatic Infected See full documentation 
pMHC PMAS Confirmed for Hospital 

Demand ሺ1 െ 𝑟ுሻ
భ
ഀ಴  

pMHU PMAS Unconfirmed for Hospital 
Demand 

𝑝ெு஼ ൅ ሺ1 െ 𝑝ெு஼ሻሺ1 െ𝑚ுோሻ  

pMS Prob Missing Symptom From solution to equation 9 
TPIR Recent Detected Infections See full documentation 
rH Reference COVID Hospitalization 

Fraction Confirmed 
Estimated 

β  Reference Force of Infection Estimated 
𝑑ு
∗   Reference Hospital Density Data (8) 

ma Multiplier Transmission Risk for 
Asymptomatic 

Estimated 

FR Recent Relative Contacts ௗிೃ
ௗ௧

ൌ ி಴ିிೃ
ଵ଴଴

  

sT Sensitivity of Covid Test 0.7 
sf Sensitivity of Fatality Rate to Acuity Estimated 
𝑠஼  Sensitivity of Contact Reduction to 

Utility 
Estimated 

sW Sensitivity to Weather Estimated 
sa Strength of Adherence Fatigue Estimated 
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S Susceptible See full documentation 
𝑇ே௘௧  Testing Capacity Net of Post 

Mortem Tests 
𝑇௧ െ 𝑇௉ெ  

MT  Testing Demand 𝑀ே ൅𝑀஼  
τRD Time to Downgrade Risk Estimated 
τRU Time to Upgrade Risk Estimated 
vf Time Variant Change in Fatality 

Maxሺ0.1, Max ቀ1, େ୳୫୳୪ୟ୲୧୴ୣ େୟୱୣୱ

଴.଴଴ହ∗୔୭୮୳୪ୟ୲୧୭୬
ቁ
ି௟಺ಷೃ

ሻ  

pa Total Asymptomatic Fraction  Estimated 
UL Utility from Limited Activities 𝑒଴.ହ௦಴  
UN Utility from Normal Activities 𝑒௦಴௔೑ሺଵି௅ೃሻ  
wR Weight on Reported Probability of 

Infection 
Estimated 

W Weather Effect on Transmission 𝑅ௐ
௦ೈ  
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S2 ESTIMATION METHOD 
Overview of the Approach 

The model we estimate is nonlinear and complex, and any estimation framework is unlikely to have 
clean analytical solutions or provable bounds on errors and biases. Therefore, in designing our 
estimation procedure we apply 3 guideposts: 1) Being conservative by incorporating uncertainties. 2) 
Avoid over-fitting; and 3) Enhance generalizability and robustness of estimates and projections. To 
these ends: we use a likelihood function that accommodates overdispersion and autocorrelation 
(negative binomial); we utilize a hierarchical Bayesian framework to couple parameter estimates across 
different countries which reduces the risk of over-fitting the data; and we use the conceptual 
definitions of parameters and their expected similarity across countries to inform the priors for the 
magnitude of that coupling across countries. Compared to more common choices in similar estimation 
settings (e.g. use of Gaussian likelihood functions), these choices tend to widen the credible regions 
for our estimates and reduce the quality of the fit between model and data. In return, we think the 
results may be more reliable for projection, more informative about the underlying processes, and 
better reflective of uncertainties in such complex estimation settings. We also conduct a validation test 
of our estimation framework using synthetic data in section S3. 

The model is a deterministic system of ordinary differential equations with a set of known and 
unknown parameters. The known parameters are those specified based on the existing literature and 
do not play an active role in estimation. The unknown parameters can be categorized into those that 
vary across different countries and those that are the same across all countries (i.e. “general” 
parameters). The estimation method is designed to identify both the most likely value and the credible 
regions for the unknown parameters, given the data on reported cases and deaths (and for a subset of 
countries, the excess deaths). This is done through a combination of estimating the most likely 
parameter values in a likelihood based framework, and using Markov Chain Monte Carlo simulations 
to quantify the uncertainties in parameters and projections. 

We first introduce the 3 different components of the likelihood function we use: the fit to time series 
data, the random effects component coupling country-level parameters, and the penalty for excess 
mortality. Then we explain the implementation details.  

The Fit to Time Series for Cases and Deaths 

Define model calculations for expected reported cases and deaths for country i as μij(t) (with index j 
specifying cases and deaths) and the observed data for those variables as yij(t); the country-level vector 
of unknown parameters as 𝜽𝒊 and the general unknown parameters as ϕ. Note that 𝜽𝒊 vector includes 
several parameters, each specifying an unknown model parameter, such as Impact of Treatment on 
Fatality, or Total Asymptomatic Fraction, for country i. The model can be summarized as a function 
f that produces predictions for expected cases and deaths for each country given the general and 
country-specific parameters:  

𝜇௜௝ሺ𝑡ሻ ൌ 𝑓ሺ𝝓,𝜽𝒊ሻ           (23) 

We use a negative binomial distribution to specify the likelihood of observing the y values given θ and 
ϕ. Specifically, the logarithm of likelihood for observing the data series y given model predictions μ(θ 
,ϕ) is: 
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𝐿𝑇ሺ𝑡|𝝓,𝜽ሻ ൌ ∑ 𝐿1௜௝ሺ𝑡ሻ ൅ 𝐿2௜௝ሺ𝑡ሻ ൅ 𝐿3௜௝ሺ𝑡ሻ௜௝        (24) 

 where (dropping time index for clarity): 

𝐿1௜௝ ൌ െ∑
୪୬ ሺଵାఌ೔ఓ೔ೕሻ

ఌ೔ೕ
௬೔ೕୀ଴           (25) 

𝐿2௜௝ ൌ ∑ ∑ ln ሺ𝑘 ൅ ଵ

ఌ೔ೕ
ሻ

௬೔ೕିଵ
௞ୀ଴௬೔ೕவ଴          (26) 

𝐿3௜௝ ൌ ∑ ሾെ ln൫𝑦௜௝!൯ െ ൬𝑦௜௝ ൅
ଵ

ఌ௜௝
 ൰ ln൫1 ൅ 𝜀௜௝𝜇௜௝൯ ൅ 𝑦௜௝ ln൫𝜀௜௝൯ ൅ 𝑦௜௝ ln൫𝜇௜௝൯௬೔ೕவ଴    (27) 

Summing the LT function over time provides the full (log) likelihood for the observed data given a 
parameterization of the model. The negative binomial likelihood function includes two parameters, μ 
and ε which determine the mean and the scaling/shape of the observed outcomes. The second 
parameter, ε, provides the flexibility needed fit outcomes with fat tails and auto-correlation. This 
parameter could itself be subject to search in the optimization process. Specifically, we assume that: 

𝜀௜௝ ൌ 𝜀௜𝜀௝            (28) 

Thus we create a (set of) country specific parameter(s) (𝜀௜) and two general parameters (𝜀௝) which 
should be estimated along with the conceptual model parameters. The country level scale (𝜀௜) implicitly 
assesses the reliability and inherent variability in country level reports, and the general ones inform the 
variability in case data vs. deaths. We augment the vectors ϕ and θ to include these scaling parameters 
as well. 

Incorporating the coherence of parameters across countries 

Up to this point we have not included any relationship among country specific parameters, 𝜽𝒊. This 
independence assumption would allow parameters representing the same underlying concept to vary 
widely across different countries. Such treatment, by providing more flexibility, enhances the model’s 
fit to historical data. However, it ignores the conceptual link that exists for a given parameter across 
countries, potentially allowing the model to fit the data for the wrong reasons (i.e. using parameter 
values that do not correspond to meaningful real world concepts). The result would likely be less 
reliable and also not robust for future projections. We therefore define a Hierarchical Bayesian 
framework to account for the potential dependencies among model parameters. Specifically, we 
assume the same conceptual parameters (e.g. Impact of Treatment on Fatality), across different 
countries, are coming from an underlying normal distribution with an unknown mean (to be 
estimated) and a pre-specified prior for the standard deviation. This assumption is similar to the use 
of “Random Effect” models common in regression frameworks, though we deviate from canonical 
random effect models by pre-specifying the standard deviation. In fact it is possible to estimate the 
standard deviation across countries as well (and to obtain better fits to data by including the additional 
degrees of freedom), but adding those degrees of freedom ignores qualitatively relevant insights about 
the level of coupling across different countries for each parameter, and thus results may fit the data 
better but for the wrong reasons. For example, some parameters, such as Patient Zero Arrival Time, 
could be very different across countries, whereas parameters reflecting innate properties of the SARS-
CoV-2 virus itself (e.g. Total Asymptomatic Fraction (a)) or those determining fatality (e.g. Base Fatality 
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Rate for Unit Acuity (fb)) should be very similar across different countries. Allowing the model to 
determine the variance for the latter will lead to better fits: the model can find baseline fatality rates 
that easily match fatality variations across countries, and would expand the corresponding variance 
parameter accordingly. However, as a result the estimation algorithm will have too easy a job: it will 
not require a precise balancing between hospitalization, impact of acuity on fatality, and post-mortem 
testing decisions to fit fatality data. Thus, the estimates may well be less informative, or further from 
true underlying processes and the general characteristics of the disease which we care about. Overall, 
our implementation of a hierarchical Bayesian estimation framework to account for the coupling 
among the variables may reduce the apparent quality of fit but offer more robust results better 
informing the underlying mechanisms.  

The implementation of this random effect introduces another element to the overall likelihood 
function: 

𝐿𝐶ሺ𝜽ሻ ൌ െ∑
൫ఏ೔ೖିఏഥೖ൯

మ

ଶఙೖ
మ௜௞           (29) 

Here θik represents the kth parameter for country i, and 𝜃̅௞ is the (estimated) average across countries 
for the kth parameter. σk is the pre-specified allowable variability for the kth parameter across different 
countries.  

In setting these factors we chose small values for factors representing biological and natural processes, 
while adding more room for variation when human behaviors and perceptions were involved (See 
Table S2 for those settings). Specifying these standard deviation priors adds a subjective element to 
the estimation process. We note that subjective elements are ultimately indispensable in any modeling 
activity: from specifying the model boundary to the level of aggregation, use of various functional 
forms, and choice of likelihood functions, these choices are built on subjective assessments that 
experts bring to a modeling project. Absent our conceptually informed variability factors, we would 
need to make the assumption that country-level parameters are independent, or that our complex 
estimation process would correctly identify the true dependencies among those parameters. We think 
both those alternatives are inferior in the chosen method. So here we focus on transparently 
documenting and explaining those assumptions, and Supplement S3 provides a validation experiment. 
Table S2 summarizes the estimated model parameters, their estimated values (mean across countries 
and mean of Inter-Quartile Range) and the assumed variability factor (σk) for each. 

Table S2- Estimated model parameters, their estimated values (mean and standard deviation (std) across countries and the mean of Inter-Quartile Range 
(MIQR). Last column reports the variability allowances used to specify the coupling among country-level estimates. See equation 29 and related discussions 
above.  

Parameter Name Mean StDev MIQR Variability 
Factor, σk 

fb Base Fatality Rate for Unit Acuity** 5.74E-04 7.30E-06 1.27E-05 1.00E-05 
nST Baseline Daily Fraction Susceptible 

Seeking Tests 
8.36E-04 5.70E-04 1.72E-04 0.0005 

mT Confirmation Impact on Contact 1.73E-01 1.24E-01 9.90E-02 0.1 
αC Covid Acuity** 5.92E+00 1.21E-03 1.29E-02 0.01 
λ Dread Factor in Risk Perception* 6.14E+03 1.28E+04 3.74E+03 10 0.8 
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sDH Impact of Population Density on 
Hospital Availability 

1.70E-01 1.62E-01 9.23E-02 0.1 

sHF Impact of Treatment on Fatality Rate 4.58E-01 2.17E-01 6.65E-02 0.1 
lIFR Learning and Death Reduction Rate 7.07E-01 7.42E-01 1.67E-01 0.5 
cMin Min Contact Fraction 7.91E-02 4.99E-02 2.28E-02 0.03 
mIT Multiplier Recent Infections to Test 4.49E+01 2.38E+01 9.47E+00 30 
ma Multiplier Transmission Risk for 

Asymptomatic** 
2.93E-01 2.55E-03 1.29E-02 0.02 

T0 Patient Zero Arrival Time 9.90E+01 2.98E+01 4.59E+00 Uniform 
β  Reference Force of Infection 4.07E-01 2.19E-01 3.34E-02 0.2 
rH Reference COVID Hospitalization 

Fraction Confirmed 
6.32E-01 1.25E-01 8.65E-02 0.1 

sf Sensitivity of Fatality Rate to 
Acuity** 

2.14E+00 2.35E-03 6.42E-03 0.005 

sC Sensitivity of Contact Reduction to 
Utility 

3.17E+00 5.27E+00 1.35E+00 6 

sa Strength of Adherence Fatigue 1.24E+00 1.07E+00 1.91E-01 0.5 
τRD Time to Downgrade Risk* 2.45E+02 1.88E+02 6.43E+01 10 0.3  

τRU Time to Upgrade Risk* 3.83E+01 5.34E+01 1.33E+01 10 0.2  

a Total Asymptomatic Fraction ** 4.99E-01 9.15E-03 1.28E-02 0.03 
wR Weight on Reported Probability of 

Infection 
4.52E-01 2.62E-01 2.05E-01 0.2 

sW Sensitivity to Weather 2.64E+00 (not applicable for global parameter) 
*Given the wide range and potential long tail for these parameters the Log10 transformation is used 
in specifying the dispersion penalty (equation 27) and variability factors are reported as 10σ , where 
σ is used in equation 27. 
** These parameters are expected to be less variable across countries and thus are assigned small 
variability allowances compared to their mean. 

 

Excess mortality penalty 

Finally, we include a likelihood-based penalty term to allow model predictions be informed by excess 
mortality data collected by various news agencies and researchers for a subset of countries in our 
sample. These data provide snapshots of excess mortality (compared to a historical baseline) for a 
window of time in each country. Subtracting from total excess mortality the COVID-19 deaths 
officially recorded in that window offers a data point for excess mortality not accounted for in official 
data (ei). We can calculate in the model the counter-part for this construct: the simulated mortality 
that is not included in the simulated reported COVID-19 deaths (𝑒̅௜). There is uncertainty in these 
excess mortality data: the historical baselines used by various sources do not adjust for demographic 
change, excess mortality may be due to factors other than COVID-19, and some of it may be due to 
changes in healthcare availability and utilization motivated by COVID-19 but not directly attributable 
to the disease (for example when surgeries are delayed, hospitalization is avoided, or heart conditions 
are ignored). Excess mortality may also be reduced due to reduced traffic accidents (in light of physical 
distancing policies) and pollution related deaths. Given these uncertainties, we use the following 
penalty function to keep the simulated unaccounted excess mortality close to data: 
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𝐿𝐸 ൌ െ∑ ቀ଴.ଽ௘೔ି௘̅೔
଴.ଶ௘೔

ቁ
ସ

௜            (30) 

This penalty could be seen as a likelihood coming from the probability distribution 𝑝ሺ𝑥ሻ ൌ ୣ୶୮షೣ
ర

ଵ.଼ଵଶ଼
 

defined for all values of x. It assumes that in the most likely case for excess mortality, 90% of 
unaccounted mortality should be attributed to COVID-19 deaths, but that there is significant 
uncertainty around this, so some 20% variation across this figure is quite plausible (70%-110% of 
data). However, numbers outside of this range start to impose increasingly large penalties, so that very 
large deviation becomes unlikely. 

Combining these three components, we obtain the full likelihood function used in the analysis: 

𝐿𝐿 ൌ 𝐿𝐶 ൅ 𝐿𝐸 ൅ ∑ 𝐿𝑇ሺ𝑡ሻ௧ୀ்
௧ୀ௧బ          (31) 

For each country we include the LT component from the first day they have reached 0.1% of their 
cumulative cases to-date, or a minimum of 50 cumulative cases. This excludes very early rates that are 
both unreliable and which, given very small estimated model predictions for infection, could lead to 
unreasonably large likelihood contributions. 

Numerical Methods 

The model includes a large number of parameters to be estimated: a general parameter for the impact 
of weather, 2 general parameters for 𝜀௝ , and 22 parameters for each country that are coupled together 
based on the random effects framework described above. Out of those 1 parameter (per country) is 
for 𝜀௜ and the other 21 are informing various features of disease transmission, testing, hospitalization, 
and risk perception and response. With a sample of 92 countries, this would lead to 2027 parameters 
to be estimated. A direct optimization approach to this problem suffers from potential risk of getting 
stuck in local optima, and direct use of MCMC methods to find the promising regions of parameter 
space suffers from the curse of dimensionality. We therefore designed the following 4-step procedure 
to find more reliable solutions to both problems and the synthetic data exercise in S3 provides some 
evidence on the effectiveness of the method. 

1) We estimate the model with the full parameter vector for a smaller number of countries with 
larger outbreaks (3-5 countries). We use the Powell direction search method implemented in 
Vensim™ simulation software for this step. The method is a local search approach though it 
has features that allows it to escape local optima in some cases. We restart the optimization 
from various random points in the feasible parameter space and track the convergence of 
those restarts to unique local peaks. We stop this process when we are repeatedly landing on 
the same local peaks in the parameter space. This procedure showed that local peaks do exist, 
but they are not many; for example, within 100 restarts we may find 2-4 distinct peaks, with 
one being distinctly better than others. This quasi-global peak provides a coherent set of 
starting points for ϕ and 𝜽ഥ for next steps. 

2) We go through iterations of the following two steps: A) Conduct country-specific 
optimizations with 50 restarts to find the vector of θi given the ϕ and 𝜽ഥ from first optimization 
or from the step B. B) Conduct a global optimization, including all countries but fixing θi and 
optimizing on ϕ (and 𝜽ഥ; though that is simply the mean across country level parameters from 
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previous round). We stop when iterations offer little improvement from one round to the next 
(less than 0.05% improvement in log-likelihood). 

3) We conduct a full optimization allowing all parameters (θi, ϕ and 𝜽ഥ) to change, starting from 
the point found in the last iteration of step 2. This step finds the exact peak on the likelihood 
landscape which is the best-fitting parameter set for the model. 

4) For the MCMC, theoretically one should conduct the sampling from all model parameters in 
the full model. However, our experiments showed that the large dimensionality of the 
parameter space requires an infeasible number of samples to achieve adequate mixing and 
ensure reliable credible regions for parameters and projections. To overcome this challenge 
we note that the parameters of different countries are connected to each other only through 
ϕ and 𝜽ഥ, and these general parameters are rather insensitive to dynamics in each country. The 
insensitivity is due to the fact that a single country only contributes about 1% to the general 
parameters’ values, and within a typical MCMC the country-level parameters often can’t 
change more than 10% before the resulting samples become highly unlikely. Therefore, one 
can conduct an approximate country-level MCMC by fixing the general parameters at those 
from step 3, and only sampling from the θi for each country. The MCMC algorithm used is 
one designed for exploring high dimensional parameter spaces using differential evolution and 
self-adaptive randomized subspace sampling (11). Using this method we obtain good mixing 
and stable outcomes (Robin-Brooks-Gelman PSFR convergence statistic remaining under 1.1) 
after about 600,000 samples (the burn-in period). We continue the MCMC for each country 
for another 400,000 samples and then randomly take a subsample of those points after the 
burn-in period for the next step. 

5) The resulting subsamples for different countries from step 4 are assembled together to create 
a final sample of parameters for the full model to conduct projections and sensitivity analysis 
at the global scale. Uncertainties in the handful of global parameters is not identified in this 
procedure, but can be quantified by assessing the sensitivity of the global likelihood surface to 
changes in those parameters. 

The process above is automated using a Python script that controls the simulation software (Vensim). 
We conduct the analysis using a parallel computing feature of Vensim on a Windows server with 48 
cores. After compiling the simulation model into C++ code (which speeds up calculations 
significantly), and using a simulation time step of 0.25 days, it takes about 60 hours to complete the 
estimation for 91 countries, and almost two weeks to complete the full suite of sensitivity analyses 
reported in the paper. Full analysis code is available online at https://github.com/tseyanglim/
CovidGlobal. 
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S3 VALIDATION OF ESTIMATION FRAMEWORK 
The complexity of model and the large number of parameters involved complicates the assessment of 
estimation method based on theoretical considerations alone. We therefore use a synthetic data 
experiment to build confidence in the estimation framework. Specifically, we first simulate the model 
using known parameters without using historical deaths and cases to provide a ‘ground-truthed’ set of 
synthetic data. We then apply the exact estimation framework used on the actual data to infer the 
parameters of the model from this synthetic dataset. Finally, we assess how well the estimated 
parameters correspond to the “true” values and how inclusive the estimated credible intervals are of 
the true parameters. The ability of the estimation framework to find the true parameter values, and 
consistent credible intervals, would increase our confidence that parameters estimated using actual 
data are also not particularly biased and that the credible intervals are informative. While repeating 
this procedure for multiple sets of synthetic data, with various parameterizations, is desirable, the 
computational costs in our setting make such an approach infeasible. Nevertheless, the large number 
of parameters estimated in a single full calibration exercise provides ample opportunities to test the 
precision of the method in the range of parameter values relevant in the actual data. The three steps 
of the process are discussed below. 

Generation of synthetic data 

We used the model specified above, with the parameters estimated in the baseline analysis from actual 
data, to generate the synthetic data. Given the deterministic nature of the model, it would be easy for 
the estimation process to identify the model parameters should we use the exact outcome of the 
baseline simulation. To test the model in a more realistic scenario, therefore, we inject two different 
random noise time series into the model, effectively turning the data generation simulation model into 
a stochastic one with underlying noise processes not accurately captured in the estimation model 
(because of the autocorrelation in the driving noise). Specifically, we make the following two 
modifications to the model equations: 

𝑟ௌ௉ ൌ 𝐶ூ𝑊 ቀௌ
ே
ቁ𝑁௉ூ          (1b) 

Where   
ௗேು಺
ௗ௧

ൌ ேು಺
∗ିேು಺
௧಴ೝೝ

  

𝑁௉ூ
∗ ൌ 1 ൅ 𝑁ீ𝜎ேூඨ

ଶି
೏೟
೟಴ೝೝ
೏೟
೟಴ೝೝ

    

And 

𝑓ሺ.ሻ ൌ 𝑓௕𝛼ሺ.ሻ
௦೑𝑠ுிሺ. ሻ𝑔஺௚𝑁௉஽          (15b) 

Where NP. are the noise terms changing infection and IFR rates. 𝑁௉஽ is formulated similar to 𝑁௉ூ , 
with parameters tCrr and σND. NG is a standard Gaussian random number generator producing a new 
independent draw every time step of the simulation (dt) for each of the two noise streams separately 
and independently.  
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These equations specify two first order autocorrelated Normally distributed noise streams. The 
autocorrelation time constant, tCrr, is set to 10 days for both streams of noise. The σNI and σND 
parameters are set to 0.1 (i.e. leading to standard deviation of noise around infections and deaths being 
10% of the model generated baselines). As in the real world, the substantial correlation time leads to 
significant swings in the infection and death rates beyond those explained by model mechanisms. 

We also add a “measurement” noise to both daily infections and deaths in synthetic data by drawing 
Negative Binomial random samples from the estimated distributions for each country at any given 
time and using those (rather than expected values) as the data in this estimation exercise. 

To best replicate the features of actual data, the model uses actual country level data for test rates 
(which are exogenous inputs driving simulations) and various country level statistics such as 
population, population density, and age structure.  

We record the data generated from this simulation for confirmed cases and deaths, corresponding to 
the data we have available to estimate the actual model. For each country we only record the data for 
the days in which we have a corresponding actual data point. We also record excess mortality counts 
for the subset of countries and periods for which we have such data. These three data items (two time 
series for confirmed infections and deaths and point estimates for excess mortalities in a subset of 
countries) are the inputs into the estimation process. 

Estimation using synthetic data 

The synthetic data generated in the previous step is available on the project’s GitHub repository. This 
data is then used, following the estimation process discussed in S2, to find the model parameters. This 
step requires no other assumptions and follows the exact process used in the main analysis. Note that 
we start the estimation with uninformed (uniform with large ranges) priors on all parameters. 

Results and comparisons 

Figure S5 reports the estimated parameters, their 95% credible intervals, and the true parameters 
across all 1932 (92 countries x 21 parameters each) country-level parameters of the model that impact 
outcomes. Overall, the estimation process successfully identifies the vast majority of parameters. For 
example the median distance between estimated and true values, as a percentage of the length of 
estimated 95% credible interval, is 21%. Moreover, the credible intervals envelope the true values 
rather consistently. Specifically, the 50% CI includes the true value in 32% of cases and this measure 
increases to 49%, 60%, 67%, and 75% for 80%, 90%, 95%, and 98% CIs respectively. The theoretical 
vs. actual intervals are showed in Figure S4. 
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Figure S4- Theoretical vs. actual fraction of parameters enveloped by different Credible Interval percentiles.  

While not identical to the expected theoretical values, these coverage levels are close, especially in 
the context of very large parameter spaces and complex estimation exercises where finding reliable 
CIs is often harder than estimating the parameters. Figure S5 also shows that some parameters are 
more likely to have imprecise confidence intervals than others. In fact, much of the imprecision in 
confidence intervals are due to two parameters, Base Fatality Rate for Unit Acuity and Covid Acuity 
Relative to Flu end up outside 95% confidence interval for all countries, despite estimated value being 
numerically very close to original value. We can’t rule out the existence of a local optima in the new 
estimated value driving the results. Moreover, for some parameters (e.g. fb , and 𝛽) the baseline 
estimated values could fall outside the 95% confidence intervals and are closer to the true values. 
These instances could point to asymmetric likelihood surfaces or the possibility that the MCMC 
chains may require larger samples for getting at true confidence intervals.   Overall these results add 
to our confidence that the estimated credible intervals are in the right range, though some may be 
somewhat tighter than they should be.
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Figure S5-Country-level parameter estimates and 95% credible intervals from synthetic estimation exercise (blue circles and bars) compared with true values 
(red cross signs) across all parameters. Numbers on the right represent the fraction of true values enveloped by the 95% interval. 
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S4 DATA PRE-PROCESSING 
Getting contemporaneous, comprehensive, national-level data on Covid-19 is a challenge. The most 
widely-cited data aggregators, such as the Johns Hopkins Center for Systems Science and 
Engineering’s COVID-19 database (12), OurWorldInData portal (13), and the US-focused COVID 
Tracking Project (14), get their data from the same few official sources, such as the US Centers for 
Disease Control and Prevention (CDC), the European CDC (ECDC), and the World Health 
Organization (WHO). These official agencies in turn get their data from national and subnational 
public health authorities, which ultimately rely on reports from hospitals, clinics, and private and 
public health labs. 

As a result, idiosyncrasies in the ground-level data collection processes permeate virtually all sources 
of aggregate data. Most notably, data collection involves time lags, which can differ from source to 
source. Daily death counts could reflect the date of actual death or the date a death is registered or 
reported; different UK government sources, for instance, use each of these metrics.2 Daily infection 
or case counts could include the total new cases reported on a given date, or the total cases confirmed 
from that date; the latter would result in some ‘backfill’ whereby case counts for previous days can 
continue to increase for some time as delayed confirmations come in. Daily counts of tests conducted 
could report samples collected, samples processed, results reported, or a mix of these; the US CDC, 
for instance, reports a mix of testing by date of sample collection and date of sample delivery to the 
CDC.3 Aside from differences in unit of measure (people vs. tests vs. samples), there may be different 
time lags involved as well. In addition to these idiosyncrasies, testing data in particular is also patchy 
for many countries, even as testing has become more widespread. The WHO does not report country-
by-country testing, nor does the JHU Covid map outside the US. Furthermore, there are sometimes 
irregular delays in the reporting of test results, which can create occasional unexpected spikes in 
reported numbers of tests, infections, or both.4 

Depending on the specifics of how daily infection and test counts are reported, there can in some 
cases be a disjunction between the two. Because confirmed case counts largely depend on positive test 
results, test and infection counts should be correlated – ceteris paribus, a day with a lot of samples 
collected for testing should see more confirmed cases attributed to it, while a day with no sample 
collection should see no cases. But since cases may not be reported by the date of the test, and tests 
may not be reported by the date of sample collection, officially reported numbers can get out of sync 
in either direction. 

This problem is most salient when there are clear weekly cycles in daily rates. In most of the world, 
particularly western countries, daily test rates are far lower on weekends than during the week. As a 
result, infection numbers show a clear weekly cyclical component as well. But the weekly cycles in 
testing and infection numbers for a given country do not always line up. Our model explicitly accounts 
for the effect of testing on reported infections, but we do not explicitly model the country-level 

                                                 

2 https://blog.ons.gov.uk/2020/03/31/counting-deaths-involving-the-coronavirus-covid-19/ 
3 https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/previous-testing-in-us.html 
4 See e.g. https://www.wcvb.com/article/massachusetts-coronavirus-reporting-delay-due-to-quest-lab-it-
glitch/32288903# 
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idiosyncrasies of reporting and how they vary between test data and infections. Instead we account 
for any such lags in pre-processing of the data to align testing and case data. 

The weekly cycle occurs in many countries’ death rate data as well, where it presents a different 
problem. A weekly cycle in testing is a behaviourally realistic part of the data-generation process, as 
many labs, clinics, or other testing sites for instance may be closed on weekends. As testing provides 
the window on the state of confirmed infections, a comparable cycle in confirmed cases is to be 
expected as well. By linking case confirmations to testing, our model explicitly accounts for this limited 
visibility on the true state of the epidemic. However, a weekly cycle in death rates almost certainly 
reflects different limitations of the data-generation process, typically to do with hospital staffing,5 
which we do not explicitly model. As such we need to address any weekly cycle in death rates through 
data pre-processing as well. 

To deal with these challenges, we developed a multi-step algorithm to pre-process our data before 
feeding it into the model for calibration. The algorithm is described below. It was implemented in 
Python, largely using the Pandas and NumPy packages, and the code is available in full at: 
https://github.com/tseyanglim/CovidGlobal. 

 

The algorithm proceeds country-by-country, following these steps on each country. 

1) Examine daily cumulative test data; if data are insufficient (6 or fewer data points), drop country 
from the dataset. 

 
2) Interpolate any missing daily cumulative test data points using a piecewise cubic Hermite 

interpolating polynomial (PCHIP) spline. If the first reported infection is before the first reported 
cumulative test, also extrapolate cumulative tests back to the date of first reported infection. 

a. Extrapolation to the date of first reported infection is necessary since both in the model 
and, to a large extent, in reality, reported infections require testing for confirmation. 

b. PCHIP spline interpolation yields a continuous monotonic function with a continuous 
first derivative, thus avoiding generating any anomalous rapid change in daily test rate. 

c. We used the implementation of PCHIP interpolation from the widely used SciPy package 
for Python.6 

 
3) Calculate daily test rate as daily cumulative tests less the preceding day’s cumulative test total: 

 

                                                 

5 It may be argued that there are weekly cycles in large-scale human behaviour that may drive some true weekly cyclicality 
in the true rates of infection and death, and as such it may be wrong to consider such cycles to be artefacts of the data-
generation process. However, we find this unlikely for a few reasons. First, weekly cycles in human interactions, largely 
driven by the work and school week and weekend, will have been significantly attenuated by widespread adoption of social 
distancing measures around the world. Second and more importantly, variation in incubation period and time before 
development of symptoms means that any true cyclicality in the timing of initial infection will be further attenuated in the 
timing of symptom development. By the same logic, wide variability in the delay from symptom development to death 
means there should be minimal cyclicality, if any, in the timing of deaths, meaning any such cycles visible in the data are 
due to measurement and reporting lags. 
6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html 
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𝑇𝑒𝑠𝑡𝑅𝑎𝑡𝑒௧ ൌ 𝐶𝑚𝑙𝑡𝑇𝑒𝑠𝑡௧ െ 𝐶𝑚𝑙𝑡𝑇𝑒𝑠𝑡௧ିଵ      (32) 
 

4) Examine the original daily cumulative test data to estimate how much of the calculated daily test 
rate is based on interpolated vs. original data. 

a. Daily test rates calculated based on mostly original data should be expected to include any 
weekly cycles or occasional irregularities that would also be reflected in daily infection 
counts. Conversely, daily test rates calculated from cumulative test counts that are largely 
interpolated would not be expected to fully reproduce any such cycles or irregularities, 
since the interpolation produces a relatively smooth function. 

b. As a rule of thumb, we examine the cumulative test data for the second half of the time 
from the first test to the latest test. If fewer than half the days in that window have original 
cumulative test data, we consider the test data to be ‘sparse’, requiring further processing. 

 
5) If the test data are not sparse, account for any potential lag or other reporting delay differences 

between daily test rate and daily infection rate using a time-shift algorithm to estimate any such 
lags or delays from the data and shift the test rate time series accordingly. The time-shift algorithm 
ensures that any weekly cycles present in the daily infection rate data are reflected in the daily test 
rate data and aligned as best as possible on date, thereby accounting for the fact that model-
generated reported infections depends on testing but with no time lag between test and result. 

a. First, identify the weekly component of the time series of daily infection rate and daily test 
rate using a seasonal-trend decomposition based on LOESS (STL) procedure.7 

i. STL deconstructs time series data into several components, including a trend and 
a seasonal component over a specified period (weekly, in this case) as well as a 
residual. STL is an additive decomposition, and has the advantage of allowing the 
seasonal component to change over time (rather than being a fixed pattern 
repeated exactly across the whole time series). 

ii. We used the STL implementation from the Statsmodels package for Python.8 
b. Shift the time series over a one-week range (from -2 to +4 days of lag between test and 

infection reporting), calculating the cross-correlation between the weekly seasonal 
component of the daily infection rate data and the daily test rate data for each time shift. 

c. Identify the time shift within this range that maximizes the cross-correlation between the 
infection rate and test rate data, and shift the test rate data accordingly. 

 
6) If the test data are sparse, the spline interpolation will generally cut out some of any weekly 

cyclicality that may be present. Visual inspection of daily test rates for countries with sparse test 
data also shows large, irregular spikes in reported tests are not uncommon, without necessarily 
having concomitant irregular spikes in reported daily infection rates. As such, rather than 
attempting to eliminate differences in reporting lags through the time-shift algorithm described 
above, we instead apply a data-smoothing algorithm to both daily test rate and daily infection rate, 

                                                 

7 Cleveland R.B., Cleveland W.S., McRae J.E., Terpenning I. (1990) STL: A seasonal-trend decomposition procedure based 
on Loess. J Off Stat 6: 3-73 
8 https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.STL.html 



31 

in order to reduce any cyclicality and irregular spikes. This smoothing allows the calibration of the 
main model to focus on matching the underlying trends in the data. 

 
7) In all cases, whether daily cumulative test data are sparse or not and whether infection and test 

rate data are smoothed or not, since weekly cycles in death data are reflective of reporting lags not 
captured in the model, daily death rate data is smoothed using the same algorithm. 

 
8) The smoothing algorithm used is designed first to conserve the total number of reported cases 

(tests, infections, or deaths), and second to preserve some degree of variation in the time series, 
as some noise may be informative and retaining some is important to the calibration of the model. 

a. Starting from when the time series of daily rate (test or infection) exceeds a specified 
minimum value (5/day), calculate the rolling mean of the daily rate, using a centred moving 
window of 11 days. 

b. Calculate the residual between each day’s data point and the rolling mean for that day, and 
divide by the square root of the rolling mean, to get an adjusted deviation value: 

 

𝐴𝑑𝑗𝐷𝑒𝑣௧ ൌ
௏௔௟௨௘೟ିோ௢௟௟ெ௘௔௡೟

ඥோ௢௟௟ெ௘௔௡೟
         (33) 

 
i. Dividing by the square root of the rolling mean reflects a heuristic assumption that 

each daily rate (of infections, deaths, or tests) behaves as a Poisson process (StDev 
of Pois() = 0.5). 

ii. The functional result of this adjustment is that both absolute and relative magnitudes 
of deviations from the rolling mean are given some weight – large relative 
deviations when absolute values are small (and data are noisier) are not ignored, 
but neither do they outweigh larger absolute (but smaller relative) deviations that 
occur when the mean is large, which is important since most of the time series data 
are growing significantly over the time horizon of the model. 

c. Calculate thresholds for identifying dips and peaks in the data based on the median of the 
adjusted deviations, ± one median absolute deviation (MAD) of the adjusted deviations: 

 
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ൌ  𝐴𝑑𝚥𝐷𝑒𝑣෫ േ𝑀𝑒𝑑൫ห𝐴𝑑𝑗𝐷𝑒𝑣௜ െ 𝐴𝑑𝚥𝐷𝑒𝑣෫ ห൯    (34) 
 

i. Using the median absolute deviation to determine thresholds for peaks and dips is 
robust to outliers in the deviations, which do arise occasionally in the data. 

ii. A threshold width of one MAD is relatively narrow for outlier detection, but by 
inspection of the data, is about right for identifying most of the peaks and dips 
caused by weekly cycles in test, infection, and death rates, as well as larger outliers. 

d. Once thresholds are calculated, iterate through the data points in the time series first 
forward in time from oldest to newest, filling in any ‘dips’ (data points with adjusted 
deviations below the lower threshold), then backward in time from newest to oldest, 
smoothing out any ‘peaks’ (data points with adjusted deviations above the upper 
threshold) that remain. Repeat the process until all data points’ adjusted deviations are 
within the originally calculated thresholds for the time series. 
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i. We infer that the underlying processes generating dips and peaks are somewhat 
different. Dips are generally the result of weekly cycles in the data, e.g. lower rates 
of testing or longer lags in death reporting that occur on weekends. Peaks arise to 
some extent due to the same weekly processes, e.g. some deaths that occur on 
weekends only being recorded at the start of the next week. However, some peaks, 
especially larger ones, may result from irregular random delays in reporting, such 
as large batches of tests being held up due to logistical issues and then getting 
processed all at once. As such the smoothing procedure for dips vs. peaks is 
slightly different. 

e. The dip-filling step fills a fraction of each dip (specified as a smoothing factor) by 
redistributing data counts based on a multinomial draw from the subsequent few days 
following each dip. 

i. First, calculate the amount to fill based on the deviation and the smoothing factor 
specified, in this case 0.67: 

 
𝐹𝑖𝑙𝑙𝐴𝑚𝑡௧ ൌ 𝑆𝑚𝐹𝑎𝑐𝑡𝑜𝑟 ൈ ሺ𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛௧ െ 𝑉𝑎𝑙𝑢𝑒௧ሻ     (35) 
 

ii. Calculate the amount redistributed from each of the following few (7) days 
𝑋௧ାଵ,𝑋௧ାଶ, …𝑋௧ା௞ ,𝑘 ൌ 7, based on a multinomial distribution as follows: 

 
𝑋௧ାଵ,𝑋௧ାଶ, …𝑋௧ା଻ ൌ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝐹𝑖𝑙𝑙𝐴𝑚𝑡௧;𝑝௧ାଵ, 𝑝௧ାଶ, … 𝑝௧ା଻ሻ   (36) 
 
Where 𝑝௧ାଵ,𝑝௧ାଶ, … 𝑝௧ା଻ are calculated as: 
 

𝑝௧ା௜ ൌ
஺ௗ௝஽௘௩೟శ೔ି஺ௗ௝஽௘௩೟,௠௜௡.଴

∑ ሺ஺ௗ௝஽௘௩೟శ೔ି஺ௗ௝஽௘௩೟,௠௜௡.଴ሻళ
భ

       (37) 

 
iii. This formulation allows some redistribution from any of the subsequent few days 

whose adjusted deviations exceed the focal day’s adjusted deviation, but with more 
redistribution from days with higher adjusted deviations. 

f. The peak-smoothing step similarly redistributes a fraction of each peak, specified by the 
smoothing factor, to the preceding several days based on another multinomial draw. 

i. First, calculate the amount to redistribute similarly to the dip-filling step: 
 
𝐷𝑖𝑠𝑡𝐴𝑚𝑡௧ ൌ 𝑆𝑚𝐹𝑎𝑐𝑡𝑜𝑟 ൈ ሺ𝑉𝑎𝑙𝑢𝑒௧ െ 𝑅𝑜𝑙𝑙𝑀𝑒𝑎𝑛௧ሻ     (38) 
 

ii. Calculate the amount redistributed to each of the preceding several (14) days 
𝑌௧ିଵ,𝑌௧ିଶ, …𝑌௧ି௞,𝑘 ൌ 14, based on a multinomial distribution as follows: 

 
𝑌௧ିଵ,𝑌௧ିଶ, …𝑌௧ିଵସ ൌ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝐷𝑖𝑠𝑡𝐴𝑚𝑡௧;𝑝௧ିଵ,𝑝௧ିଶ, … 𝑝௧ିଵସሻ  
 (36) 
 
Where 𝑝௧ିଵ,𝑝௧ିଶ, … 𝑝௧ିଵସ are calculated as: 
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𝑝௧ି௜ ൌ
ோ௢௟௟ெ௘௔௡೟ష೔

∑ ோ௢௟௟ெ௘௔௡೟ష೔భర
భ

         (39) 

 
iii. This formulation redistributes peaks to preceding days based on the calculated 

rolling mean counts of those days, on the assumption that the irregular delays that 
generate random spikes in counts are essentially random and equally likely to affect 
any given unit of data over a several-day span. As such, the probability that a unit 
showing up in a spike due to such delays comes from a given preceding day is 
simply proportional to the expected count for that day, as approximated by the 
rolling mean. 

g. By filling dips first before smoothing peaks, the combined algorithm largely addresses any 
peaks that are due primarily to weekly cycles during the dip-filling stage, such that 
remaining peaks that get smoothed tend to be the larger, irregular ones. 

Overall, despite these corrections, a few countries include interpolated test data that may not be 
realistic and could lead to unrealistically large early outbreaks (when interpolated test rate is very small 
compared to number of cases). Specifically, we see such potential in estimates for Czech Republic, 
France, Greece, and Slovakia. Future updates to the online simulator will attempt to fix these potential 
inaccuracies. 
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S5 EXTENDED RESULTS 
 

Quality of fit measures 

Table S3 reports two quality of fit metrics for different countries and different time series. The first 
four columns report Mean Absolute Error Normalized by Mean (MAEN) and the last four report the 
R-Squared measures. Errors for cumulative infection and deaths are followed by those for the new 
cases and deaths (flow variables). 

Table S3- Measures of fit between data and simulations for different countries. Mean Absolute Error Normalized by Mean (MAEN) and R-Squared are 
reported for cumulative and new cases and deaths.  

 MAEN R-Squared 

 Cumulative Flow Cumulative Flow 

Country Infection Death Infection Death Infection Death Infection Death 
 

Argentina 0.0934 0.0525 0.239 0.198 0.999 0.999 0.899 0.84 
Australia 0.0277 0.288 0.483 0.65 0.998 0.97 0.691 0.72 
Austria 0.239 0.335 0.576 0.59 0.991 0.962 0.852 0.943 
Bahrain 0.11 0.388 0.421 0.947 0.988 0.944 0.414 0.0946 
Bangladesh 0.0208 0.028 0.161 0.14 0.999 0.999 0.799 0.808 
Belarus 0.109 0.123 0.182 0.494 0.996 0.972 0.918 0.466 
Belgium 0.328 0.363 0.533 0.356 0.965 0.964 0.612 0.816 
Bolivia 0.0515 0.0793 0.325 0.363 0.992 0.997 0.703 0.77 
Bulgaria 0.0881 0.202 0.455 0.374 0.992 0.973 0.724 0.917 
Canada 0.224 0.111 0.293 0.191 0.977 0.994 0.841 0.915 
Chile 0.0728 0.0399 0.354 0.289 0.993 0.997 0.529 0.764 
Colombia 0.0901 0.0421 0.207 0.173 0.999 0.997 0.868 0.853 
CostaRica 0.057 0.064 0.464 0.332 0.999 0.996 0.372 0.717 
Croatia 0.117 0.226 0.347 0.4 0.989 0.968 0.861 0.972 
Cuba 0.0414 0.163 0.341 1.16 0.998 0.958 0.583 0.35 
Cyprus 0.0795 0.441 0.452 1.32 0.99 0.781 0.649 0.257 
CzechRepublic 0.178 0.0789 0.303 0.19 0.997 0.998 0.882 0.941 
Denmark 0.0802 0.172 0.342 0.357 0.993 0.964 0.765 0.865 
DominicanRepublic 0.0711 0.142 0.383 0.298 0.994 0.996 0.464 0.67 
Ecuador 0.0576 0.0651 0.593 0.659 0.996 0.985 0.0681 0.153 
ElSalvador 0.103 0.155 0.521 0.304 0.997 0.995 0.363 0.78 
Estonia 0.0724 0.157 0.322 0.937 0.997 0.899 0.844 0.515 
Ethiopia 0.0365 0.0424 0.238 0.26 0.999 0.998 0.806 0.789 
Finland 0.426 0.0647 0.43 0.515 0.962 0.991 0.602 0.737 
France 0.325 0.895 0.577 2.16 0.919 0.794 0.376 0.265 
Germany 0.233 0.0288 0.298 0.267 0.98 0.992 0.87 0.807 
Ghana 0.183 0.149 0.701 1.35 0.995 0.992 0.383 0.106 
Greece 0.0696 0.0436 0.379 0.205 0.993 1 0.793 0.961 
Hungary 0.0975 0.105 0.332 0.218 0.998 0.997 0.823 0.976 
Iceland 0.0558 0.241 0.405 1.87 0.996 0.887 0.737 0.0427 
India 0.0316 0.0141 0.147 0.116 1 1 0.915 0.929 
Indonesia 0.0867 0.0358 0.225 0.176 0.999 0.998 0.813 0.829 
Iran 0.0768 0.0476 0.306 0.207 0.989 0.997 0.689 0.72 
Iraq 0.0897 0.118 0.233 0.314 0.994 0.984 0.855 0.572 
Ireland 0.161 0.209 0.403 0.353 0.971 0.966 0.571 0.934 
Israel 0.113 0.16 0.653 0.453 0.968 0.979 0.336 0.395 
Italy 0.356 0.019 0.336 0.185 0.965 0.998 0.873 0.951 
Jamaica 0.119 0.159 0.339 0.742 0.997 0.995 0.735 0.485 
Japan 0.386 0.258 0.38 0.461 0.989 0.982 0.731 0.467 
Kazakhstan 0.0458 0.109 0.578 0.468 0.996 0.996 0.157 0.676 
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Kenya 0.0498 0.0869 0.359 0.389 0.998 0.986 0.646 0.65 
Kuwait 0.0412 0.139 0.24 0.392 0.996 0.992 0.621 0.373 
Latvia 0.113 0.758 0.302 0.671 0.999 0.92 0.881 0.779 
Lithuania 0.0828 0.205 0.355 0.435 0.993 0.99 0.777 0.85 
Luxembourg 0.251 0.43 0.716 0.731 0.993 0.954 0.416 0.443 
Madagascar 0.163 0.11 0.561 0.789 0.996 0.999 0.594 0.46 
Malawi 0.332 0.132 0.802 0.649 0.998 0.988 0.421 0.687 
Malaysia 0.0712 0.131 0.251 0.554 0.999 0.982 0.889 0.599 
Maldives 0.0853 0.446 0.403 1.32 0.993 0.974 0.52 0.00805 
Malta 0.0713 0.373 0.397 0.763 0.993 0.97 0.704 0.559 
Mexico 0.127 0.041 0.378 0.189 0.999 0.997 0.353 0.689 
Morocco 0.0627 0.0689 0.292 0.214 0.995 0.996 0.782 0.88 
Mozambique 0.032 0.0886 0.383 0.89 0.998 0.996 0.551 0.232 
Nepal 0.0732 0.236 0.335 0.378 0.993 0.972 0.685 0.639 
Netherlands 0.242 0.155 0.232 0.206 0.991 0.987 0.953 0.909 
NewZealand 0.338 0.216 0.72 1.87 0.851 0.688 0.71 0.178 
Nigeria 0.494 0.116 0.603 0.428 0.987 0.988 0.275 0.571 
NorthMacedonia 0.0823 0.0547 0.349 0.247 0.997 0.998 0.748 0.907 
Norway 0.0411 0.0825 0.375 0.623 0.995 0.975 0.646 0.715 
Pakistan 0.0998 0.025 0.362 0.276 0.982 0.998 0.611 0.777 
Panama 0.0944 0.0882 0.387 0.386 0.981 0.982 0.528 0.245 
Paraguay 0.0871 0.0511 0.229 0.177 0.999 0.998 0.863 0.925 
Peru 0.319 0.0694 0.541 0.425 0.987 0.987 0.174 0.47 
Philippines 0.0588 0.0305 0.28 0.274 0.995 0.999 0.682 0.704 
Poland 0.126 0.129 0.303 0.223 0.991 0.997 0.867 0.928 
Portugal 0.372 0.543 0.373 0.398 0.963 0.982 0.867 0.83 
Qatar 0.164 0.239 0.347 0.916 0.983 0.974 0.829 0.306 
Romania 0.0623 0.0489 0.355 0.204 0.993 0.998 0.675 0.845 
Russia 0.0284 0.0197 0.0551 0.076 1 0.999 0.989 0.983 
Rwanda 0.102 0.239 0.562 1.39 0.99 0.979 0.412 0.161 
SaudiArabia 0.0669 0.0821 0.39 0.243 0.988 0.992 0.683 0.755 
Senegal 0.0494 0.0601 0.353 0.664 0.995 0.991 0.545 0.333 
Serbia 0.281 0.177 0.548 0.558 0.909 0.928 0.916 0.833 
Singapore 0.199 2.25 0.68 3.64 0.966 0.837 0.4 0.0197 
Slovakia 0.155 0.0833 0.386 0.367 0.994 0.995 0.755 0.821 
Slovenia 0.289 0.582 0.423 0.617 0.994 0.931 0.818 0.83 
SouthAfrica 0.196 0.117 0.282 0.21 0.99 0.998 0.842 0.909 
SouthKorea 0.0722 0.136 0.346 0.599 0.987 0.969 0.849 0.409 
Spain 0.22 0.167 0.418 0.344 0.986 0.985 0.672 0.733 
SriLanka 0.0977 1.17 0.361 0.963 0.996 0.784 0.809 0.567 
Sweden 0.377 0.121 0.808 0.397 0.546 0.967 0.00298 0.669 
Switzerland 0.137 0.347 0.528 0.414 0.996 0.993 0.608 0.866 
Thailand 2.92 5.44 2.19 5.7 0.881 0.994 0.151 0.621 
Togo 0.13 0.163 0.561 1.54 0.991 0.985 0.176 0.0396 
Tunisia 0.687 0.821 0.844 0.92 0.963 0.907 0.329 0.618 
Turkey 0.212 0.0809 0.637 0.243 0.852 0.98 0.106 0.909 
UAE 0.122 0.195 0.408 0.382 0.986 0.981 0.534 0.484 
UK 0.292 0.282 0.383 0.283 0.976 0.966 0.767 0.839 
Ukraine 0.0565 0.0664 0.237 0.19 0.996 0.996 0.84 0.896 
Uruguay 0.0481 0.0878 0.276 1.08 0.993 0.988 0.952 0.366 
USA 0.0716 0.0306 0.23 0.146 0.991 0.999 0.936 0.857 
Zambia 0.0841 0.106 0.725 0.808 0.994 0.984 0.258 0.386 
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Figure S6 shows the visualization of fit between data and simulations for all the countries in our sample. 
These graphs include data and model outputs for reported new cases (blue; left axis in thousands per day) 
and deaths (red; right axis in thousands per day) starting from the beginning of the epidemic in each country 
until 22 December 2020. 

 
Figure S6- Comparison of data and simulation. New cases in blue (left axis, in thousands per day) and new deaths (red, right axis). 
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Estimates for true magnitude of epidemic 

Estimates for true cumulative cases (blue; left axis in millions) and deaths (red; right axis in thousands) across 
different countries up to 22 December 2020 are reported in Figure S7. 

 

 
Figure S7- Estimates and 95% credible intervals for true magnitude of epidemic. Cumulative cases (blue, left axis in millions) and cumulative deaths (red, right axis, in 
thousands) 
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Excess deaths 

Figure S8 shows the ratio of estimated excess deaths, i.e. COVID-19 fatalities not reported as such, 
to reported excess deaths, i.e. deaths over historical baseline not accounted for by reported COVID-
19 deaths, for the countries for which such data are available. 

 
 

Figure S8- Ratio of estimated excess deaths to reported excess deaths for countries for which this data was available.  
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Maximum reproduction number 

Figure S9 shows the initial reproduction number (RE) occurring in each country. Reproduction numbers 
are changing dynamically and transient dynamics may lead to larger than equilibrium numbers if 
maximum RE values were used. We therefore use the 90th percentile of simulated reproduction number 
in this graph. Also note the large credible intervals for these estimates. This range is partly driven by 
what exact point of the curve is represented by the 90th percentile. It is also due to the inherent 
uncertainty when both reproduction number and behavioral and policy responses are estimated: one 
can have smaller initial RE and smaller response functions, or larger values for both, and stay consistent 
with the data, specially because early in the epidemic ascertainment rates are very low and data is not 
very informative about the true magnitude. Moreover, given the recording of RE values at their (often 
initial) high values, they may reflect non-representative subpopulations or events. For example the 
high impact of weather conditions on transmission rates could notably alter Maximum RE for some 
countries depending on weather conditions at the time of first wave.  

 
Figure S9- Maximum reproduction number RE for each country’s outbreak  
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Time to herd immunity 

Figure S10 shows estimated time to herd immunity across nations. These estimates are based on time 
it takes before 60% of population has been infected by COVID-19. Depending on the basic 
reproduction number in each location and the heterogeneity in contacts, the 60% threshold will not 
be an exact value for most countries, but offers a reasonable intuition for the ranges of time involved 
and could be adjusted with a linear scaling to other thresholds. Two estimates are offered, one for the 
estimated number based on current true infection rates, and another based on the peak infection rates 
experienced in that country. The two may be the same if the current rates are the peak rates.  

 
Figure S10- Time to 80% cumulative infection based on current infection rates (blue circles) and peak infection rates to-date (red squares) in days (log scale). 
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Parameter estimates 

Figure S11 reports most likely estimates for the vector of country-specific parameters (θi). The figure 
also includes 95% credible intervals for these parameter estimates. 
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Figure S11- Parameter estimates and 95% credible regions for country-specific parameters. 
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Future projections 

Figure S12 reports country-level projections for new cases and deaths based on the scenario I (no changes 
in estimated parameters; no vaccination; testing fixed at values observed for 22 December 2020; consistent 
with those reported in Figure 7 in the main paper).  

In scenarios II and IV in the main paper (not shown here) we change responsiveness through: 

- Increasing Time to Downgrade Risk (𝜏ோ஽) by 20% 
- Shifting Sensitivity of Contact Reduction to Utility (sC) by 20%. 
- Increasing Dread Factor in Risk Perception (𝜆) by 20%.  

Note that these changes primarily change contacts as a function of perceived risk, but do not necessarily 
entails fewer contacts overall. Vaccination scenario setups are discussed in vaccination sector (under S1). 

 
Figure S12- Country level projections with no vaccination until Summer 2021 in scenario I. Daily cases (in thousands, blue, left axis) and daily deaths (red, right axis) 
are graphed. For various vaccination projections see: https://exchange.iseesystems.com/public/mitsdl/covidglobal/index.html#page1
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S6 OUT OF SAMPLE PREDICTION TEST 
We conducted an out of sample prediction test of the model by comparing the quality of fit for model 
projections for future data not used in model estimation against the version of the model using that 
data. We calculate the quality of fit for projections of that model (the “early model”) for data later 
released for the period 30 September 2020-22 December 2020. Those projections are reported in 
Figure S13 and are directly comparable with Figure S6. Note that we use the actual testing rates to 
drive the model for this prediction interval. Inspection of this graph points to various outcomes across 
countries, ranging from close fit for the prediction interval to a few with major discrepancies. For 
example, the model was able to predict the emergence of a second wave, before it was detectable in 
the infection data, for Belarus, Russia, and UK and the model predicted the third waves in Iran, Israel 
and USA well. On the other hand, among others, we overestimated the Fall trajectory of epidemic in 
India and under-estimated that in Turkey. 

The discrepancies arise from both the baseline gaps between the model and data and emerging features 
of the epidemic in the prediction interval. The baseline gaps typically appear because our method 
enforces a strong coupling among countries. For instance, keeping IFR parameters similar across 
countries, the model cannot explain the unexpectedly low fatality rates in Qatar and Singapore (which 
could be due to outbreaks among younger immigrant worker communities). Moreover, the model is 
unable to accommodate changes in responses that are not detectable in the historical data (e.g. missing 
the magnitude of the “second wave” when first wave is not yet complete and thus the parameters for 
risk perception and response are not fully identifiable).  
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Figure S13-Predictions from the model fitted with data until 30 September 2020 for the 30 September 2020-22 December 2020 interval. The start of 
prediction interval is marked with a horizonal blue line. Red numbers represent the fraction of data falling within the 95% prediction intervals. 
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Assessing the quality of fit requires some benchmark to compare against. Defining external 
benchmarks in the case of current model is complicated because, to our knowledge, no other model 
has attempted to simultaneously match infection and fatality data across this large set of nations and 
offer future projections. Therefore, we focus on an internal benchmark using quality of fit for the 
version of the model using the data from the prediction interval for estimation. Specifically, we 
compare the fit measures from the early model (MAEN scores for reported infection rates and death 
rates) against the same fit measures coming from the model estimated until 22 December 2020. The 
updated version uses the data in the prediction interval and thus is likely to have a better fit than the 
early version of the model. The ratio of MAEN values between these two models informs the speed 
with which fit quality deteriorates, with values closer to one suggesting robust long-term predictions. 
Overall the mean fit ratio is 0.516, loosely speaking suggesting that projections lose their accuracy by 
about a half over 1.5 months. Table S4 reports those values across different nations.  

Table S4- Quality of fit for future projections compared to when data is available. Mean Absolute Error Normalized by Mean (MAEN) for daily infection 
rates in the early model, current model (which uses data from prediction interval of 30 September 2020-22 December 2020), and the ratio of current model’s 
MAEN to the early one.  

Mean fit ratio: 0.516 

Infection MAEN between days 352 and 431 for different countries: 
Country Current Early Ratio Country Current Early Ratio 
Argentina 0.249 0.411 0.606 Malawi 0.845 7.94 0.106 
Australia 1.8 5.7 0.316 Malaysia 0.205 0.575 0.356 

Austria 0.58 0.673 0.861 Maldives 0.55 2.04 0.269 
Bahrain 0.523 0.708 0.739 Malta 0.346 0.686 0.504 

Bangladesh 0.18 0.408 0.442 Mexico 0.42 0.594 0.707 
Belarus 0.106 0.542 0.195 Morocco 0.258 0.395 0.653 

Belgium 0.48 0.758 0.633 Mozambique 0.374 2.34 0.16 
Bolivia 0.309 1.53 0.202 Nepal 0.34 0.524 0.649 

Bulgaria 0.424 0.793 0.535 Netherlands 0.17 0.498 0.342 
Canada 0.188 0.376 0.5 NewZealand 0.83 0.948 0.876 

Chile 0.357 1.86 0.192 Nigeria 0.413 0.786 0.526 
Colombia 0.188 0.421 0.445 NorthMacedonia 0.326 0.744 0.439 

CostaRica 0.491 0.665 0.738 Norway 0.378 0.601 0.629 
Croatia 0.295 0.688 0.429 Pakistan 0.304 0.841 0.361 
Cuba 0.307 0.534 0.576 Panama 0.364 0.764 0.477 
Cyprus 0.429 0.922 0.466 Paraguay 0.182 0.588 0.31 
CzechRepublic 0.301 0.582 0.516 Peru 0.746 1.21 0.617 
Denmark 0.3 0.823 0.365 Philippines 0.172 0.758 0.227 
DominicanRepublic 0.369 0.475 0.776 Poland 0.271 0.508 0.534 
Ecuador 0.457 0.926 0.494 Portugal 0.293 0.484 0.606 
ElSalvador 0.979 0.925 1.06 Qatar 0.321 0.517 0.621 
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Estonia 0.292 0.622 0.471 Romania 0.363 0.364 0.998 
Ethiopia 0.191 0.582 0.328 Russia 0.0383 0.133 0.289 
Finland 0.322 0.597 0.54 Rwanda 0.491 0.669 0.734 
France 0.614 0.689 0.891 SaudiArabia 0.631 0.839 0.752 
Germany 0.233 0.501 0.466 Senegal 0.39 0.727 0.537 
Ghana 0.833 1.04 0.8 Serbia 0.509 0.91 0.56 
Greece 0.34 0.635 0.535 Singapore 0.554 4.04 0.137 
Hungary 0.293 0.448 0.654 Slovakia 0.375 0.678 0.554 
Iceland 0.401 1.08 0.373 Slovenia 0.412 0.621 0.663 
India 0.147 1.02 0.145 SouthAfrica 0.227 0.347 0.655 
Indonesia 0.194 0.373 0.521 SouthKorea 0.223 0.716 0.311 
Iran 0.3 0.369 0.815 Spain 0.366 1.31 0.279 
Iraq 0.155 1.12 0.139 SriLanka 0.313 0.968 0.323 
Ireland 0.345 0.573 0.603 Sweden 0.936 0.932 1 
Israel 1.23 1.54 0.798 Switzerland 0.535 0.847 0.632 
Italy 0.26 0.512 0.508 Thailand 0.703 3.87 0.182 
Jamaica 0.256 1.12 0.229 Togo 0.422 0.661 0.639 
Japan 0.231 0.624 0.37 Tunisia 0.871 0.852 1.02 
Kazakhstan 0.459 1.98 0.232 Turkey 0.729 0.89 0.819 
Kenya 0.368 0.499 0.737 UAE 0.438 1.19 0.368 
Kuwait 0.36 1.27 0.283 UK 0.274 0.509 0.539 
Latvia 0.279 0.82 0.34 Ukraine 0.231 0.296 0.781 
Lithuania 0.357 0.542 0.659 Uruguay 0.24 0.821 0.293 
Luxembourg 0.687 0.798 0.86 USA 0.248 0.413 0.6 
Madagascar 1.85 5.07 0.365 Zambia 0.547 6.18 0.0885 
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S7 SENSITIVITY ANALYSIS  
Impact of Cross-country Parameter Variances 

Setup- Our estimation method uses a random effects framework, which couples the parameters across 
different countries, specifying them as instances of some underlying distribution with a given variance. 
Those variance factors, explained in S2, were specified to incorporate the authors’ judgement on how 
different each parameter may be across different countries, based on the nature of those parameters. 
For instance, parameters representing physiological or virological constructs should generally vary less 
than those representing socio-cultural and behavioral responses. In principle, one could propose other 
variance factors. Assuming very large variances would essentially decouple the models for different 
countries, while shrinking variances towards zero will force all parameters to be the same across 
countries. In this section we assess the sensitivity of results to changes in those variance factors. 
Specifically, we re-do the analysis when all variance factors are scaled by a factor of 4, or 0.25. We re-
estimate the model in each case and measure how much the following 12 outcome measures 
(organized into 3 groups) change compared to the baseline estimates as a result: 

a) Country level projections for 1) Actual to reported case ratio; 2) Actual to reported death ratio; 3) 
Projected infection rate at the end of Winter 2021; 4) Projected death rate at the end of winter 
2021; 

b) Country level MAEN values for daily infection rates and death rates; 
c) Aggregate (across all countries) cumulative infections, deaths, and IFR, both on 22 December 

2020 and at the end of June 2021. 

The first two groups of measures are country specific, so we report them for all countries, followed 
by their averages, and then the aggregate outcomes.  

Results- In Table S5 and Table S6 results from these two experiments are reported. As expected, 
increasing allowed variances enables the model to offer a better fit to data (i.e. reduces MAEN values, 
thus mostly negative values for fit statistics in the first experiment). Other sensitivities remain relatively 
small for most countries, showing few systematic changes in model’s predictions as in response to 
changes in the cross-country parameter variances. However, trajectories for a handful of countries are 
sensitive to these variance factors: Australia, Bolivia, Bulgaria, Costa Rica, Croatia, El Salvador, Ghana, 
Hungry, Iraq, Maldives, Mozambique, New Zealand, North Macedonia, Paraguay, Poland, Portugal, 
Qatar, Rwanda, Singapore, Slovakia, Thailand, Togo. In these cases one would expect a separate 
country-specific estimation to give results that may be qualitatively different from those we find, and 
thus caution should be exercised. 
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Table S5- Impact of increasing assumed cross-country parameter variances by a factor of four. All reported outcomes measure percentage change in the given 
metric from baseline analysis.  

Sensitivities to 4x change in variances 
Country Case 

Undercount 
Ratio 

Death 
Undercount 
Ratio 

Final 
Infection 
Rate 

Final Death 
Rate 

MAEN 
Infection 

MAEN 
Death 

Argentina -2.4 1.51 -27.8 -16.3 -0.598 -2.66 
Australia 6.54 0.789 -50.3 -42 2.49 -1.59 
Austria 2.63 0.651 -2.88 -1.32 2.45 -0.305 
Bahrain 5.76 -0.985 -5.13 -10 -4.97 -0.321 
Bangladesh 6.1 4.42 3.17 3.65 -1.54 -0.712 
Belarus -1.66 -3.49 -18.4 -37.2 -13 -16 
Belgium 4.09 2.05 -13.9 -14.6 4.32 -6.1 
Bolivia 5.57 4.14 19.1 9.16 -0.33 -0.893 
Bulgaria 8.34 11.9 -66 -46.2 -3.14 -22.2 
Canada 6.7 1.05 15 -4.68 -1.15 -3.25 
Chile 0.313 0.54 -0.0162 0.796 1.16 0.591 
Colombia 5.15 3.15 0.141 2.24 4.86 -1.09 
CostaRica -0.241 -0.176 -3.48 -4.25 0.194 -0.298 
Croatia -11.8 1.1 38.1 0.771 -7.22 -13 
Cuba 7.23 6.38 87.6 -1.47 -1.66 0.218 
Cyprus -1.57 3.07 10.7 23.8 1.09 0.377 
CzechRepublic 7.3 1.7 -1.66 -11.8 -4.06 -3.12 
Denmark -1.15 1.15 -7.63 -2.69 0.428 -2.93 
DominicanRepublic 3.83 2.53 -3.73 -3.39 -3.87 1.22 
Ecuador -2.44 -0.457 0.773 6.77 -1.21 -0.779 
ElSalvador 13.7 3.6 382 113 -3.69 -5.77 
Estonia -1.18 4.28 8.43 3.91 0.817 -0.0563 
Ethiopia 18.4 8.4 19.4 34.8 -0.683 -4.19 
Finland 2.53 -0.747 13.9 8.82 -9.07 -2.22 
France 8.58 0.654 -21.3 -25.6 -3.83 -2.8 
Germany 13 4.94 8.23 -1.72 -1.53 -6.32 
Ghana 0.0961 -2.99 883 111 -1.21 -1.51 
Greece 10.6 6.14 -6.19 -9.94 2.45 -4.32 
Hungary 7.05 8.15 -15.8 -11.7 -6.2 -17.9 
Iceland 2.05 0.375 -22.8 -9.36 -1.8 0.348 
India -1.16 0.507 -5.71 -2.22 -0.93 -1.02 
Indonesia 10 1.42 33.7 1.88 -0.47 -3.17 
Iran 6.56 1.76 -7.62 -13.2 -0.223 0.033 
Iraq -0.25 -0.115 -78.7 20 -0.507 -0.305 
Ireland 7 6.63 89.5 43.8 2.51 -11.6 
Israel 9.8 3.51 -26.9 -26.5 -7.7 -0.895 
Italy 5.97 -0.44 -1.51 -8.66 -6.67 -8.15 
Jamaica 3.13 0.218 -21.5 -14.6 -6.78 -0.978 
Japan -0.977 -1.84 8.04 -5.16 2.87 -0.776 
Kazakhstan -0.859 0.344 15.9 4.75 -0.22 -3.47 
Kenya -3.65 -0.158 -20.8 -5.16 -0.158 -2.52 
Kuwait 2.05 3.51 -48.2 -45.2 -3.62 -0.351 
Latvia 5.58 4.18 -7.61 -14.6 -4.86 -3.08 
Lithuania 1.5 0.727 -3.58 2.33 0.646 -2.17 
Luxembourg 5.02 3.85 7.44 -7.68 -1.84 -3.58 
Madagascar -9.76 -11.6 17.9 28.1 1.94 -0.36 
Malawi -4.34 -2.08 40.9 -14.7 -2.95 -9.22 
Malaysia 10.3 -1.89 -1.39 0.931 -3.8 -3.55 
Maldives -2.84 5.95 6.46 18 -2.01 1.42 
Malta 8.72 -0.132 -3.44 0.666 -8.25 -3.44 
Mexico 8.31 -2.17 1.96 -15 -0.358 -1.11 
Morocco 5.98 2.1 -5.88 -6.73 -0.46 -1.18 
Mozambique -20.1 -10.1 -65.2 -39.3 -3.78 -0.717 
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Nepal 5.87 4.08 4.76 -7.05 -2.08 -3.19 
Netherlands -0.153 3.17 -4.7 -15.2 -17.4 -3.14 
NewZealand 2.52 -13.6 -24.4 -29.2 -5.02 -7.2 
Nigeria 2.96 1.02 -27.6 -28.2 0.401 0.138 
NorthMacedonia 2.42 3.39 -14.6 -3.5 -3.11 -3.8 
Norway 1.6 1.58 -11 -9.97 0.0685 -2.2 
Pakistan 14.8 3.45 18.9 -0.586 0.482 -5.33 
Panama 1.36 0.608 8.6 5.81 -1.02 -2.92 
Paraguay 28.4 3.56 -45.4 -63.6 1.4 -2.88 
Peru -0.539 -1.06 27.7 30 0.736 0.308 
Philippines -1.03 -0.0881 24.5 30 -0.0283 -1.88 
Poland 3.48 9.08 -20.9 -21.4 3.81 -15.6 
Portugal 24.3 -0.662 -49.4 -66.7 2 -29.3 
Qatar 0.149 3.89 -50.7 -32.9 -9.35 3.78 
Romania 0.458 0.485 5.1 3.72 1.87 -2.34 
Russia -0.149 0.186 -7.83 -6.79 -3.05 -0.208 
Rwanda 4.32 -0.00907 -34.6 -29.5 -0.834 -0.494 
SaudiArabia -6.25 4.24 -4.14 4.87 -3.88 2.26 
Senegal 2.66 1.03 5.4 2.5 -1.32 -0.238 
Serbia 17.9 7.21 -29 -20.5 2.59 -4.21 
Singapore 13.1 6.47 344 167 -39.2 -8.7 
Slovakia 9.65 0.864 -44.2 -50.3 -0.368 -3.87 
Slovenia 1.57 8.69 -4.1 7.36 -3.13 -4.98 
SouthAfrica 11.9 3 -14.8 -11.3 1.34 -6.72 
SouthKorea 25.2 3.89 -12.8 -13.9 -2.6 -5.92 
Spain 3.52 0.503 -9.22 1.67 -4.95 -2.09 
SriLanka 8.71 9.87 21 18.5 -2.96 -1.03 
Sweden -5.71 0.964 12.3 12.9 1.56 2.37 
Switzerland -4.17 2.43 -0.919 5.64 0.00177 -3.64 
Thailand 17.8 -2.4 100 131 -30.5 -40.4 
Togo -8.88 -4.63 189 -32.9 -3.3 -0.166 
Tunisia 40.9 21.2 72.7 18.8 -3 -1.88 
Turkey 3.9 -5.47 -6.91 -42.2 0.335 -5.23 
UAE 3.35 0.36 -25.6 -31.4 -17.4 -10 
UK -0.541 2.77 4.79 -1.36 -4.06 -14.8 
Ukraine 1.53 0.371 -3.97 -19 -1.38 -1.23 
Uruguay 0.629 0.0577 -10.4 -1.42 0.927 -0.185 
USA -1.65 1.15 -2.69 0.315 -6.02 -0.526 
Average 4.31 1.78 16.9 -1.49 -2.7 -3.98 
  

Global Percentage Changes and Elasticities 
  Cases Early Deaths 

Early 
IFR Early Cases Proj. Deaths Proj. IFR Proj. 

Global 3.31 0.892 -2.14 3.55 -0.917 -4.41 

 

 

Table S6- Impact of decreasing assumed cross-country parameter variances by a factor of four. All reported outcomes measure percentage change in the given 
metric from baseline analysis. 

Sensitivities to 0.25x change in variances 
Country Case 

Undercount 
Ratio 

Death 
Undercount 
Ratio 

Final 
Infection 
Rate 

Final Death 
Rate 

MAEN 
Infection 

MAEN 
Death 

Argentina 0.0032 -1.36 81 72.6 0.919 -0.0141 
Australia 3.01 -2.07 62 40.5 -0.812 1.58 
Austria -4.18 -4.18 17.4 4.89 -2.17 4.15 
Bahrain -4.72 -1.82 7.7 9.64 3.71 -0.432 
Bangladesh -8.91 -3.49 -4.02 -4.68 19.4 12.1 
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Belarus 0.182 5.85 14.4 13.5 0.671 15.2 
Belgium -2.66 -5.38 13.8 5.09 -5.81 7.07 
Bolivia -5.01 -1.56 -52 -26 -1.35 7.59 
Bulgaria -7.48 -12.2 404 73.1 4.82 32.5 
Canada -8.34 -2.11 -5.7 15.1 -0.343 19.7 
Chile 0.638 -1.1 -3 -2.84 -0.304 -0.582 
Colombia -7.24 -3.38 -1.81 -4.02 -6.18 0.364 
CostaRica -8.21 -5.22 54.9 208 -0.475 -3.69 
Croatia 2.38 -2.77 -65.2 -55.4 4.45 14 
Cuba -9.97 2.21 11.2 29.2 5.01 5.26 
Cyprus 3.52 -3.83 7.45 -4.84 -1.31 -0.502 
CzechRepublic -2.58 1.85 -2.27 8.77 12.3 3.07 
Denmark 1.45 -1.47 6.75 4.58 0.531 7.28 
DominicanRepublic 2.59 2.72 -5.52 -7.23 10.3 5.39 
Ecuador 5.13 2.67 -32.5 -31.4 1.85 1.56 
ElSalvador 4.71 -0.495 26.8 12.6 8.22 4.38 
Estonia 4.31 -5.45 19.2 -0.147 0.186 1.23 
Ethiopia -10.6 -3.01 -23.4 -23 1.95 7.59 
Finland -2.05 5 6.41 14.1 14.4 7.5 
France -12.6 -13.3 28 23.1 -2.97 -18.3 
Germany -7.69 -4.65 -5.2 -0.402 -0.297 3.5 
Ghana 47.1 35.7 -58.8 -39.9 -7.31 13.7 
Greece -6.14 -1.51 4.37 9.37 -4 9.83 
Hungary -12.8 -14.1 145 54.5 6.25 48.9 
Iceland -2.75 5.01 55.8 43.6 1.76 2.24 
India 2.68 -0.794 -0.0667 0.299 5.87 1.84 
Indonesia 9.53 10.9 -12.6 0.469 3.93 4.27 
Iran -12.2 -1.77 18.2 40.9 4.42 2.03 
Iraq -1.54 0.124 1280 220 0.0163 1.18 
Ireland -8.19 -4.05 -14.3 -8.38 -1.83 9.61 
Israel -2.57 -2.86 17.4 14.6 11.2 1.71 
Italy -5.05 0.128 0.804 6.79 4.64 7.65 
Jamaica -7.29 -3.05 26.5 -25.2 14.1 5.11 
Japan 2.06 5.34 27.5 11.5 -7.99 1.91 
Kazakhstan 2.14 1.06 -43.5 -36.2 1.14 7.05 
Kenya -2.51 -4.49 24 9.31 0.0898 3.43 
Kuwait -3 -7.44 -51.5 -43.3 10.6 3.69 
Latvia -2.96 -6.57 29.7 7.88 17.5 5.12 
Lithuania -1.68 -4.73 8.72 -6.46 -1.22 8.81 
Luxembourg -2.47 -1.47 2.31 13.5 1.9 5.21 
Madagascar 1.74 15.6 -55.9 -37.2 2.21 6.21 
Malawi -4.68 3.35 -19.4 3.6 -1.32 6.77 
Malaysia -6.36 8.01 -31.9 -28.8 6.76 6.84 
Maldives 12.5 -5.48 191 -2.97 8.62 -0.978 
Malta -0.808 -2.83 0.0203 -18 15.9 4.25 
Mexico 4.45 12 3.91 17.3 -2.08 6.14 
Morocco -15.1 1.06 12 5.07 0.934 5.96 
Mozambique 0.515 13.9 103 117 0.995 6.68 
Nepal -6.76 -0.677 -0.023 -1.49 5.02 11.9 
Netherlands -2.32 -2.01 -3.84 -1.02 7 8.4 
NewZealand -7.31 24.3 269 73.5 7.28 13.6 
Nigeria 4.01 0.931 -1.94 33.3 -0.171 -1.5 
NorthMacedonia -18.1 -3.59 241 162 4.72 6.86 
Norway -3.18 -2.46 9.2 19.1 -0.327 2.96 
Pakistan -7.15 -4.5 -19 -2.03 9.23 9.83 
Panama 2.54 5.11 -8.52 -6.08 4.57 12 
Paraguay -7.1 -0.318 21.3 38 -1.29 2.99 
Peru 0.943 2.62 -40.2 -38.6 0.246 2.4 
Philippines 13.4 2.05 70.1 54.9 4.43 6.87 
Poland -13.9 -12.8 212 138 2.88 32.8 
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Portugal -15 -2.65 19.5 49.1 -9.08 11.8 
Qatar -8.86 -7.39 -13.9 -18 1.52 -2.18 
Romania -2.37 -0.667 -13.2 -1.71 -3.38 6.69 
Russia 0.622 -0.501 16.1 15.4 14.3 1.72 
Rwanda -11.1 0.649 144 111 9.8 2.37 
SaudiArabia 2.87 -2.52 -26 -8.98 -5.29 5.63 
Senegal -4.36 -3.47 -4.1 -6.93 0.538 0.731 
Serbia -8.06 -4.08 8.66 18.4 1.51 6.16 
Singapore 12 24.9 -91.6 -72.7 24.4 24.5 
Slovakia -12.2 2.86 84.1 129 0.854 7.3 
Slovenia -7.98 -9.61 43.6 13.8 0.709 6.76 
SouthAfrica -13.6 -2.55 -6.48 2.99 -3.25 17.9 
SouthKorea -20 -5.71 9.12 27.1 4.94 9.99 
Spain 11.4 1.46 -38.8 -47.9 18.8 9.43 
SriLanka -11.5 0.297 -10.1 -29.5 2.93 5.82 
Sweden 9.33 -8.45 -21.5 -33 -2.01 3.42 
Switzerland 1.58 -6.69 3.85 -16.2 0.784 11.8 
Thailand 10.6 9.39 -1.08 71.8 49.9 38.5 
Togo -11.3 -9 463 -28.9 6.87 -0.477 
Tunisia -12.2 6.43 58.7 -2.13 0.903 -0.345 
Turkey -1.71 -1.53 -4.86 -2.57 1.65 6.99 
UAE 5.22 1.05 16.4 12.7 18.1 -1.96 
UK -10.6 -4.67 10.4 24.9 -11.3 23.7 
Ukraine -0.855 -0.811 -1.31 11.8 1.05 1.14 
Uruguay -0.885 0.233 2.91 7.16 -0.93 -0.215 
USA 1.52 -0.786 -4.56 -3.82 9.35 2.71 
Average -2.54 -0.301 39.1 15.1 3.69 6.87 
  

Global Percentage Changes and Elasticities 
  Cases Early Deaths 

Early 
IFR Early Cases Proj. Deaths Proj. IFR Proj. 

Global -1.83 -1.02 0.318 -1.57 0.275 2.07 

 

 

Sensitivity to Parametric Assumptions  

Setup- We conducted sensitivity analysis changing all the major pre-specified (i.e. not estimated) 
model parameters to assess 1) How sensitive key results are to those parametric assumptions. 2) How 
overall model fit to data changes with changing those general parameters. In this analysis we changed 
each parameter by +/- 5%, and calculated the elasticities of the 12 outcome measures discussed in the 
previous section with respect to each parameter. Those elasticities are calculated as fractional change 
in the outcome measure divided by fractional change in the input parameter. As such, they are 
dimensionless, with values below one indicating minor to modest sensitivities. 

Table S7 reports the parameters over which we conducted the sensitivity analysis, their base values, 
and an overview of the results where averages over country-level outcomes and fit measures are 
reported (first row) along with aggregate outcomes (second row; for a total of 12 outcomes per 
parameter in two rows). We report full country-level sensitivity results for the reported outcomes 
online, in the GitHub repository for the research. All reported numbers are elasticity values. 

Results- Overall elasticities remain modest (Table S7) but also include more notable cases where 
results for a specific country are rather sensitive to one parameter or the other. Note that the 
mechanisms generating these elasticities are complex, as they emerge from new calibration of the 
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model and thus incorporate various compensatory mechanisms and feedback effects. Thus we do not 
attempt to explain detailed country-level elasticities (reported on GitHub). With that caveat in mind, 
we provide an overview of the results here and tables on GitHub provide more in-depth outcomes.  

The average residence time in hospitals has an impact on death rates and IFR, as increasing the 
residence time reduces available beds and exacerbates hospital shortages but also increased disease 
period in hosptial allows for more infection inside hospitals (note that in the sensitivity analysis the 
change in hospital residence time is not coupled with changing the disease duration outside of 
hospital). Increasing incubation period may modestly increase death under-count ratio and projected 
death rates, but slightly reduce projected infection rates; results for infection and death numbers are 
sensitive for a few countries due to shifts in overall parameters as a result of changing incubation 
period. Impact of Onset-to-detection delay is somewhat similar. Post-detection resolution time slightly 
increases cases and deaths as people spend more time in infectious states. Relative risk of transmission 
by presymptomatics would increase undercounts, infections and deaths, with a stronger impact on 
case under-count (thus reducing IFR). Increasing this parameter would also slightly increase the gap 
between the model and case data (MAEN). Finally, increasing the sensitivity of COVID test would 
reduce undercounts in cases and deaths and thus bring down total cases and deaths by stronger 
behavioral responses.  
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Table S7- Overview of parametric sensitivity results, reported as elasticities (fractional change in outcome divided by fractional change in 
input parameter). Each parameter is followed by its base value, and two rows of outcomes identified on the top. First row includes averages of elasticities for 
4 outcomes and 2 fit measures across 92 countries. Second row includes elasticity measures calculated over all simulated populations on 22 December 2020 and 
30 June 2021. 

Parameter Ave Case 
Undercount 
Ratio 

Ave Death 
Undercount 
Ratio 

Ave 
6/30/21 
Infection 
Rate 

Ave 
6/30/21 
Death Rate 

Ave 
MAEN 
Infection 
Rate 

Ave 
MAEN 
Death Rate 

Dec 22 Cml. 
Cases  

Dec 22 Cml. 
Deaths 

Historical 
IFR 

6/30/21 
Cml. Cases 

6/30/21 
Cml. 
Deaths 

6/30/21 
Cml. IFR 

Hospitalized Resolution 
Time (20 days) 

-0.00889 0.0105 0.355 0.501 -0.00379 0.0116 
0.0173 -0.0227 -0.0456 -0.0574 -0.0684 -0.0163 

Incubation Period (5 days) 0.142 0.00899 0.0789 0.192 0.0117 -0.0163 
0.231 0.105 -0.104 0.207 0.141 -0.0688 

Onset to Detection Delay (5 
days) 

0.12 0.0298 0.135 0.219 0.00522 -0.0257 
0.169 0.0254 -0.117 0.182 0.0836 -0.1 

Post-Detection Phase 
Resolution Time (10 days) 

0.000354 -0.0037 0.00163 0.0044 -0.0002 0.00281 
-0.0069 -0.00299 0.00388 -0.00112 0.00556 0.00741 

Relative Risk of 
Transmission by 
Presymptomatic (1) 

0.259 -0.00558 -0.398 -0.558 0.0125 0.0334 
0.19 0.0162 -0.189 0.12 -0.043 -0.175 

Sensitivity of COVID Test 
(0.7) 

-0.421 -0.509 -0.183 -0.398 0.0395 -0.0364 
-0.287 -0.51 -0.241 -0.316 -0.488 -0.159 

 

Country level outcome elasticities for model parameters 

See the online Github repository at https://github.com/tseyanglim/CovidGlobal for country-level 
outcome tables. 

Sensitivity of results to exclusion of major countries  

We repeated the analysis in three additional setups, excluding the top five countries by population 
(India, USA, Indonesia, Pakistan, Nigeria), by true infections to date (USA, Mexico, Iran, Peru, 
Indonesia), and by reported infections to date (USA, Russia, India, UK, Spain) from the estimation 
and analysis. These analyses inform the sensitivity of overall findings to data from specific countries.  

In each case we report the percentage of change in the country level and aggregate outcome measures 
(those defined and discussed above). Table S8 summarizes the results; full country-level outcome 
tables are available on the online Github repository at https://github.com/tseyanglim/CovidGlobal. 

Results- Overall, the impact of excluding the top countries from analysis on historical fit and outcome 
measures is modest: fit quality does not change by more than 1.2% in 95% of country-outcome 
combinations. Moreover, the historical under-reporting ratios remain largely unchanged (changing by 
no more than 1.3% overall for 95% of country-outcome combinations). Cases and deaths summed 
up over the sample naturally change when excluding the larger countries or those with more infections 
(the bottom rows for each analysis). Long-term country level projections (items 3 and 4 in odd rows) 
change little (less than 2%) for most countries, however, a few show notable variations, suggesting 
high sensitivity to their response functions such that minor changes in parameters (which change due 
to the coupling with other nations) could significantly alter future projected outcomes. Those 
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countries with significant sensitivity include: Australia, Cuba, El Salvador, Iceland, Kuwait, New 
Zealand, and Togo. 

 

Table S8-Sensitivity of outcomes (in percentage change from baseline) to exclusion of top five countries by true infection, population, and reported infection. Each 
analysis is specified by the removed countries and followed by two rows of outcomes identified on the top. First row includes averages of 4 outcomes and 2 fit 
measures across 92 countries. Second row includes measures calculated over all simulated populations on 22 December 2020 and 30 June 2021. 

Removed Countries Ave Case 
Undercount 
Ratio 

Ave Death 
Undercount 
Ratio 

Ave 
6/30/21 
Infection 
Rate 

Ave 
6/30/21 
Death Rate 

Ave 
MAEN 
Infection 
Rate 

Ave 
MAEN 
Death Rate 

Dec 22 Cml. 
Cases  

Dec 22 Cml. 
Deaths 

Historical 
IFR 

6/30/21 
Cml. Cases 

6/30/21 
Cml. 
Deaths 

6/30/21 
Cml. IFR 

Top True Infections: USA, 
Mexico, Iran, Peru, 
Indonesia 

-0.011 0.0164 0.0743 -0.117 -0.0969 0.0701 
-33.5 -38.2 -5.94 -32.4 -35.2 -4.43 

Top Populations: India, 
USA, Indonesia, Pakistan, 
Nigeria 

-0.0178 0.00581 0.0606 0.0535 -0.0374 0.0373 
-22.8 -27.9 -6.95 -24.8 -25.9 -1.96 

Top Reported Infections: 
USA, Russia, India, UK, 
Spain 

0.183 0.0948 0.19 0.0557 0.0315 -0.176 
-28.4 -34.9 -9.4 -27.5 -32 -5.91 
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S8 ONLINE SIMULATOR  
We have developed an online simulator that uses the model documented in this paper and provides 
users the option to project the burden of the disease in the coming months under various scenarios. 
This simulator can be found at: 

https://exchange.iseesystems.com/public/mitsdl/covidglobal/index.html#page1  

The underlying model is the same as the one in this paper. Moreover, we regularly attempt to update 
the simulator by calibrating the model to new data across the globe, including incoming vaccination 
data, so that the projections are based on best available data to-date. Various versions of the model 
used in the online simulator, as well as any structural changes in the model should some occur in 
future, will be documented at: https://github.com/tseyanglim/CovidGlobal. 
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S9 COMPLETE MODEL DOCUMENTATION 
Below we provide complete model equations and units. The model, in the .mdl format, which can be 
opened using the Vensim simulation software, or the free Vensim model reader) is available with this 
appendix as well, and online at https://github.com/tseyanglim/CovidGlobal. Most of the equations 
are self-explanatory. The “[…]” notation is used to subscript variables over a set of members. For 
example, the subscript “Rgn” is used to identify different countries. Therefore [Rgn] indicates that a 
variable is defined separately for each member of the set “Rgn”. Other subscript ranges used in the 
equations are: 

expnt: Used for numerically solving the probability of missing symptoms equation. 

pdim: Used for setting policy levels for a few variables. 

Priors: Used for implementing the random effects estimation components. Each estimated parameter 
is mapped into an element of this subscript to simplify vector-based calculations. 

Series: The data series (Infection, Death, Recovery). 

TstSts: The test status including those confirmed (‘Tested’) and those unconfirmed (‘Notest’). 

Variables units are provided for most equations. Those missing units are ones subscripted over 
different variable types or using equations that (utilizing power or log functions) cannot have 
consistent units. 

Complete equations and units 

1) a[Rgn] = XIDZ ( Potential Test Demand from Susceptible Population[Rgn] , Positive Candidates Interested in 
Testing Poisson Subset Adj[Rgn] , 1)  Units: dmnl 

2) AbsPrcErr[Rgn,Series] = if then else ( DataIncluded[Rgn] = 0, :NA:, ZIDZ ( abs ( FlowResiduals[Rgn,Series] ) , 
DataFlowOverTime[Rgn,Series] ) )  Units: dmnl 

3) AbsStd[Priors] = 0.2, 0.3, 0.1, 0.2, 0.0002, 0.2, 10, 0.03, 6, 0.1, 0.1, 0.1, 0.8, 0.1, 1e-05, 10, 0.01, 0.005, 0.01, 10, 10, 
10, 0.01, 0.5, 0.5 Units: **undefined** 

4) Active Test Rate[Rgn] = if then else ( Time < New Testing Time , DataTestRate[Rgn] , External Test Rate[Rgn] ) 
 Units: Person/Day 

5) ActiveAve[PriorEndoAve] = INITIAL( InputAve[PriorEndoAve] * ( 1 - SW EndoAve ) + SW EndoAve * 
CalcAve[PriorEndoAve] ) 

6) ActiveAve[PMT] = InputAve[PMT]  Units: **undefined** 
7) Activities Allowed by Government[Rgn] = 1 Units: dmnl [0,1,0.01] 
8) Additional Asymptomatic Fraction Init[Rgn] = Additional Asymptomatic Relative to Symptomatic Init[Rgn] / ( 1 + 

Additional Asymptomatic Relative to Symptomatic Init[Rgn] )  Units: dmnl 
9) Additional Asymptomatic Post Detection[Rgn] = Weighted Infected Post Detection Gate[Rgn] * Additional 

Asymptomatic Relative to Symptomatic[Rgn] / ( 1 + Additional Asymptomatic Relative to Symptomatic[Rgn] ) 
 Units: Person 

10) Additional Asymptomatic Relative to Symptomatic[Rgn] = ZIDZ ( Total Asymptomatic Fraction Net[Rgn] - exp ( - 
Covid Acuity[Rgn] ) , 1 - Total Asymptomatic Fraction Net[Rgn] )  Units: dmnl 

11) Additional Asymptomatic Relative to Symptomatic Init[Rgn] = INITIAL( ZIDZ ( Total Asymptomatic Fraction 
Init Net[Rgn] - exp ( - Covid Acuity Relative to Flu Init Net[Rgn] * Flu Acuity ) , 1 - Total Asymptomatic Fraction 
Init Net[Rgn] ) ) Units: dmnl 

12) Adherence Fatigue Time = 100 Units: Day 
13) AdvCntrs[Rgn] = 1 Units: dmnl 
14) All Recovery[Rgn] = Recovery of Confirmed[Rgn] + Recovery of Untested[Rgn] + sum ( Hospital 

Discharges[Rgn,TstSts!] )  Units: Person/Day 
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15) Allocated Fraction COVID Hospitalized[Rgn] = min ( 1, ( - Expected Positive Poisson Covid Patients[Rgn] + Sqrt 
( Expected Positive Poisson Covid Patients[Rgn] ^ 2 + 4 * Effective Hospital Capacity[Rgn] * Effective Hospital 
Capacity[Rgn] ) ) / ( 2 * Effective Hospital Capacity[Rgn] ) )  Units: dmnl 

16) Allocated Fration NonCOVID Hospitalized[Rgn] = SMOOTHI ( Allocated Fraction COVID Hospitalized[Rgn] ^ 
2, Hospital Adj T , 1)  Units: dmnl 

17) alp[Rgn,Infection] = min ( maxAlp , ialp * alpR[Rgn] )  
18) alp[Rgn,Death] = min ( 1, dalp * alpR[Rgn] )  
19) alp[Rgn,Test] = min ( 1, talp * alpR[Rgn] )  Units: dmnl 
20) alpR[Rgn] = 1 Units: dmnl 
21) AntiVaxxerFrac[Rgn] = 0 Units: dmnl 
22) Area of Region[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 5) Units: Km*Km 
23) Average Acuity Hospitalized[Rgn,Tested] = Average Acuity of Positively Tested[Rgn] * XIDZ ( ( 1 - Probability of 

Missing Acuity Signal at Hospitals[Rgn,Tested] * Fraction Poisson not Hospitalized[Rgn,Tested] ^ 2) , 1 - Fraction 
Poisson not Hospitalized[Rgn,Tested] , 2 * Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] )  

24) Average Acuity Hospitalized[Rgn,Notest] = ZIDZ ( Average Acuity of Untested Poisson Subset[Rgn] * ( 1 - 
Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] * Fraction Poisson not Hospitalized[Rgn,Notest] ^ 2) 
, 1 - Fraction Poisson not Hospitalized[Rgn,Notest] )  Units: dmnl 

25) Average Acuity in Susceptible[Rgn] = ZIDZ ( Sympthoms in Susceptible[Rgn] , Susceptible[Rgn] )  Units: 
dmnl 

26) Average Acuity Not Hospitalized[Rgn,Notest] = ZIDZ ( Average Acuity Not Hospitalized Poisson[Rgn,Notest] * 
Infectious not Tested or in Hospitals Poisson[Rgn] , "Infected Unconfirmed Post-Detection"[Rgn] )  

27) Average Acuity Not Hospitalized[Rgn,Tested] = Average Acuity Not Hospitalized Poisson[Rgn,Tested]  Units: 
dmnl 

28) Average Acuity Not Hospitalized Poisson[Rgn,Tested] = Max ( 0, Probability of Missing Acuity Signal at 
Hospitals[Rgn,Tested] * Average Acuity of Positively Tested[Rgn] * Fraction Poisson not Hospitalized[Rgn,Tested] 
)  

29) Average Acuity Not Hospitalized Poisson[Rgn,Notest] = Max ( 0, Probability of Missing Acuity Signal at 
Hospitals[Rgn,Notest] * Average Acuity of Untested Poisson Subset[Rgn] * Fraction Poisson not 
Hospitalized[Rgn,Notest] )  Units: dmnl 

30) Average Acuity of Positively Tested[Rgn] = Covid Acuity[Rgn] * XIDZ ( ( 1 - Prob Missing Symptom[Rgn] * 
Fraction Interested not Tested[Rgn] ^ 2) , 1 - Fraction Interested not Tested[Rgn] , 2 * Prob Missing 
Symptom[Rgn] )  Units: dmnl 

31) Average Acuity of Untested Poisson Subset[Rgn] = ZIDZ ( Poisson Subset Reaching Test Gate[Rgn] * Covid 
Acuity[Rgn] - Positive Tests of Infected[Rgn] * Average Acuity of Positively Tested[Rgn] , Poisson Subset Not 
Tested Passing Gate[Rgn] )  Units: dmnl 

32) b[Rgn] = ZIDZ ( Testing on Living[Rgn] - Positive Candidates Interested in Testing Poisson Subset Adj[Rgn] - 
Potential Test Demand from Susceptible Population[Rgn] , Positive Candidates Interested in Testing Poisson 
Subset Adj[Rgn] )  Units: dmnl 

33) Base Fatality Rate for Unit Acuity[Rgn] = 0.0006 Units: dmnl 
34) Base Fatality Rate for Unit Acuity Net[Rgn] = INITIAL( Base Fatality Rate for Unit Acuity[Rgn] * ( 1 - SW 

Gen[BsFtRt] ) + SW Gen[BsFtRt] * InputAve[BsFtRt] ) Units: dmnl [0,0.01] 
35) BaseError = 5 Units: Person 
36) Baseline Cumulative Cases for Learning = 0.005 Units: dmnl 
37) Baseline Daily Fraction Susceptible Seeking Tests[Rgn] = 0.001 Units: 1/Day 
38) Baseline Fatality Multiplier[Rgn] = INITIAL( Demographic Impact on Fatality Relative to China[Rgn] * Base 

Fatality Rate for Unit Acuity Net[Rgn] * Liver Disease Impact on Fatality[Rgn] * Obesity Impact on Fatality[Rgn] * 
Chronic Impact on Fatality[Rgn] ) Units: dmnl [0,0.1] 

39) Baseline Risk of Transmission by Asymptomatic[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 
Symptomatic * Multiplier Transmission Risk for Asymptomatic Net[Rgn] ) Units: dmnl 

40) Baseline Transmission Multiplier for Untested Symptomatic = 1 Units: dmnl 
41) Bed per Square Kilometer[Rgn] = INITIAL( Nominal Hospital Capacity[Rgn] / Area of Region[Rgn] ) Units: 

Person/(Km*Km) 
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42) Beds per Thousand Population[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 11)
 Units: dmnl 

43) CalcAve[Priors] = INITIAL( sum ( RegionalInputs[Priors,Rgn!] ) / ELMCOUNT(Rgn) ) Units: 
**undefined** 

44) cft[Rgn,p2] = lnymix[Rgn,p2]  
45) cft[Rgn,p3] = lnymix[Rgn,p3] - lnymix[Rgn,p2]  
46) cft[Rgn,p4] = ( ln ( min ( 100, Max ( 1e-06, ZIDZ ( lnymix[Rgn,p4] - lnymix[Rgn,p2] , lnymix[Rgn,p3] - 

lnymix[Rgn,p2] ) / ln ( 2) ) ) ) )  Units: dmnl 
47) Chng Cml Dth Untst Untrt[Rgn] = Deaths of Symptomatic Untested[Rgn] - Post Mortem Test Rate[Rgn] * Frac 

Post Mortem from Untreated[Rgn]  Units: Person/Day 
48) Chronic Death Rate[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 17) Units: 

dmnl 
49) Chronic Impact on Fatality[Rgn] = INITIAL( ( Chronic Death Rate[Rgn] / MeanChronic ) ^ Sens Chronic Impact 

Net[Rgn] ) Units: dmnl 
50) Cml Death Frac In Hosp[Rgn] = XIDZ ( Cumulative Deaths at Hospital[Rgn,Tested] + Cumulative Deaths at 

Hospital[Rgn,Notest] , Cumulative Deaths[Rgn] , 1)  Units: dmnl 
51) Cml Death fraction in hospitals large enough = sum ( if then else ( Cml Death Frac In Hosp[Rgn!] < 

MinHspDTresh , 1, 0) )  Units: dmnl 
52) Cml Death Hsp Inc[Rgn,Tested] = Hospitalized Infectious Deaths[Rgn,Tested] + PostMortemCorrection[Rgn]  
53) Cml Death Hsp Inc[Rgn,Notest] = Hospitalized Infectious Deaths[Rgn,Notest] - PostMortemCorrection[Rgn] 

 Units: Person/Day 
54) Cml Known Death Frac Hosp[Rgn] = XIDZ ( Cumulative Deaths at Hospital[Rgn,Tested] , Cumulative 

Deaths[Rgn] , 1)  Units: dmnl 
55) CmltErrPW = 2 Units: dmnl 
56) CmltPenaltyScl = 0 Units: dmnl 
57) CmltToInclude[Series] = 0, 0, 0 Units: dmnl 
58) Confirmation Impact on Contact[Rgn] = 0.002 Units: dmnl 
59) Confirmed Recovered[Rgn] = INTEG( Recovery of Confirmed[Rgn] , 0)  Units: Person 
60) Constant Data File :IS: 'CovidModelInputs - ConstantData.vdf' 
61) Contacts Relative to Normal[Rgn] = min ( Voluntary Reduction in Contacts[Rgn] , Activities Allowed by 

Government[Rgn] )  Units: dmnl 
62) Continue without Testing[Rgn] = Reaching Testing Gate[Rgn] - Symptomatic Infected to Testing[Rgn] - Untested 

symptomatic Infected to Hospital[Rgn]  Units: Person/Day 
63) Count Missed Death[Rgn] = if then else ( Excess Death Start Count[Rgn] = :NA:, 0, if then else ( Time >= Excess 

Death Start Count[Rgn] :AND: Time <= Excess Death End Count[Rgn] , Cml Death Hsp Inc[Rgn,Notest] + 
Chng Cml Dth Untst Untrt[Rgn] , 0) )  Units: Person/Day 

64) Covid Acuity[Rgn] = Flu Acuity * Covid Acuity Relative to Flu Net[Rgn]  Units: dmnl 
65) Covid Acuity Relative to Flu[Rgn] = 6 Units: dmnl 
66) Covid Acuity Relative to Flu Init Net[Rgn] = INITIAL( Covid Acuity Relative to Flu[Rgn] * ( 1 - SW Gen[Acty] ) + 

SW Gen[Acty] * InputAve[Acty] ) Units: dmnl 
67) Covid Acuity Relative to Flu Net[Rgn] = Average Acuity in Susceptible[Rgn] / ( 1 - Additional Asymptomatic 

Fraction Init[Rgn] )  Units: dmnl 
68) Covid Poisson Fraction in Hospital[Rgn] = ZIDZ ( Total Covid Hospitalized[Rgn] , Infectious not Tested or in 

Hospitals Poisson[Rgn] + Infectious Confirmed Not Hospitalized[Rgn] + Total Covid Hospitalized[Rgn] ) 
 Units: dmnl 

69) CRW[Rgn]  Units: dmnl 
70) Cumulative Cases[Rgn] = INTEG( New Cases[Rgn] , 0)  Units: Person 
71) Cumulative Confirmed Cases[Rgn] = INTEG( SimFlowOverTime[Rgn,Infection] , 0)  Units: Person 
72) Cumulative Confirmed Recovered[Rgn] = Confirmed Recovered[Rgn] + Cumulative Recovered at 

Hospitals[Rgn,Tested]  Units: Person 
73) Cumulative Death Fraction[Rgn] = ZIDZ ( Cumulative Deaths[Rgn] , Cumulative Deaths[Rgn] + Cumulative 

Recoveries[Rgn] )  Units: dmnl 
74) Cumulative Deaths[Rgn] = INTEG( Death Rate[Rgn] , 0)  Units: Person 
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75) Cumulative Deaths at Hospital[Rgn,TstSts] = INTEG( Cml Death Hsp Inc[Rgn,TstSts] , 0)  Units: Person 
76) Cumulative Deaths of Confirmed[Rgn] = INTEG( SimFlowOverTime[Rgn,Death] , 0)  Units: Person 
77) Cumulative Deaths of Confirmed Untreated[Rgn] = INTEG( Deaths of Confirmed[Rgn] + Post Mortem Test 

Untreated[Rgn] , 0)  Units: Person 
78) Cumulative Deaths Untested Untreated[Rgn] = INTEG( Chng Cml Dth Untst Untrt[Rgn] , 0)  Units: Person 
79) Cumulative Fraction Total Cases Hospitalized[Rgn] = ZIDZ ( sum ( Cumulative Deaths at Hospital[Rgn,TstSts!] + 

Cumulative Recovered at Hospitals[Rgn,TstSts!] + Hospitalized Infectious[Rgn,TstSts!] ) , Cumulative Cases[Rgn] ) 
 Units: dmnl 

80) Cumulative Missed Death[Rgn] = INTEG( Count Missed Death[Rgn] , 0)  Units: Person 
81) Cumulative Negative Tests[Rgn] = INTEG( Negative Test Results[Rgn] , 0)  Units: Person 
82) Cumulative Recovered at Hospitals[Rgn,TstSts] = INTEG( Hospital Discharges[Rgn,TstSts] , 0)  Units: Person 
83) Cumulative Recoveries[Rgn] = INTEG( All Recovery[Rgn] , 0)  Units: Person 
84) Cumulative Tests Conducted[Rgn] = INTEG( SimTestRate[Rgn] , 0)  Units: Person 
85) Cumulative Tests Data[Rgn] = INTEG( TstInc[Rgn] , 0)  Units: Person 
86) Current Test Rate per Capita[Rgn] = INITIAL( if then else ( DataLastTestRate[Rgn] = :NA:, 0, 

DataLastTestRate[Rgn] / Population[Rgn] ) ) Units: 1/Day 
87) dalp = 0.1 Units: dmnl 
88) Data Excess Deaths[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 15) Units: 

Person 
89) DataAttentionTime[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 9) Units: 

Day 
90) DataCmltDeath[Rgn]  Units: Person 
91) DataCmltInfection[Rgn]  Units: Person 
92) DataCmltOverTime[Rgn,Infection] :RAW: := DataCmltInfection[Rgn]  
93) DataCmltOverTime[Rgn,Death] :RAW: := DataCmltDeath[Rgn]  
94) DataCmltOverTime[Rgn,Test] = DataCmltTest[Rgn]  Units: Person 
95) DataCmltTest[Rgn]  Units: Person 
96) DataFlowDeath[Rgn]  Units: Person/Day 
97) DataFlowInfection[Rgn]  Units: Person/Day 
98) DataFlowOverTime[Rgn,Infection] :RAW: := DataFlowInfection[Rgn]  
99) DataFlowOverTime[Rgn,Death] :RAW: := DataFlowDeath[Rgn]  
100) DataFlowOverTime[Rgn,Test] :RAW: := DataTestRate[Rgn]  Units: Person/Day 
101) DataFlowRecovery[Rgn] :RAW:  Units: Person/Day 
102) DataIncluded[Rgn] = if then else ( Max ( Cumulative Deaths[Rgn] , Max ( Cumulative Confirmed Cases[Rgn] , 

DataCmltOverTime[Rgn,Infection] ) ) > ThrsInc[Rgn] , 1, 0) * DataLimitFromTime[Rgn]  Units: dmnl 
103) DataLastTestRate[Rgn] = INITIAL( GET DATA AT TIME ( DataTestRate[Rgn] , min ( LastTestDate[Rgn] , New 

Testing Time ) ) ) Units: Person/Day 
104) DataLimitFromTime[Rgn] = if then else ( Time > StopDataUseTime[Rgn] , 0, 1)  Units: dmnl 
105) DataTestCapacity[Rgn]  Units: Person/Day 
106) DataTestRate[Rgn]  Units: Person/Day 
107) Day of First Case Report in JHU Database = 99 Units: Day 
108) Days per Year = 365 Units: Day/Year 
109) Death Rate[Rgn] = Deaths of Confirmed[Rgn] + Deaths of Symptomatic Untested[Rgn] + sum ( Hospitalized 

Infectious Deaths[Rgn,TstSts!] )  Units: Person/Day 
110) DeathFractionCounted[Rgn] = if then else ( DataCmltOverTime[Rgn,Death] = :NA:, 0, ZIDZ ( 

DataCmltOverTime[Rgn,Death] , Cumulative Deaths[Rgn] ) )  Units: dmnl 
111) Deaths of Confirmed[Rgn] = Tested Untreated Resolution[Rgn] * Fatality Rate Untreated[Rgn,Tested]  Units: 

Person/Day 
112) Deaths of Symptomatic Untested[Rgn] = Infectious not Tested or in Hospitals Poisson[Rgn] / "Post-Detection 

Phase Resolution Time" * Fatality Rate Untreated[Rgn,Notest]  Units: Person/Day 
113) Delay Order = 1 Units: dmnl 
114) Demographic Impact on Fatality Relative to China[Rgn] = GET VDF CONSTANTS(Constant Data File , 

'DataConstants[Rgn]', 12) Units: dmnl 
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115) Di[Rgn,Series] = DataFlowOverTime[Rgn,Series]  Units: Person/Day 
116) Different Infectious Counted[Rgn] = "Pre-Symptomatic Infected"[Rgn] + Infected pre Detection[Rgn] + ( 

Additional Asymptomatic Post Detection[Rgn] + "Poisson Not-tested Asymptomatic"[Rgn] ) + ( Infectious not 
Tested or in Hospitals Poisson[Rgn] - "Poisson Not-tested Asymptomatic"[Rgn] ) + Infectious Confirmed Not 
Hospitalized[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] )  Units: Person 

117) Discount Rate Annual = 0.03 Units: 1/Year [1e-05,0.2] 
118) Discount Rate per Day = INITIAL( Discount Rate Annual / Days per Year ) Units: 1/Day 
119) Dread Factor in Risk Perception[Rgn] = 25 Units: dmnl [0,10000] 
120) Dread Factor in Risk Perception Net[Rgn] = if then else ( Response Policy Time On < Time , ( 1 + Response 

Policy Weight ) * Dread Factor in Risk Perception[Rgn] , Dread Factor in Risk Perception[Rgn] ) * Impact of 
Adherence Fatigue[Rgn]  Units: dmnl 

121) Dread Factor Policy = 3000 Units: dmnl 
122) Effective Hospital Capacity[Rgn] = Nominal Hospital Capacity[Rgn] * Normalized Hospital density[Rgn] ^ Impact 

of Population Density on Hospital Availability[Rgn]  Units: Person 
123) eps = 0.001 Units: Person/Day 
124) Excess Death End Count[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 14)

 Units: Day 
125) Excess Death Mean Frac = 0.9 Units: dmnl 
126) Excess Death Range Frac = 0.2 Units: dmnl 
127) Excess Death Rate Error[Rgn] = if then else ( Data Excess Deaths[Rgn] < 50, 0, ZIDZ ( Cumulative Missed 

Death[Rgn] - Excess Death Mean Frac * Data Excess Deaths[Rgn] , Excess Death Range Frac * Data Excess 
Deaths[Rgn] ) ^ 4)  Units: dmnl 

128) Excess Death Start Count[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 13)
 Units: Day 

129) Expected Positive Poisson Covid Patients[Rgn] = sum ( Potential Hospital Demand[Rgn,TstSts!] ) * "Post-
Detection Phase Resolution Time"  Units: Person 

130) expnt : (p2-p4) 
131) External Test Rate[Rgn] = Population[Rgn] * Policy Test Rate[Rgn]  Units: Person/Day 
132) Extrapolated Estimator[Rgn] = if then else ( Covid Acuity Relative to Flu Net[Rgn] > 1, cft[Rgn,p2] + cft[Rgn,p3] * 

( Covid Acuity Relative to Flu Net[Rgn] - 1) ^ cft[Rgn,p4] , lnymix[Rgn,p2] )  Units: dmnl 
133) Fatality Rate Treated[Rgn,TstSts] = min ( 1, Baseline Fatality Multiplier[Rgn] * TimeVar Impact of Treatment on 

Fatality[Rgn] * Average Acuity Hospitalized[Rgn,TstSts] ^ Sensitivity of Fatality Rate to Acuity Net[Rgn] )  Units: 
dmnl 

134) Fatality Rate Untreated[Rgn,TstSts] = min ( 1, Baseline Fatality Multiplier[Rgn] * Average Acuity Not Hospitalized 
Poisson[Rgn,TstSts] ^ Sensitivity of Fatality Rate to Acuity Net[Rgn] * Time variant change in fatality[Rgn] ) 
 Units: dmnl 

135) Final Test Rate Per Capita[Rgn] = INITIAL( Current Test Rate per Capita[Rgn] + Weight Max in Test Goal * Max 
( 0, ( Max Test Rate per Capita - Current Test Rate per Capita[Rgn] ) ) ) Units: 1/Day 

136) FINAL TIME = 444 Units: Day [50,182,1] 
137) FlowResiduals[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] = :NA:, :NA:, 

DataFlowOverTime[Rgn,Series] - MeanFlowOverTime[Rgn,Series] )  Units: Person/Day 
138) FlowToInclude[Series] = 1, 1, 0 Units: dmnl 
139) Flu Acuity = 1 Units: dmnl 
140) Flu Acuity Relative to Covid[Rgn] = Flu Acuity / Covid Acuity[Rgn]  Units: dmnl 
141) Frac Post Mortem from Untreated[Rgn] = SMOOTHI ( ZIDZ ( Deaths of Symptomatic Untested[Rgn] , Deaths of 

Symptomatic Untested[Rgn] + Hospitalized Infectious Deaths[Rgn,Notest] ) , Post Mortem Test Delay , 1) 
 Units: dmnl 

142) frac rampup = 0.5 Units: dmnl 
143) FracNotVaccinated Susceptible[Rgn] = Susceptible[Rgn] / ( Initial Population[Rgn] - Vaccinated[Rgn] )  Units: 

dmnl 
144) FracThresh = 0.001 Units: dmnl 
145) Fraction Covid Death In Hospitals Previously Tested[Rgn] = ZIDZ ( Hospitalized Infectious Deaths[Rgn,Tested] , 

sum ( Hospitalized Infectious Deaths[Rgn,TstSts!] ) )  Units: dmnl 
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146) Fraction Covid Hospitalized Positively Tested[Rgn] = ZIDZ ( Hospitalized Infectious[Rgn,Tested] , Total Covid 
Hospitalized[Rgn] )  Units: dmnl 

147) Fraction Infected[Rgn] = Cumulative Cases[Rgn] / Initial Population[Rgn]  Units: dmnl 
148) Fraction Interested not Tested[Rgn] = 1 - ZIDZ ( Total Test on Covid Patients[Rgn] , Positive Candidates 

Interested in Testing Poisson Subset[Rgn] )  Units: dmnl 
149) Fraction Interseted not Correctly Tested[Rgn] = 1 - ( 1 - Fraction Interested not Tested[Rgn] ) * Sensitivity of 

COVID Test  Units: dmnl 
150) Fraction of Additional Symptomatic[Rgn] = Additional Asymptomatic Relative to Symptomatic[Rgn] / ( 1 + 

Additional Asymptomatic Relative to Symptomatic[Rgn] )  Units: dmnl 
151) Fraction of Fatalities Screened Post Mortem[Rgn] = Indicated Fraction Post Mortem Testing[Rgn] * Switch for 

Government Response[Rgn]  Units: dmnl 
152) Fraction of Population Hospitalized for Covid[Rgn] = Total Covid Hospitalized[Rgn] / Population[Rgn]  Units: 

dmnl 
153) Fraction Poisson not Hospitalized[Rgn,Tested] = exp ( - Average Acuity of Positively Tested[Rgn] * ( 1 - 

Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] ) )  
154) Fraction Poisson not Hospitalized[Rgn,Notest] = exp ( - Average Acuity of Untested Poisson Subset[Rgn] * ( 1 - 

Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] ) )  Units: dmnl 
155) Fraction Seeking Test[Rgn] = 1 Units: dmnl 
156) Fraction Tests Positive[Rgn] = ZIDZ ( Positive Tests of Infected[Rgn] , Testing on Living[Rgn] )  Units: 

dmnl 
157) Fraction Tests Positive Data[Rgn] = min ( 1, ZIDZ ( DataFlowInfection[Rgn] , Active Test Rate[Rgn] ) )  Units: 

dmnl 
158) Global Cases = sum ( Cumulative Cases[Rgn!] )  Units: Person 
159) Global Deaths = sum ( Cumulative Deaths[Rgn!] )  Units: Person 
160) Global IFR = ZIDZ ( Global Deaths , Global Cases - sum ( Different Infectious Counted[Rgn!] ) )  Units: 

dmnl 
161) Government Response Start Time[Rgn] = INITIAL( DataAttentionTime[Rgn] + Day of First Case Report in JHU 

Database ) Units: Day 
162) Herd Immunity Fraction = 0.6 Units: dmnl 
163) Hospital Adj T = 1 Units: Day 
164) Hospital Admission Infectious[Rgn,TstSts] = Hospital Admits All[Rgn,TstSts]  Units: Person/Day 
165) Hospital Admit Ratio[Rgn,TstSts] = XIDZ ( Hospital Admits All[Rgn,TstSts] , Potential Hospital 

Demand[Rgn,TstSts] , 1)  Units: dmnl 
166) Hospital Admits All[Rgn,Tested] = Hospital Demand from Tested[Rgn] * Allocated Fraction COVID 

Hospitalized[Rgn]  
167) Hospital Admits All[Rgn,Notest] = Hospital Demand from Not Tested[Rgn] * Allocated Fraction COVID 

Hospitalized[Rgn]  Units: Person/Day 
168) Hospital Demand from Not Tested[Rgn] = Poisson Subset Not Tested Passing Gate[Rgn] * ( 1 - exp ( - Average 

Acuity of Untested Poisson Subset[Rgn] * ( 1 - PMAS Unconfirmed for Hospital Demand[Rgn] ) ) )  Units: 
Person/Day 

169) Hospital Demand from Tested[Rgn] = Positive Tests of Infected[Rgn] * ( 1 - exp ( - Average Acuity of Positively 
Tested[Rgn] * ( 1 - PMAS Confirmed for Hospital Demand[Rgn] ) ) )  Units: Person/Day 

170) Hospital Discharges[Rgn,TstSts] = ( 1 - Fatality Rate Treated[Rgn,TstSts] ) * Hospital Outflow Covid 
Positive[Rgn,TstSts]  Units: Person/Day 

171) Hospital Outflow Covid Positive[Rgn,TstSts] = Hospitalized Infectious[Rgn,TstSts] / Hospitalized Resolution 
Time  Units: Person/Day 

172) Hospitalized CFR Cumulative[Rgn,TstSts] = ZIDZ ( Cumulative Deaths at Hospital[Rgn,TstSts] , Cumulative 
Deaths at Hospital[Rgn,TstSts] + Cumulative Recovered at Hospitals[Rgn,TstSts] )  Units: dmnl 

173) Hospitalized Infectious[Rgn,TstSts] = INTEG( Hospital Admission Infectious[Rgn,TstSts] - Hospitalized 
Infectious Deaths[Rgn,TstSts] - Hospital Discharges[Rgn,TstSts] , 0)  Units: Person 

174) Hospitalized Infectious Deaths[Rgn,TstSts] = Fatality Rate Treated[Rgn,TstSts] * Hospital Outflow Covid 
Positive[Rgn,TstSts]  Units: Person/Day 

175) Hospitalized Resolution Time = 20 Units: Day 
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176) Hospitalized True CFR[Rgn] = ZIDZ ( sum ( Hospitalized Infectious Deaths[Rgn,TstSts!] ) , sum ( Hospital 
Outflow Covid Positive[Rgn,TstSts!] ) )  Units: dmnl 

177) Hospitalized True CFR Cumulative[Rgn] = ZIDZ ( sum ( Cumulative Deaths at Hospital[Rgn,TstSts!] ) , sum ( 
Cumulative Deaths at Hospital[Rgn,TstSts!] + Cumulative Recovered at Hospitals[Rgn,TstSts!] ) )  Units: 
dmnl 

178) ialp = 0.1 Units: dmnl 
179) Impact of Adherence Fatigue[Rgn] = Recent Relative Contacts[Rgn] ^ ( Strength of Adherence Fatigue[Rgn] * if 

then else ( Time to Stop Adherence Fatigue > Time , 1, SWadhFtg ) )  Units: dmnl 
180) Impact of Population Density on Hospital Availability[Rgn] = 0.72 Units: dmnl 
181) Impact of Treatment on Fatality Rate[Rgn] = 0.32 Units: dmnl 
182) Incubation Period = 5.6 Units: Day 
183) Indicated fraction negative demand tested[Rgn] = 1 - exp ( Flu Acuity * ( Prob Missing Symptom[Rgn] - 1) ) 

 Units: dmnl 
184) Indicated fraction positive demand tested[Rgn] = 1 - exp ( Covid Acuity[Rgn] * ( Prob Missing Symptom[Rgn] - 1) ) 

 Units: dmnl 
185) Indicated Fraction Post Mortem Testing[Rgn] = Fraction Covid Death In Hospitals Previously Tested[Rgn] ^ 

Sensitivity Post Mortem Testing to Capacity[Rgn]  Units: dmnl 
186) Indicated Risk of Life Loss[Rgn] = Perceived Hazard of Death[Rgn] / Discount Rate per Day  Units: dmnl 
187) Infected pre Detection[Rgn] = INTEG( Onset of Symptoms[Rgn] - Continue without Testing[Rgn] - Symptomatic 

Infected to Testing[Rgn] - Untested symptomatic Infected to Hospital[Rgn] , 0)  Units: Person 
188) "Infected Unconfirmed Post-Detection"[Rgn] = INTEG( Continue without Testing[Rgn] - Deaths of Symptomatic 

Untested[Rgn] - Recovery of Untested[Rgn] , 0)  Units: Person 
189) Infection Rate[Rgn] = Infectious Contacts[Rgn] * ( Susceptible[Rgn] / Population[Rgn] ) * Weather Effect on 

Transmission[Rgn]  Units: Person/Day 
190) InfectionUFractionCounted[Rgn] = if then else ( DataCmltOverTime[Rgn,Infection] = :NA:, 0, ZIDZ ( 

DataCmltOverTime[Rgn,Infection] , Cumulative Cases[Rgn] ) )  Units: dmnl 
191) Infectious Confirmed Not Hospitalized[Rgn] = INTEG( Positive Testing of Infected Untreated[Rgn] - Deaths of 

Confirmed[Rgn] - Recovery of Confirmed[Rgn] , 0)  Units: Person 
192) Infectious Contacts[Rgn] = ( "Pre-Symptomatic Infected"[Rgn] * Transmission Multiplier Presymptomatic[Rgn] + 

Infected pre Detection[Rgn] * Transmission Multiplier Pre Detection[Rgn] + ( Additional Asymptomatic Post 
Detection[Rgn] + "Poisson Not-tested Asymptomatic"[Rgn] ) * Baseline Risk of Transmission by 
Asymptomatic[Rgn] + ( Infectious not Tested or in Hospitals Poisson[Rgn] - "Poisson Not-tested 
Asymptomatic"[Rgn] ) * Baseline Transmission Multiplier for Untested Symptomatic + Infectious Confirmed Not 
Hospitalized[Rgn] * Transmission Multiplier for Confirmed[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] * 
Transmission Multiplier for Hospitalized[Rgn,TstSts!] ) ) * Reference Force of Infection[Rgn] * Contacts Relative to 
Normal[Rgn]  Units: Person/Day 

193) Infectious not Tested or in Hospitals Poisson[Rgn] = "Infected Unconfirmed Post-Detection"[Rgn] - Additional 
Asymptomatic Post Detection[Rgn]  Units: Person 

194) Initial Population[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 1) Units: 
Person 

195) INITIAL TIME = 30 Units: Day 
196) InpAveErr = INITIAL( sum ( InpAveErrCmp[PriorEndoAve!] * PriorCounts[PriorEndoAve!] ) ) Units: 

**undefined** 
197) InpAveErrCmp[PriorEndoAve] = INITIAL( ( abs ( CalcAve[PriorEndoAve] - InputAve[PriorEndoAve] ) / Max ( 

1e-06, CalcAve[PriorEndoAve] ) * SW EndoAve ) ) Units: **undefined** 
198) InputAve[Priors] = 1, 1.8, 0.47, 1, 0.0009, 0.81, 58, 0.017, 6.2, 0.1, 0.24, 0.4, 2.27, 0.52, 0.00055, 0.76, 5.9, 2.07, 0.55, 

1e-06, 1e-06, 1e-06, 0.28, 0, 0 Units: **undefined** 
199) IrD : Travel,InformalDeath 
200) Known death fraction in hospitals large enough = sum ( if then else ( Cml Known Death Frac Hosp[Rgn!] < 

MinHspDTreshAdv , 1, 0) * AdvCntrs[Rgn!] )  Units: dmnl 
201) lastTestData[Rgn] = INITIAL( GET DATA Last TIME ( DataTestRate[Rgn] ) ) Units: Day 
202) LastTestDate[Rgn] = INITIAL( GET DATA Last TIME ( DataTestRate[Rgn] ) ) Units: Day 
203) Learning and Death Reduction Rate[Rgn1] = 0 Units: dmnl 
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204) Liver Disease Impact on Fatality[Rgn] = INITIAL( ( Liver Disease Rate[Rgn] / MeanLiver ) ^ Sens Liver Impact 
Net[Rgn] ) Units: dmnl 

205) Liver Disease Rate[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 18) Units: 
dmnl 

206) lnymix[Rgn,expnt] = - ln ( Max ( 1e-06, 1 - Ymix[Rgn,expnt] ) )  Units: dmnl 
207) lnymix 0[Rgn,expnt] = - ln ( Max ( 1e-06, 1 - Ymix[Rgn,expnt] ) )  Units: dmnl 
208) Max Test Rate per Capita = 0.001 Units: 1/Day 
209) Max Time Data Used = 550 Units: Day 
210) maxAlp = 1 Units: dmnl 
211) MaxData[Rgn] = INITIAL( GET DATA MAX ( DataCmltOverTime[Rgn,Infection] , 0, 500) ) Units: Person 
212) MaxRTresh = 8 Units: dmnl 
213) MaxVacRate[Rgn] = INITIAL( if then else ( Vaccination Period < 10, 0, Initial Population[Rgn] * ( 1 - 

AntiVaxxerFrac[Rgn] ) / ( Vaccination Period - frac rampup * Vaccination Period / 2) ) ) Units: 
Person/Day 

214) MeanChronic = GET VDF CONSTANTS(Constant Data File , 'MeanChronic', 1) Units: dmnl 
215) MeanFlowOverTime[Rgn,Infection] = Post Mortem Test Rate[Rgn] + Positive Tests of Infected[Rgn]  
216) MeanFlowOverTime[Rgn,Death] = Recorded Deaths[Rgn]  
217) MeanFlowOverTime[Rgn,Test] = Total Simulated Tests[Rgn]  Units: Person/Day 
218) MeanLiver = GET VDF CONSTANTS(Constant Data File , 'MeanLiver', 1) Units: dmnl 
219) MeanObesity = GET VDF CONSTANTS(Constant Data File , 'MeanObesity', 1) Units: dmnl 
220) Min Contact Fraction[Rgn] = 0.04 Units: dmnl 
221) Min Excess Death Attributable to COVID = 0.5 Units: dmnl 
222) Min Fatality Multiplier = 0.1 Units: dmnl 
223) Min Vaccination Time = 10 Units: Day 
224) MinAdjT = 1 Units: Day 
225) MinHspDTresh = 0.2 Units: dmnl 
226) MinHspDTreshAdv = 0.8 Units: dmnl 
227) MinSuscTresh = 0.7 Units: dmnl 
228) MinTimeDwngRisk = 5 Units: Day 
229) Mu[Rgn,Series] = Max ( eps , MeanFlowOverTime[Rgn,Series] )  Units: Person/Day 
230) Multiplier Recent Infections to Test[Rgn] = 45 Units: dmnl 
231) Multiplier Transmission Risk for Asymptomatic[Rgn] = 0.3 Units: dmnl 
232) Multiplier Transmission Risk for Asymptomatic Net[Rgn] = INITIAL( Multiplier Transmission Risk for 

Asymptomatic[Rgn] * ( 1 - SW Gen[MTrAsym] ) + SW Gen[MTrAsym] * InputAve[MTrAsym] ) Units: dmnl 
233) NBL1[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] = 0, - ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) 

/ alp[Rgn,Series] , 0)  Units: dmnl 
234) NBL2[Rgn,Series] = if then else ( DataFlowOverTime[Rgn,Series] > 0, GAMMA LN ( Di[Rgn,Series] + 1 / 

alp[Rgn,Series] ) - GAMMA LN ( 1 / alp[Rgn,Series] ) - GAMMA LN ( Di[Rgn,Series] + 1) - ( Di[Rgn,Series] + 1 / 
alp[Rgn,Series] ) * ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) + Di[Rgn,Series] * ( ln ( alp[Rgn,Series] ) + ln ( 
Mu[Rgn,Series] ) ) , 0)  Units: dmnl 

235) NBL3[Rgn,Series] = if then else ( Di[Rgn,Series] > 0, - GAMMA LN ( Di[Rgn,Series] + 1) - ( Di[Rgn,Series] + 1 / 
alp[Rgn,Series] ) * ln ( 1 + alp[Rgn,Series] * Mu[Rgn,Series] ) + Di[Rgn,Series] * ( ln ( alp[Rgn,Series] ) + ln ( 
Mu[Rgn,Series] ) ) , 0)  Units: dmnl 

236) NBLLFlow[Rgn,Series] = ( NBL1[Rgn,Series] + NBL2[Rgn,Series] ) * FlowToInclude[Series] * DataIncluded[Rgn] 
 Units: dmnl 

237) Negative Test Results[Rgn] = Testing on Living[Rgn] - Positive Tests of Infected[Rgn]  Units: Person/Day 
238) New Cases[Rgn] = Infection Rate[Rgn] + Patient Zero Arrival[Rgn]  Units: Person/Day 
239) New Testing Time = 1000 Units: Day 
240) Nominal Hospital Capacity[Rgn] = INITIAL( Initial Population[Rgn] * Beds per Thousand Population[Rgn] / 1000 

) Units: Person 
241) Normalized Hospital density[Rgn] = INITIAL( Bed per Square Kilometer[Rgn] / Reference Hospital Density )

 Units: dmnl 
242) Not too few susceptibles = sum ( if then else ( SuscFrac[Rgn!] < MinSuscTresh , 1, 0) )  Units: dmnl 
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243) NSeed = 1 Units: dmnl 
244) numTrial[Rgn,UsedSeries] = INITIAL( Max ( 1.01, 1 / alp[Rgn,UsedSeries] ) ) Units: dmnl 
245) Obesity Impact on Fatality[Rgn] = INITIAL( ( Obesity Rates[Rgn] / MeanObesity ) ^ Sens Obesity Impact 

Net[Rgn] ) Units: dmnl 
246) Obesity Rates[Rgn] = GET VDF CONSTANTS(Constant Data File , 'DataConstants[Rgn]', 16) Units: dmnl 
247) Onset of Symptoms[Rgn] = DELAY N ( Infection Rate[Rgn] , Incubation Period ,0, Delay Order )  Units: 

Person/Day 
248) Onset to Detection Delay = 5 Units: Day 
249) OtherVaccination[Rgn] = Vaccination On[Rgn] * min ( Total Vaccination Rate[Rgn] * ( 1 - FracNotVaccinated 

Susceptible[Rgn] ) , RemainingFractionForVaccine[Rgn] * ( Initial Population[Rgn] - Vaccinated[Rgn] - 
Susceptible[Rgn] ) / Min Vaccination Time )  Units: Person/Day 

250) Overall Death Fraction[Rgn] = ZIDZ ( Death Rate[Rgn] , All Recovery[Rgn] )  Units: dmnl 
251) Patient Zero Arrival[Rgn] = if then else ( Time < Patient Zero Arrival Time[Rgn] :AND: Time + TIME STEP >= 

Patient Zero Arrival Time[Rgn] , PatientZero / TIME STEP , 0)  Units: Person/Day 
252) Patient Zero Arrival Time[Rgn] = 1 Units: Day [0,200] 
253) PatientZero = 1 Units: Person 
254) payoff = 0 Units: dmnl 
255) pdim : tstP,dfcP,dgtP,scuP 
256) Perceived Hazard of Death[Rgn] = ( Weight on Reported Probability of Infection[Rgn] * Reported Hazard of 

Death[Rgn] + ( 1 - Weight on Reported Probability of Infection[Rgn] ) * True Hazard of death[Rgn] )  Units: 
1/Day 

257) Perceived Risk of Life Loss[Rgn] = INTEG( ( Indicated Risk of Life Loss[Rgn] - Perceived Risk of Life Loss[Rgn] ) 
/ if then else ( Indicated Risk of Life Loss[Rgn] > Perceived Risk of Life Loss[Rgn] , Time to Upgrade Risk[Rgn] , 
Time to Downgrade Risk With Vaccine[Rgn] ) , 0)  Units: dmnl 

258) PG1 : PG 
259) PMAS Confirmed for Hospital Demand[Rgn] = ( 1 - Reference COVID Hospitalization Fraction Confirmed[Rgn] ) 

^ ( 1 / Average Acuity of Positively Tested[Rgn] )  Units: dmnl 
260) PMAS Unconfirmed for Hospital Demand[Rgn] = PMAS Confirmed for Hospital Demand[Rgn] + ( 1 - PMAS 

Confirmed for Hospital Demand[Rgn] ) * Untested PMAS Gap with Tested[Rgn]  Units: dmnl 
261) "Poisson Not-tested Asymptomatic"[Rgn] = Infectious not Tested or in Hospitals Poisson[Rgn] * exp ( - Average 

Acuity Not Hospitalized Poisson[Rgn,Notest] )  Units: Person 
262) Poisson Subset Not Tested Passing Gate[Rgn] = Poisson Subset Reaching Test Gate[Rgn] - Positive Tests of 

Infected[Rgn]  Units: Person/Day 
263) Poisson Subset Reaching Test Gate[Rgn] = Reaching Testing Gate[Rgn] / ( 1 + Additional Asymptomatic Relative 

to Symptomatic[Rgn] )  Units: Person/Day 
264) Policy Test Rate[Rgn] = if then else ( Time < New Testing Time , Current Test Rate per Capita[Rgn] , Final Test 

Rate Per Capita[Rgn] )  Units: 1/Day 
265) Population[Rgn] = Infected pre Detection[Rgn] + "Infected Unconfirmed Post-Detection"[Rgn] + 

Susceptible[Rgn] + Recovered Unconfirmed[Rgn] + Confirmed Recovered[Rgn] + Infectious Confirmed Not 
Hospitalized[Rgn] + "Pre-Symptomatic Infected"[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] ) + sum ( 
Cumulative Recovered at Hospitals[Rgn,TstSts!] )  Units: Person 

266) PopulationCheck[Rgn] = Recovered Unconfirmed[Rgn] + Confirmed Recovered[Rgn] + sum ( Cumulative 
Recovered at Hospitals[Rgn,TstSts!] ) + Different Infectious Counted[Rgn] + Susceptible[Rgn]  Units: Person 

267) Positive Candidates Interested in Testing Poisson Subset[Rgn] = Poisson Subset Reaching Test Gate[Rgn] * 
Fraction Seeking Test[Rgn]  Units: Person/Day 

268) Positive Candidates Interested in Testing Poisson Subset Adj[Rgn] = Max ( 0.001 * Potential Test Demand from 
Susceptible Population[Rgn] , Positive Candidates Interested in Testing Poisson Subset[Rgn] )  Units: 
Person/Day 

269) Positive Testing of Infected Untreated[Rgn] = Positive Tests of Infected[Rgn] * Fraction Poisson not 
Hospitalized[Rgn,Tested]  Units: Person/Day 

270) Positive Tests of Infected[Rgn] = Positive Candidates Interested in Testing Poisson Subset[Rgn] * ( 1 - Fraction 
Interseted not Correctly Tested[Rgn] )  Units: Person/Day 

271) Post Mortem Test Delay = 1 Units: Day 
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272) Post Mortem Test Rate[Rgn] = Post Mortem Tests Total[Rgn] * Sensitivity of COVID Test  Units: 
Person/Day 

273) Post Mortem Test Untreated[Rgn] = Post Mortem Test Rate[Rgn] * Frac Post Mortem from Untreated[Rgn] 
 Units: Person/Day 

274) Post Mortem Testing Need[Rgn] = SMOOTHI ( ( Deaths of Symptomatic Untested[Rgn] + Hospitalized 
Infectious Deaths[Rgn,Notest] ) * Fraction of Fatalities Screened Post Mortem[Rgn] , Post Mortem Test Delay , 0) 
 Units: Person/Day 

275) Post Mortem Tests Total[Rgn] = min ( Post Mortem Testing Need[Rgn] , Active Test Rate[Rgn] )  Units: 
Person/Day 

276) "Post-Detection Phase Resolution Time" = 10 Units: Day 
277) PostMortemCorrection[Rgn] = min ( Hospitalized Infectious[Rgn,Notest] / MinAdjT , Post Mortem Test 

Rate[Rgn] * ( 1 - Frac Post Mortem from Untreated[Rgn] ) )  Units: Person/Day 
278) Potential Hospital Demand[Rgn,Notest] = Hospital Demand from Not Tested[Rgn]  
279) Potential Hospital Demand[Rgn,Tested] = Hospital Demand from Tested[Rgn]  Units: Person/Day 
280) Potential Test Demand from Susceptible Population[Rgn] = ( Susceptible[Rgn] + Recovered Unconfirmed[Rgn] + 

Cumulative Recovered at Hospitals[Rgn,Notest] ) * ( Baseline Daily Fraction Susceptible Seeking Tests[Rgn] * 
Fraction Seeking Test[Rgn] + Multiplier Recent Infections to Test[Rgn] / Population[Rgn] * Recent Detected 
Infections[Rgn] )  Units: Person/Day 

281) "Pre-Symptomatic Infected"[Rgn] = INTEG( Infection Rate[Rgn] + Patient Zero Arrival[Rgn] - Onset of 
Symptoms[Rgn] , 0)  Units: Person 

282) PriorCounts[PriorEndoAve] = INITIAL( if then else ( PriorEndoAve < 26, 1, 0) ) Units: dmnl 
283) PriorEndoAve : 

UpAdj,DwnAdj,RFI,RfSkTs,WRpPIn,MInfTs,MnCnFrc,SnCnRdUt,CfImCn,ImPDnHs,ImTrFt,DrdFac,MxHsFr,B
sFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym,HspLrng,AdhrFtg 

284) PriorErrs[Rgn,Priors] = INITIAL( ZIDZ ( ActiveAve[Priors] - RegionalInputs[Priors,Rgn] , ( AbsStd[Priors] * 
StdScale ) ) ^ 2 / 2 ) Units: **undefined** 

285) PriorGen : BsFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym 
286) Priors : 

UpAdj,DwnAdj,RFI,PMT,RfSkTs,WRpPIn,MInfTs,MnCnFrc,SnCnRdUt,CfImCn,ImPDnHs,ImTrFt,DrdFac,Mx
HsFr,BsFtRt,SnsWth,Acty,SnFtAc,TtAsyFr,ObsImp,ChrImp,LivImp,MTrAsym,HspLrng,AdhrFtg 

287) Prob Missing Symptom[Rgn] = Max ( 0, ln ( Y[Rgn] ) / Flu Acuity + 1)  Units: dmnl 
288) Probability of Missing Acuity Signal at Hospitals[Rgn,Tested] = ZIDZ ( ln ( Max ( 1e-06, 1 - ZIDZ ( Hospital 

Admits All[Rgn,Tested] , Positive Tests of Infected[Rgn] ) ) ) , Average Acuity of Positively Tested[Rgn] ) + 1 
289) Probability of Missing Acuity Signal at Hospitals[Rgn,Notest] = ZIDZ ( ln ( Max ( 1e-06, 1 - ZIDZ ( Hospital 

Admits All[Rgn,Notest] , Poisson Subset Not Tested Passing Gate[Rgn] ) ) ) , Average Acuity of Untested Poisson 
Subset[Rgn] ) + 1 Units: dmnl 

290) PseudoCFR  Units: dmnl 
291) R Effective Reproduction Rate[Rgn] = ZIDZ ( Infection Rate[Rgn] , Total Weighted Infected Population[Rgn] ) * 

Total Disease Duration  Units: dmnl 
292) RandFlowTime = 1000 Units: Day 
293) Reaching Testing Gate[Rgn] = Infected pre Detection[Rgn] / Onset to Detection Delay  Units: 

Person/Day 
294) Realistic R0 = sum ( if then else ( R Effective Reproduction Rate[Rgn!] > MaxRTresh , 1, 0) )  Units: dmnl 
295) Recent Detected Infections[Rgn] = SMOOTHI ( Positive Tests of Infected[Rgn] , Time to Respond with Tests , 0) 

 Units: Person/Day 
296) Recent Relative Contacts[Rgn] = SMOOTHI ( Contacts Relative to Normal[Rgn] , Adherence Fatigue Time , 1) 

 Units: dmnl 
297) Recorded Deaths[Rgn] = Post Mortem Test Rate[Rgn] + Deaths of Confirmed[Rgn] + Hospitalized Infectious 

Deaths[Rgn,Tested]  Units: Person/Day 
298) Recovered Unconfirmed[Rgn] = INTEG( Recovery of Untested[Rgn] , 0)  Units: Person 
299) Recovery of Confirmed[Rgn] = Tested Untreated Resolution[Rgn] * ( 1 - Fatality Rate Untreated[Rgn,Tested] ) 

 Units: Person/Day 
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300) Recovery of Untested[Rgn] = ( "Infected Unconfirmed Post-Detection"[Rgn] / "Post-Detection Phase Resolution 
Time" ) - Deaths of Symptomatic Untested[Rgn]  Units: Person/Day 

301) Reference COVID Hospitalization Fraction Confirmed[Rgn] = 0.7 Units: dmnl 
302) Reference Force of Infection[Rgn] = 0.6 Units: 1/Day [0,2] 
303) Reference Hospital Density = 6.06 Units: Person/(Km*Km) 
304) RegionalInputs[UpAdj,Rgn] = INITIAL( Log ( Time to Upgrade Risk[Rgn] , 10) ) 
305) RegionalInputs[DwnAdj,Rgn] = Log ( Time to Downgrade Risk[Rgn] , 10)  
306) RegionalInputs[RFI,Rgn] = Reference Force of Infection[Rgn]  
307) RegionalInputs[PMT,Rgn] = Sensitivity Post Mortem Testing to Capacity[Rgn]  
308) RegionalInputs[RfSkTs,Rgn] = Baseline Daily Fraction Susceptible Seeking Tests[Rgn]  
309) RegionalInputs[WRpPIn,Rgn] = Weight on Reported Probability of Infection[Rgn]  
310) RegionalInputs[MInfTs,Rgn] = Multiplier Recent Infections to Test[Rgn]  
311) RegionalInputs[MnCnFrc,Rgn] = Min Contact Fraction[Rgn]  
312) RegionalInputs[SnCnRdUt,Rgn] = Sensitivity of Contact Reduction to Utility[Rgn]  
313) RegionalInputs[CfImCn,Rgn] = Confirmation Impact on Contact[Rgn]  
314) RegionalInputs[ImPDnHs,Rgn] = Impact of Population Density on Hospital Availability[Rgn]  
315) RegionalInputs[ImTrFt,Rgn] = Impact of Treatment on Fatality Rate[Rgn]  
316) RegionalInputs[DrdFac,Rgn] = Log ( Dread Factor in Risk Perception[Rgn] , 10)  
317) RegionalInputs[MxHsFr,Rgn] = Reference COVID Hospitalization Fraction Confirmed[Rgn]  
318) RegionalInputs[BsFtRt,Rgn] = Base Fatality Rate for Unit Acuity Net[Rgn]  
319) RegionalInputs[SnsWth,Rgn] = Sensitivity to Weather Net[Rgn]  
320) RegionalInputs[Acty,Rgn] = Covid Acuity Relative to Flu Init Net[Rgn]  
321) RegionalInputs[SnFtAc,Rgn] = Sensitivity of Fatality Rate to Acuity Net[Rgn]  
322) RegionalInputs[TtAsyFr,Rgn] = Total Asymptomatic Fraction Init Net[Rgn]  
323) RegionalInputs[ObsImp,Rgn] = Sens Obesity Impact Net[Rgn]  
324) RegionalInputs[ChrImp,Rgn] = Sens Chronic Impact Net[Rgn]  
325) RegionalInputs[LivImp,Rgn] = Sens Liver Impact Net[Rgn]  
326) RegionalInputs[MTrAsym,Rgn] = Multiplier Transmission Risk for Asymptomatic Net[Rgn]  
327) RegionalInputs[HspLrng,Rgn] = Learning and Death Reduction Rate[Rgn]  
328) RegionalInputs[AdhrFtg,Rgn] = Strength of Adherence Fatigue[Rgn]  Units: **undefined** 
329) Relative Risk of Transmission by Hospitalized = 1 Units: dmnl 
330) Relative Risk of Transmission by Presymptomatic = 1 Units: dmnl 
331) RemainingFractionForVaccine[Rgn] = ( 1 - AntiVaxxerFrac[Rgn] ) - Vaccinated Fraction[Rgn]  Units: dmnl 
332) Reported Hazard of Death[Rgn] = SimFlowOverTime[Rgn,Death] / Population[Rgn]  Units: 1/Day 
333) Response Policy Time On = 1000 Units: Day 
334) Response Policy Weight = 0 Units: dmnl 
335) Rgn : 

Argentina,Australia,Austria,Bahrain,Bangladesh,Belarus,Belgium,Bolivia,Bulgaria,Canada,Chile,Colombia,CostaRica,
Croatia,Cuba,Cyprus,CzechRepublic,Denmark,DominicanRepublic,Ecuador,ElSalvador,Estonia,Ethiopia,Finland,Fr
ance,Germany,Ghana,Greece,Hungary,Iceland,India,Indonesia,Iran,Iraq,Ireland,Israel,Italy,Jamaica,Japan,Kazakhsta
n,Kenya,Kuwait,Latvia,Lithuania,Luxembourg,Madagascar,Malawi,Malaysia,Maldives,Malta,Mexico,Morocco,Moza
mbique,Nepal,Netherlands,NewZealand,Nigeria,NorthMacedonia,Norway,Pakistan,Panama,Paraguay,Peru,Philippi
nes,Poland,Portugal,Qatar,Romania,Russia,Rwanda,SaudiArabia,Senegal,Serbia,Singapore,Slovakia,Slovenia,SouthAf
rica,SouthKorea,Spain,SriLanka,Sweden,Switzerland,Thailand,Togo,Tunisia,Turkey,UAE,UK,Ukraine,Uruguay,USA
,Zambia 

336) Rgn1 : Rgn 
337) Risk threshold for response[Rgn] = if then else ( Response Policy Time On < Time , ( 1 - Response Policy Weight ) 

* Sensitivity of Contact Reduction to Utility[Rgn] , Sensitivity of Contact Reduction to Utility[Rgn] ) / Impact of 
Adherence Fatigue[Rgn]  Units: dmnl 

338) SAVEPER = 1 Units: Day [0,?] 
339) Sens Chronic Impact = 1e-06 Units: dmnl 
340) Sens Chronic Impact Net[Rgn] = INITIAL( Sens Chronic Impact * ( 1 - SW Gen[ChrImp] ) + SW Gen[ChrImp] * 

InputAve[ChrImp] ) Units: dmnl 
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341) Sens Liver Impact = 1e-06 Units: dmnl 
342) Sens Liver Impact Net[Rgn] = INITIAL( Sens Liver Impact * ( 1 - SW Gen[LivImp] ) + SW Gen[LivImp] * 

InputAve[LivImp] ) Units: dmnl 
343) Sens Obesity Impact = 1e-06 Units: dmnl 
344) Sens Obesity Impact Net[Rgn] = INITIAL( Sens Obesity Impact * ( 1 - SW Gen[ObsImp] ) + SW Gen[ObsImp] * 

InputAve[ObsImp] ) Units: dmnl 
345) SensCovidUntestedAdmission = 1 Units: dmnl 
346) Sensitivity of Contact Reduction to Utility[Rgn] = 15 Units: dmnl 
347) Sensitivity of Contact Reduction to Utility Policy = 10 Units: dmnl 
348) Sensitivity of COVID Test = 0.7 Units: dmnl 
349) Sensitivity of Fatality Rate to Acuity[Rgn] = 2 Units: dmnl 
350) Sensitivity of Fatality Rate to Acuity Net[Rgn] = INITIAL( Sensitivity of Fatality Rate to Acuity[Rgn] * ( 1 - SW 

Gen[SnFtAc] ) + SW Gen[SnFtAc] * InputAve[SnFtAc] ) Units: dmnl [0,3] 
351) Sensitivity Post Mortem Testing to Capacity[Rgn] = 1 Units: dmnl 
352) Sensitivity to Weather = 0.76 Units: dmnl 
353) Sensitivity to Weather Net[Rgn] = INITIAL( Sensitivity to Weather * ( 1 - SW Gen[SnsWth] ) + SW Gen[SnsWth] 

* InputAve[SnsWth] ) Units: dmnl 
354) Series : Infection,Death,Test 
355) SeriesErrorTerm[Rgn,Series] = if then else ( DataCmltOverTime[Rgn,Series] = :NA:, 0, ( abs ( 

DataCmltOverTime[Rgn,Series] - SimCmltOverTime[Rgn,Series] ) ) ^ CmltErrPW ) / ( BaseError + 
DataCmltOverTime[Rgn,Series] ) * CmltPenaltyScl * CmltToInclude[Series] * DataIncluded[Rgn]  Units: 
dmnl 

356) Sim Pseudo Case Fatality[Rgn] = ZIDZ ( Cumulative Deaths of Confirmed[Rgn] , Cumulative Confirmed 
Cases[Rgn] )  Units: dmnl 

357) SimCmltOverTime[Rgn,Infection] = Cumulative Confirmed Cases[Rgn]  
358) SimCmltOverTime[Rgn,Death] = Cumulative Deaths of Confirmed[Rgn]  
359) SimCmltOverTime[Rgn,Test] = Cumulative Tests Conducted[Rgn]  Units: Person 
360) SimFlowOverTime[Rgn,UsedSeries] = if then else ( SwitchRandFlowTime < Time , RANDOM NEGATIVE 

BINOMIAL ( -1, 1e+06, successP[Rgn,UsedSeries] , numTrial[Rgn,UsedSeries] , 0, 1, NSeed ) , 
Mu[Rgn,UsedSeries] )  Units: Person/Day 

361) SimTestRate[Rgn] = Total Simulated Tests[Rgn]  Units: Person/Day 
362) SqrdErr[Rgn,Series] = if then else ( FlowResiduals[Rgn,Series] = :NA:, :NA:, FlowResiduals[Rgn,Series] ^ 2) 

 Units: Person*Person/(Day*Day) 
363) StdScale = 1 Units: dmnl 
364) StopDataUseTime[Rgn] = INITIAL( min ( lastTestData[Rgn] , Max Time Data Used ) ) Units: Day 
365) Strength of Adherence Fatigue[Rgn] = 0 Units: dmnl 
366) successP[Rgn,UsedSeries] = 1 / ( 1 + alp[Rgn,UsedSeries] * Mu[Rgn,UsedSeries] )  Units: dmnl 
367) Susceptible[Rgn] = INTEG( - Infection Rate[Rgn] - Susceptible Vaccination[Rgn] , Initial Population[Rgn] ) 

 Units: Person 
368) Susceptible Vaccination[Rgn] = Vaccination On[Rgn] * min ( Total Vaccination Rate[Rgn] * FracNotVaccinated 

Susceptible[Rgn] , RemainingFractionForVaccine[Rgn] * Susceptible[Rgn] / Min Vaccination Time )  Units: 
Person/Day 

369) SuscFrac[Rgn] = Susceptible[Rgn] / Population[Rgn]  Units: dmnl 
370) SW EndoAve = INITIAL( if then else ( ELMCOUNT(Rgn) > 1, 1, 0) ) Units: dmnl 
371) SW Gen[PriorGen] = 0 Units: dmnl 
372) SWadhFtg = 0 Units: dmnl 
373) Switch for Government Response[Rgn] = if then else ( Time > Government Response Start Time[Rgn] , 1, 0) 

 Units: dmnl 
374) SwitchRandFlow = 0 Units: dmnl 
375) SwitchRandFlowTime = if then else ( SwitchRandFlow = 1, min ( Max Time Data Used , RandFlowTime ) , 1000) 

 Units: Day 
376) Sympthom Reduction by Infectioun[Rgn] = Average Acuity in Susceptible[Rgn] * Infection Rate[Rgn]  Units: 

Person/Day 
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377) Sympthom Reduction by Vaccination[Rgn] = Susceptible Vaccination[Rgn] * Average Acuity in Susceptible[Rgn] * 
Vaccination Priority Multiplier  Units: Person/Day 

378) Sympthoms in Susceptible[Rgn] = INTEG( - Sympthom Reduction by Infectioun[Rgn] - Sympthom Reduction by 
Vaccination[Rgn] , Susceptible[Rgn] * ( 1 - Additional Asymptomatic Fraction Init[Rgn] ) * Covid Acuity Relative to 
Flu Init Net[Rgn] )  Units: Person 

379) Symptomatic Fraction in Poisson[Rgn] = INITIAL( 1 - exp ( - Covid Acuity[Rgn] ) ) Units: dmnl 
380) Symptomatic Fraction Negative[Rgn] = INITIAL( 1 - exp ( - Flu Acuity ) ) Units: dmnl 
381) Symptomatic Infected to Testing[Rgn] = Positive Testing of Infected Untreated[Rgn] + Hospital Admission 

Infectious[Rgn,Tested]  Units: Person/Day 
382) t3[Rgn] = ( -9 * b[Rgn] + 1.7321 * Sqrt ( 4 * a[Rgn] ^ 3 + 27 * b[Rgn] ^ 2) ) ^ ( 1 / 3)  Units: dmnl 
383) talp = 5 Units: dmnl 
384) Tested Untreated Resolution[Rgn] = Infectious Confirmed Not Hospitalized[Rgn] / "Post-Detection Phase 

Resolution Time"  Units: Person/Day 
385) TestErrorFrac = 0.0001 Units: dmnl 
386) TestFlowErr[Rgn] = ( ( DataFlowOverTime[Rgn,Test] - MeanFlowOverTime[Rgn,Test] ) * WTestFlowErr[Rgn] ) 

^ 2 Units: dmnl 
387) Testing Capacity Net of Post Mortem Tests[Rgn] = Active Test Rate[Rgn] - Post Mortem Tests Total[Rgn] 

 Units: Person/Day 
388) Testing Demand[Rgn] = Positive Candidates Interested in Testing Poisson Subset[Rgn] * Symptomatic Fraction in 

Poisson[Rgn] + Potential Test Demand from Susceptible Population[Rgn] * Symptomatic Fraction Negative[Rgn] 
 Units: Person/Day 

389) Testing on Living[Rgn] = min ( Testing Capacity Net of Post Mortem Tests[Rgn] , Testing Demand[Rgn] ) 
 Units: Person/Day 

390) Tests on Negative Patients[Rgn] = Testing on Living[Rgn] * ZIDZ ( Indicated fraction negative demand 
tested[Rgn] * Potential Test Demand from Susceptible Population[Rgn] , Indicated fraction negative demand 
tested[Rgn] * Potential Test Demand from Susceptible Population[Rgn] + Indicated fraction positive demand 
tested[Rgn] * Positive Candidates Interested in Testing Poisson Subset[Rgn] )  Units: Person/Day 

391) Tests Per Million[Rgn] = Cumulative Tests Data[Rgn] / Initial Population[Rgn] * 1e+06Units: dmnl 
392) ThrsInc[Rgn] = Max ( FracThresh * MaxData[Rgn] , 50)  Units: Person 
393) TIME STEP = 0.25 Units: Day [0,?] 
394) Time to Adjust Testing = 30 Units: Day 
395) Time to Downgrade Risk[Rgn] = 60 Units: Day 
396) Time to Downgrade Risk Net[Rgn] = if then else ( Response Policy Time On < Time , ( 1 + Response Policy 

Weight ) * Time to Downgrade Risk[Rgn] , Time to Downgrade Risk[Rgn] )  Units: Day 
397) Time to Downgrade Risk Policy = 300 Units: Day 
398) Time to Downgrade Risk With Vaccine[Rgn] = Time to Downgrade Risk Net[Rgn] * ( 1 - ( 1 - SuscFrac[Rgn] ) * 

Vaccination On[Rgn] ) + ( 1 - SuscFrac[Rgn] ) * Vaccination On[Rgn] * MinTimeDwngRisk  Units: Day 
399) Time to Herd Immunity[Rgn] = XIDZ ( Herd Immunity Fraction * Susceptible[Rgn] , Total Weighted Infected 

Population[Rgn] / Total Disease Duration , 0)  Units: Day 
400) Time to Respond with Tests = 5 Units: Day 
401) Time to Stop Adherence Fatigue = 1000 Units: Day 
402) Time to Upgrade Risk[Rgn] = 10 Units: Day 
403) Time variant change in fatality[Rgn] = Max ( Min Fatality Multiplier , ( Max ( Baseline Cumulative Cases for 

Learning , Cumulative Cases[Rgn] / Initial Population[Rgn] ) / Baseline Cumulative Cases for Learning ) ^ ( - 
Learning and Death Reduction Rate[Rgn] ) )  Units: dmnl 

404) TimeVar Impact of Treatment on Fatality[Rgn] = Impact of Treatment on Fatality Rate[Rgn] * Time variant change 
in fatality[Rgn]  Units: dmnl 

405) Total Asymptomatic Fraction[Rgn] = 0.5 Units: dmnl 
406) Total Asymptomatic Fraction Init Net[Rgn] = INITIAL( Total Asymptomatic Fraction[Rgn] * ( 1 - SW 

Gen[TtAsyFr] ) + SW Gen[TtAsyFr] * InputAve[TtAsyFr] ) Units: dmnl 
407) Total Asymptomatic Fraction Net[Rgn] = Additional Asymptomatic Fraction Init[Rgn] + exp ( - Covid Acuity[Rgn] 

) * ( 1 - Additional Asymptomatic Fraction Init[Rgn] )  Units: dmnl 
408) Total Covid Hospitalized[Rgn] = sum ( Hospitalized Infectious[Rgn,TstSts!] )  Units: Person 
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409) Total Disease Duration = Onset to Detection Delay + "Post-Detection Phase Resolution Time" + Incubation 
Period  Units: Day 

410) Total Simulated Tests[Rgn] = Post Mortem Tests Total[Rgn] + Testing on Living[Rgn]  Units: Person/Day 
411) Total Test on Covid Patients[Rgn] = Max ( 0, min ( Positive Candidates Interested in Testing Poisson Subset[Rgn] , 

Testing on Living[Rgn] - Tests on Negative Patients[Rgn] ) )  Units: Person/Day 
412) Total to Official Cases Simulated[Rgn] = ZIDZ ( Cumulative Cases[Rgn] , SimCmltOverTime[Rgn,Infection] ) 

 Units: dmnl 
413) Total Vaccination Rate[Rgn] = if then else ( Vaccination Period < 10, 0, MaxVacRate[Rgn] * ( 1 - min ( 1, Max ( 0, ( 

frac rampup * Vaccination Period - ( Time - Vaccine Start Time ) ) / ( Vaccination Period * frac rampup ) ) ) ) ) 
 Units: Person/Day 

414) Total Weighted Infected Population[Rgn] = Infected pre Detection[Rgn] + "Pre-Symptomatic Infected"[Rgn] + 
Weighted Infected Post Detection Gate[Rgn]  Units: Person 

415) Transmission Multiplier for Confirmed[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 
Symptomatic * Confirmation Impact on Contact[Rgn] ) Units: dmnl 

416) Transmission Multiplier for Hospitalized[Rgn,TstSts] = INITIAL( Baseline Transmission Multiplier for Untested 
Symptomatic * Relative Risk of Transmission by Hospitalized * if then else ( TstSts = 1, Confirmation Impact on 
Contact[Rgn] , 1) ) Units: dmnl 

417) Transmission Multiplier Pre Detection[Rgn] = INITIAL( Baseline Transmission Multiplier for Untested 
Symptomatic * ( 1 - Total Asymptomatic Fraction Net[Rgn] ) + Total Asymptomatic Fraction Net[Rgn] * Baseline 
Risk of Transmission by Asymptomatic[Rgn] ) Units: dmnl 

418) Transmission Multiplier Presymptomatic[Rgn] = INITIAL( ( Baseline Transmission Multiplier for Untested 
Symptomatic * Relative Risk of Transmission by Presymptomatic ) * ( 1 - Total Asymptomatic Fraction Net[Rgn] ) 
+ Total Asymptomatic Fraction Net[Rgn] * Baseline Risk of Transmission by Asymptomatic[Rgn] * Relative Risk 
of Transmission by Presymptomatic ) Units: dmnl 

419) True Hazard of death[Rgn] = Death Rate[Rgn] / Population[Rgn]  Units: 1/Day 
420) TstInc[Rgn] = Active Test Rate[Rgn]  Units: Person/Day 
421) TstSts : Tested,Notest 
422) Untested PMAS Gap with Tested[Rgn] = ( 1 - Allocated Fration NonCOVID Hospitalized[Rgn] ) ^ 

SensCovidUntestedAdmission  Units: dmnl 
423) Untested symptomatic Infected to Hospital[Rgn] = Hospital Admission Infectious[Rgn,Notest]  Units: 

Person/Day 
424) UsedSeries : Infection,Death 
425) Vaccinated[Rgn] = INTEG( OtherVaccination[Rgn] + Susceptible Vaccination[Rgn] , 0)  Units: Person 
426) Vaccinated Fraction[Rgn] = Vaccinated[Rgn] / Initial Population[Rgn]  Units: dmnl 
427) Vaccination On[Rgn] = if then else ( Time < Vaccine Start Time , 0, 1)  Units: dmnl 
428) Vaccination Period = 150 Units: Day 
429) Vaccination Priority Multiplier = 1.5 Units: dmnl 
430) Vaccine Start Time = 800 Units: Day 
431) VacWinStart[Rgn] = if then else ( Vaccination Period > 1, if then else ( Time > Vaccine Start Time , 2, -1) , -1) 

 Units: dmnl 
432) Voluntary Reduction in Contacts[Rgn] = exp ( - Max ( 0, Dread Factor in Risk Perception Net[Rgn] * Perceived 

Risk of Life Loss[Rgn] - Risk threshold for response[Rgn] ) ) * ( 1 - Min Contact Fraction[Rgn] ) + Min Contact 
Fraction[Rgn]  Units: dmnl 

433) W Ave Acuity Hospitalized[Rgn] = ZIDZ ( sum ( Average Acuity Hospitalized[Rgn,TstSts!] * Hospitalized 
Infectious[Rgn,TstSts!] ) , sum ( Hospitalized Infectious[Rgn,TstSts!] ) )  Units: dmnl 

434) Weather Effect on Transmission[Rgn] = CRW[Rgn] ^ Sensitivity to Weather Net[Rgn]  Units: dmnl 
435) Weight Max in Test Goal = 0 Units: dmnl 
436) Weight on Reported Probability of Infection[Rgn] = 0.78 Units: dmnl [0,1,0.01] 
437) Weighted Infected Post Detection Gate[Rgn] = "Infected Unconfirmed Post-Detection"[Rgn] + Infectious 

Confirmed Not Hospitalized[Rgn] + sum ( Hospitalized Infectious[Rgn,TstSts!] ) * "Post-Detection Phase 
Resolution Time" / Hospitalized Resolution Time  Units: Person 

438) WTestFlowErr[Rgn] = if then else ( DataFlowOverTime[Rgn,Test] = :NA:, 0, 1 / Max ( 10, 
DataFlowOverTime[Rgn,Test] * TestErrorFrac ) )  Units: Day/Person 
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439) Y[Rgn] = min ( 1, Max ( 1e-06, 1 - exp ( - Extrapolated Estimator[Rgn] ) ) )  Units: dmnl 
440) Ymix[Rgn,p2] = - b[Rgn] / ( 1 + a[Rgn] )  
441) Ymix[Rgn,p3] = ( Sqrt ( a[Rgn] ^ 2 - 4 * b[Rgn] ) - a[Rgn] ) / 2 
442) Ymix[Rgn,p4] = ( -0.87358 * a[Rgn] ) / t3[Rgn] + 0.38157 * t3[Rgn]  Units: dmnl  
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