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Abstract: Various industries have undertaken studies to determine the impact of the virus on their long-term 
sustainability, since the COVID-19 outbreak. This study focused on the impact of the virus on the energy sector 
and the ability of the national electricity supplier to be able to deliver on their mandate, if human resources were 
affected. A system dynamics method was used to build a simulation model for scenario analysis. Based on various 
structural model configurations; for the purposes of understanding the time lags between the infections, critical 
cases, recoveries and mortality, the qualitative system dynamics model was sufficient. This did not however, provide 
the quantitative results that could be used for future trending. Using an approach based on logistic equations 
provided a more quantitative analysis of the distribution of infections and deaths in the various age groups within 
the provinces. If the provincial rates (infection, recovery and mortality) had been used for determining the 
distribution of infections within the organisation, the results would have been misaligned. Model results indicated 
that the impact of mortality had a much more significant effect on the Energy Availability Factor (EAF), than a 
loss in productivity when employees were sick due to the COVID-19 virus.  
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1. Introduction 

In 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus 
disease 2019 (COVID-19) was first detected in the Wuhan City, Hubei Province of China. Since 
detection until the 22nd January 2021, the disease has resulted in 2,102,276 deaths and 98,160,577 
infections globally (Worldometer, 2021). South Africa (as at 22nd January 2021) reached 1,380,807 
infections and 39,501 deaths. Besides the high mortality rates nationally and globally, the International 
Monetary Fund (IMF) estimated that the virus would have resulted in a 4.4% shrinkage in the global 
economy in 2020 (IMF, 2020), accompanied by unprecedented increases in unemployment, poverty, 
greater income inequalities, and disruptions to primary, secondary and tertiary economic sectors. 
 
In South Africa, Eskom SOC (an electricity utility established in 1923) supplies over 44 GW of 
electricity through 387,633 km of high-, medium- and low-voltage lines and underground cables and is 
a key enabler of economic activity, with its 40,000 strong workforce. Due to the potential impact of 
COVID-19 on resource availability, a research project was initiated to develop a system dynamics 
model to provide insight into expected trends in terms of COVID-19 infections and mortality rates. The 
loss of employees as well as downtime due to the recovery and quarantine periods for those infected, 
was then linked to the Energy Availability Factor (EAF) for the power generating stations. 
 
 
2. Literature Review and Problem Context  

 
2.1 Mathematical modelling of epidemics 
 
Elsevier records indicate that there are well over 2,500 studies (Sihombing, Malczynski, Jacobson, 
Soeparto, & Saptodewo, 2020) which emerged in 2020 on the COVID-19 virus in the subject of health, 



biology and clinical studies, with some covering mathematical and modelling and estimations. 
Mathematical modelling of epidemics can be traced back to 1766, when Daniel Bernoulli developed a 
model to analyse the mortality due to smallpox in England (Blower & Bernoulli, 2004). In 1772, 
Lambert followed up on Bernoulli’s work and included age-dependent parameters (Dietz & 
Heesterbeek , 2002). In 1911, Ross (1911) introduced a systematic approach for mathematically 
modelling epidemiology using a set of equations to approximate the discrete-time dynamics of malaria 
through the mosquito-borne pathogen transmission. 
 
Kermack and McKendrick then expanded on Ross’s work after which they suggested probability of 
infection of a susceptible population is linked to the number of contacts with infected individuals 
(Serfling, 1952). Figure 1 illustrates the types of mathematical models which have since emerged 
(Siettos & Russo, 2013). The three main categories include: 
1) Statistical-based models, 
2) Mathematical or mechanistic state-space models, and  
3) Empirical or machine learning-based models. 

 
Figure 1: Map of Mathematical Models for Infectious Diseases Modelling  (Siettos & Russo, 2013) 

 
2.2 System dynamics modelling of epidemics 
 
Simulation models fall within the realm of mathematical models and enable a better understanding of 
the system in a dynamic, quantitative, and graphical format and generally allow for the rapid assessment 
of a virus. System dynamics is a mathematical computer based simulation methodology. It provides a 
useful setting to explore feedback — how the states of a system (the levels or stocks) influence (or 
“feedback” to) the flows that alter those states. System dynamics modelling has been applied to issues 
of population health since the 1970s and include amongst others the following topics: 
1. Disease epidemiology including work in heart disease, diabetes, HIV/AIDS, cervical cancer, 

chlamydia infection, and drug-resistant pneumococcal infections (Levin, Roberts, & Hirsch, 1975). 
2. Substance abuse epidemiology covering heroin addiction, cocaine prevalence, and tobacco 

reduction policy  (Homer , Ritchie-Dunham, Rabbino, Puente, Jorgensen, & Hendricks, 2000) 
(Homer J. , 1993). 

3. Patient flows in emergency and extended care (Dangerfield, Fang, & Roberts, 2001); 
4. Health care capacity and delivery in such areas as population-based health maintenance 

organization planning, dental care, and mental health (Wolstenholme, 1996). 



 
System dynamics has been able to integrate the dynamics for multiple interacting diseases and risks and 
allows scenario analysis based on changing policies. 
 
2.3 Mathematical modelling of epidemics 

 
The typical Susceptible-Infectious-Recovered (SIR) model has been used to show how individuals 
move from a fixed population into a susceptible stock and then recover, but can get re-infected. (Smith 
& Moore, 1999).  The Kermack-McKendrick model was first used in 1927 and is the simplest model (

 
Figure 2) showing this flow and makes use of coupled non-linear ordinary differential equations  
(Kermack & McKendrick, 1927).  
 

 
Figure 2: SIR Model 

 
Since the outbreak of the COVID-19 virus, several initiatives were undertaken to model elements 
relating to the pandemic (System Dynamics Society, 2020). Other work like that of Froese (2020) added 
additional variables to model the COVID-19 virus, and built on the SIR model structure. An incubation 
period was included since most infectious diseases have a period during which the infection does not 
spread – the population during that period was then referred to as Exposed. The model also provisioned 
for mortality and not just recoveries. The trends obtained from including the additional dynamics 
included a lockdown period of 100 days and R0 was changed from 5 to 0.5 around day 50. Fatality rates 
and age dependent factors were also included. 
 
In a study by Ibarra-Vega (Ibarra-Vega, 2020), a conceptual system dynamics model was created for 
the coronavirus outbreak based on a population of 100,000 inhabitants. This model included scenarios 
where the quarantine periods were changed. The model consisted of 4 stocks: the Susceptible, Infected, 
Recovered, and Deaths. The conclusions were that each city had different characteristics, such as the 
population, economy, transport, and health systems which changed the levels of daily contacts.  
 
In a study by Sy et al. (2020), system dynamics was used to generate scenarios based on various policy 
considerations. The model built upon the basic Susceptible-Infectious-Recovered (SIR) model and 
captured the relationships, feedbacks and delays in a disease transmission system. Some policies 
included the construction of additional health facilities and quarantine centres, however this policy 
change alone would have only mildly resolved the situation and could not be effected in low income 



countries which did not have the financial means to construct the additional infrastructure, let alone 
resource it. Based on the models results, the most effective strategies focussed on avoiding exposure to 
the virus from even happening; focusing on increasing healthcare capacities only delays the inevitable 
system collapse as its effectiveness assumed people getting infected first. 
 
The Office of the Chief Economic Advisor to the Government of India worked with Professors 
Jayendran Venkateswaran and Om Damani of the Indian Institute of Technology, Bombay, in order to 
understand the spread of COVID-19 in India through a System Dynamics SEIR epidemiological model 
approach (Venkateswaran & Damani, 2020). They partnered with researchers at Stanford University. 
The results from this study indicated that even with an extended lockdown, pockets of the epidemic 
would persist and caused resurgence in infections. The model results also indicated that testing together 
with contact tracing and isolation would be required in order to contain the infections in the long-term. 
 
Epidemic models are conventionally used for projections, rather than for forecasts. Record and Pershing 
(2020) used system dynamics to understand epidemic forecasts based on the premise that there was two 
way feedback between the forecast output and human behaviour. The conclusions were that an 
overestimate in the forecast could improve the outcome, and lower the infection peak, but an 
underestimate in the forecast could indicate a greater response time can be accommodated. This study 
was interesting because system dynamics is generally not used for forecasting but for comparing various 
policies, whereas statistical methods are better suited to forecasting trends based on empirical data, 
however forecasting was done using a system dynamics method. 
 
There are several other system dynamics models which were developed to consider various scenarios 
and changes to parameters influencing the infection rates, however, it is clear that even capturing the 
complexities of these dynamics is challenging and dependent on the environment in which the pandemic 
is occurring.  
 
In this study, a system dynamic simulation model was built to understand the South African national 
infection rates per province and within age groups. The results were then further explored to determine 
whether the same rates could be used as a proxy for determining the infections and mortality within the 
electricity utility. More importantly, the impact of infections and mortality on the energy availability 
needed to be interrogated and understood to support operational and strategic planning. 
 

3. Methodology 

A system dynamics modelling process was followed, which included the following steps (Sooknanan 
Pillay, 2018): 

 Project Inception: Establish the focusing question linked to the system problem, alignment with 
business strategic objectives, literature scans. 

 Concept to Context: Determine the modelling timeframe,  understand the historical trends of 
variables, develop a diagrammatic framework with upstream and downstream variables 

 Boundary Setting: Requires collaboration and ideation sessions, develop causal loop diagrams, 
define a model boundary chart. 

 System Analysis: Preliminary computations 

 Model Development and Design: Modules and sub-modules, state variables, initial conditions of 
stocks and parameterization, mathematical linkages of variables, engagement platforms for 
scenarios. 

 



After the simulation was developed, various scenarios were run to generate projected infection rates 
and mortality as well as the impact on Eskom’s human resources on EAF.  
 
3.1 Causal Loop Diagram 
 
Part of the system dynamics process involves the construction of a causal loop diagram which illustrates 
the cause and effect relationship between variables in a system. The diagrams are subjective and 
qualitative but provide a tool to understand some aspects of a causal system. A possible causal loop 
diagram for the Covid-19 infections is shown in Figure 3.  
 

 
Figure 3: Causal Loop Diagram – Spread of COVID-19 Infections 

 
Starting with Reinforcing Loop R1, an increase in transmission events (e.g. social gatherings, public 
transport, shopping, student interactions etc.) will result in an increased number of people susceptible 
to the COVID-19 virus. The greater the susceptible population, then the higher the number of 
transmission events. With Reinforcing Loop 2, if there is an increase in the number of susceptible 
people, the risk of transmission per contact is higher which then facilitates more transmission events 
and again results in a higher number of the susceptible population. Reinforcing Loop R3 comes into 
effect when a high number of infections result in greater environmental contamination and increases 
the number of transmission events. Environmental contamination is balanced with balancing Loop B1 
since policies can be introduced to curb the spread of infections. The other Balancing Loop 2 serves to 
decrease the pool of susceptible people due to the reduction in population numbers when mortality 
increases especially when comorbidity factors of those who are critically ill. 
 
3.2 System Architecture Map 
 
A system architecture map (SAM) provided a high level view of the dynamics within the system, it did 
not display causality as in a causal loop diagram but it provided an indication of the sub-systems that 
would make up the simulation model. The SAM for the Covid-19 infection system is shown in Figure 
4. Susceptible people were either symptomatic or non-symptomatic. If the population was symptomatic, 
they remained as an active case or they recovered after a period of isolation. The active cases recovered 



after a quarantine period or became critical thus resulting in death (especially if they have comorbidity 
factors) or they recovered after a period of medical treatment. 
 

 
Figure 4: System Architecture Map of COVID-19 

 
3.3 System Analysis 
 
Before commencing with the development of the simulator, data analysis was conducted. South Africa 
has nine provinces: Gauteng, Kwazulu-Natal, Western Cape, Eastern Cape, Limpopo, Mpumalanga, 
Free State, Northern Cape, and North West. To develop the national model, the age group of the 
population per province was obtained and summarised as shown in Table 1 based on population 
statistics from StatsSA (2019). 
 
Table 1: Provincial Age Group Population Statistics  (Stats SA, 2019) 

POPULATION 0-19 20-29 30-39 40-49 50-59 60-69 >70 
Gauteng 4,656,237 2,992,858 3,032,291 1,928,870 1,295,952 474,169 446,687 

KwaZulu-Natal 4,544,746 2,067,103 1,813,980 1,130,085 800,470 306,529 381,310 
Western Cape 2,190,133 1,181,482 1,242,411 877,370 665,477 419,558 267,843 

Eastern Cape 2,822,215 1,020,900 941,233 646,959 519,213 223,865 361,375 

Limpopo 2,516,519 997,769 909,179 605,957 421,368 160,280 240,929 
Mpumalanga 1,768,802 825,828 799,459 502,686 338,662 119,252 145,304 

Free State 1,078,152 488,847 470,895 322,388 244,860 94,905 112,326 
Northern Cape 469,793 204,966 210,933 143,646 105,365 41,286 55,029 
North West 1,512,691 663,004 688,758 473,064 336,196 124,075 139,856 

 
The national number of COVID-19 infections, deaths and recoveries was summarised per province and 
included in Table 2. 



 
Table 2: Provincial COVID-19 Statistics (18/01/2021) (Flevy, 2021) 

POPULATION INFECTIONS RECOVERIES DEATHS ACTIVE CASES 

Gauteng 230,834 223,705 4,872 2,257 
KwaZulu-Natal 124,325 115,555 3,268 5,502 

Western Cape 119,980 110,862 4,422 4,676 
Eastern Cape 104,125 94,310 3,934 5,881 
Limpopo 18,016 17,074 476 466 

Mpumalanga 30,459 29,292 610 557 
Free State 58,120 46,751 1,618 9,751 

Northern Cape 22,502 18,661 301 3,540 

North West 34,033 30,248 510 3,275 
 

Table 3 shows the rate calculations for the various provinces. 
 
Table 3: Provincial COVID-19 Rates (18/01/2021) 

 Gauteng 
KwaZulu-
Natal 

Western 
Cape 

Eastern 
Cape Limpopo Mpumalanga 

Free 
State 

Northern 
Cape 

North 
West 

MORTALITY 
RATE 0.02110 0.02628 0.03685 0.03778 0.02642 0.02002 0.02783 0.01337 0.01498 

INFECTION 
RATE 0.01556 0.01125 0.01752 0.01593 0.00307 0.00676 0.02066 0.01827 0.00864 
RECOVERY 
RATE 0.96911 0.92945 0.92400 0.90573 0.94771 0.96168 0.80438 0.82930 0.88878 
ACTIVE 
FRACTION 0.00977 0.04425 0.03897 0.05648 0.02586 0.01828 0.16777 0.15731 0.09623 

 
Based on the number of employee infections and deaths per province, calculated with data obtained on 
the 15th of January 2021 (Mkalipe & Pule, 2021), the infection and death rates were calculated as 
presented in Table 4.  
 
Table 4: Adapted Eskom Employee Statistics (Mkalipe & Pule, 2021) 

 Province Death Rate Infection Rate 

Eastern Cape 0.041044776 0.108282828 

Free State 0.015625000 0.041410547 

Gauteng 0.022388060 0.051568212 

KwaZulu Natal 0.008333333 0.064188286 

Limpopo 0.023809524 0.053804766 

Mpumalanga 0.011707317 0.097442723 

North West 0 0.064848485 

Northern Cape 0 0.060859189 

Western Cape 0.010335917 0.084942932 

 

The Eskom employees rates were different to the provincial rates and the simulator built in both values 
to calculate what the projected impact would have been is national trends were assumed. 
 
The number of infected employees and the deceased were both linked to an Energy Availability Factor 
(EAF) structure using the equation below derived from the relationship between EAF and the 
Generation Division staff shown in Figure 5.  



 
𝑦 =  −6𝐸 − 09𝑥2 +  9𝐸 − 05𝑥 +  0.3795 
 
Since Generation staff makes up the core of the operations of the business, this linkage and relationship 
was used as a proxy to represent the impact of loss of staff on the EAF. 
 

 
Figure 5: EAF versus Generation Staff 

 
After the number of infected Eskom employees was calculated, the downtime due to employees being 
on sick leave was linked to productivity levels. The mortality numbers impacted the headcount and the 
Energy Availability Factor (EAF).  
 
3.4 Model Structure 
 
The software used to construct the system dynamics model structures was iSee Stella Architect. The 
timeframe of the simulation was from day 1 (1st June 2020) to day 310. 
 
The structures that were completed include: 
1) National population by age group and province; 
2) National Infection chain with stocks and flows (Susceptible, Exposed, Infected, Quarantined, 

Critical, Recoveries and Mortality); 
3) National Testing and Impact on Rates of Infection; 
4) Eskom employees by age group, race, gender and province; 
5) Eskom Infection chain with stocks and flows; 
6) Eskom Impact in terms of productivity and human resources to deliver on its mandate. 
 
In Figure 6 below, the model structure built was different to the previous configurations because it used 
logistic equations to fit the infection data in the National Infections stock.  

y = -6E-09x2 + 9E-05x + 0.3795
R² = 0.906

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000 7000

EA
F

Employees in Generation



 
Figure 6: Provincial Infection Model 

 
The logistics curve equation specified in Meyer (1994), allowed for asymptotic conversion to lower 
values, by specifying a negative value for U1, or a positive stabilizing non-zero value by retaining a 
positive value for U1.  

 

P(t)=U0+ 
U1

1+exp [-c(t-t0)]
                                                                                                          

 
where P is the dependent variable and P(t) is a function of time t; U0 is the zero offset; U1 is the ultimate 
increase (or decrease) above U0, modelled using a S-curve; c is a growth rate exponent that determines 
the maximum slope of the S-curve;  and t0 is the time at which the maximum slope is reached (inflection 
point). Time delays were introduced through conveyor structures, an example of the conveyor structure 
data input for the recovery of the population. The transit time was defined as the variable assigned to 
change the recovery period. The recoveries per province from the 1st June were entered into the 
provincial arrays. 
 
The national final infection values for target setting in the S-curve structure were based on the latest 
infection values obtained on the 20th January 2021.  
 
4. Results and Discussion   
 
When calculating the infection spread amongst the different age groups per province in the organisation, 
results were generated for when the national fractions were used and compared against the results using 
Eskom fractions. The comparison allowed us to determine what the expectation would have been in 
relation to the actual dynamics within the organisation (Figure 7). 
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Figure 7: Employee Infections (Using Eskom Infection Rates and National Infection Rates) 

 
In the case of all of the provinces, based on national age group infection rates, the 30-39 year age group 
would have been expected to have the highest number of infections, however, based on Eskom age 
fraction data, the highest number of infections would have been in the 30-39 year age group. In all 
instances the expectation for infections using national fractions was much higher for the 50-59 and 60-
69 year age groups.  
 
Similar graphs were obtained showing the difference in mortality. The major difference in mortality 
results was largely for the 20-29 year age group where expectations based on national rates indicated a 
higher mortality rate. When using national mortality rates, the mortality in the 50-59 year age group 
was a lot higher. 
 
The number of infections as a percentage of the total number of employees as at the 13th January was 
7.17%; and the mortality was 0.117%. The scenarios which were run are shown in Table 5. 
 
 



Table 5: Scenarios to Calculate the Impact of Employee Infections and Mortality on the EAF 
 Infection % Mortality % 

Base EAF 0 0 
Scenario 1 7.17 0.117 
Scenario 2  10 0 

Scenario 3  0 10 
Scenario 4  10 10 

 
The Base EAF simulator run did not include any mortality or infections. Scenario 1 used the infection 
and mortality data obtained on the 13th January (Mkalipe & Pule, 2021). Scenario 2 assumed that 10% 
of employees were infected, with zero mortality. Scenario 3 assumed that 10% of employees fell into 
the mortality stock with infected employees fully recovered. Scenario 4 assumed a combination of both 
Scenarios 2 and 3. Results are shown in Figure 8. 
 

Figure 8: Results of the Impact of Employee Infections and Mortality on the EAF 
 

Due to the dynamics behaviour of the EAF over time, the results for various periods of time are included 
in Table 6. 

 
Table 6: Results of the Impact of Employee Infections and Mortality on the EAF 

 EAF: 60 Days EAF: 90 Days EAF: 120 Days 
Base EAF 0.707864 0.639596 0.560466 
Scenario 1 0.635207 0.573946 0.502939 
Scenario 2  0.609183 0.550432 0.482149 
Scenario 3  0.531321 0.473706 0.403641 
Scenario 4  0.490979 0.443628 0.388743 

 
The results indicated that the average EAF decreased from the Base EAF by 0.0605 for Scenario 1, by 
0.089 for Scenario 2, by 0.166 for Scenario 3 and by 0.195 for Scenario 4. The impact of mortality had 
a much more significant effect on the average EAF when compared to the impact of downtime due to 
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employees being infected. Although the impact on the EAF is initially large, the gap between the Base 
EAF and the rest of the simulation runs narrows after 200 days. 

 
5. Conclusions 

The impact of mortality had a much more significant effect on the EAF than a loss in productivity with 
employees being on sick leave. Systems dynamics models are not well suited for exploring policies that 
are not parameterized in the model. The variation in terms of assumptions on the results can be quite 
significant. This was proven by the results obtained when national fractions were used and compared 
to Eskom fractions in terms of age group responses to infections as well as mortality. Depending on 
which fraction was used, there was a different trend in the possible age group distributions of both 
infections and mortality. If the national provincial rates (infection, recovery and mortality) had been 
used for determining the age group and provincial distribution of infections within the organisation, the 
results would have been unexpected and misrepresented. 
 
For the purposes of understanding the time lags between the infections, critical cases, recoveries and 
mortality, the qualitative system dynamics models were sufficient. These could not however, provide 
the quantitative results that could be used for future trending. Using a more quantitative approach based 
on logistic equations provided a more quantitative analysis of the distribution of infections and deaths 
in the various age groups within the provinces, however, again the difference in rates on the results 
would produce different infection profiles. 
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