Saeed P. Langarudi, Carlos Silva, and Alexander Fernald

Introduction

Mode

Results

Summary

Measurement vs Reporting

Levers to Improve Management of Commons¹

Saeed P. Langarudi, Carlos Silva, and Alexander Fernald

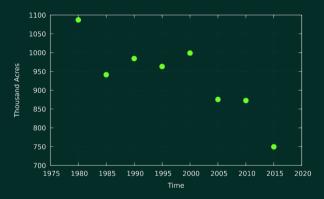
International Conference of the System Dynamics Society

July 28, 2021

¹2021. System Dynamics Review, 37(1), 72-92.

Saeed P. Langarudi, Carlos Silva, and Alexander Fernald

Introduction Model Results

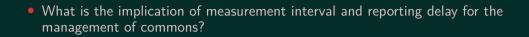

Summary

NM water use data measured every 5 years and reported with \sim 4 years delay

It costs to measure and report!

Example data – irrigated acreage in New Mexico, 1980-2015 [Magnuson et al., 2019, tab. 3.2].

Latest data point could get as old as 9 years!


Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

Introduction

Model

Results

Summary

Questions

Questions

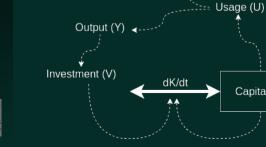
Saeed P. Langarudi, Carlos Silva,

- What is the implication of measurement interval and reporting delay for the management of commons?
 - Added delays deteriorate misperceptions and undermine management performance [Moxnes, 1998, Moxnes, 2004].

Questions

- Introduction
- Model
- Results
- Summary

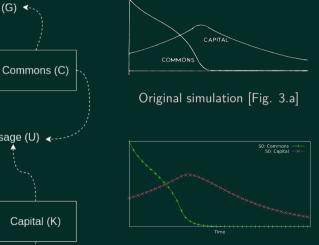
- What is the implication of measurement interval and reporting delay for the management of commons?
 - Added delays deteriorate misperceptions and undermine management performance [Moxnes, 1998, Moxnes, 2004].
- Where should the limited resources be invested to enhance behavior?


Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

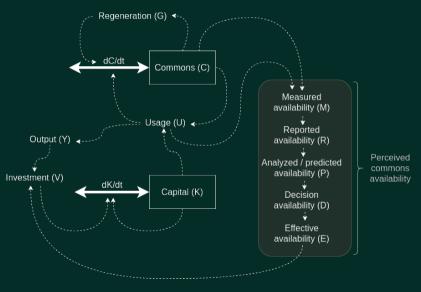
Introductio

Model

Results


Summary

Regeneration (G)


dC/dt

Base model <mark>[Anderson, 1974]</mark>

Replicated simulation

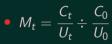
Extended model

Introductio

Model

Results

Saeed P. Langarudi, Carlos Silva, and Alexande Fernald


Introduction

mouch

Summary

Usage (U) <---- Commons (C) Measured Reported availability (R) Perceived availability Effective availability (E)

Information perception

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$R_{t} = \begin{cases} M_{\max(0,t-\frac{\rho}{dt})}, \frac{\rho}{dt} \in \mathbb{Z} & \text{if } t \mod \omega = 0 \\ R_{t-dt} & \text{otherwise} \end{cases}$$

Ą

∲ me

Saeed P. Langarudi, Carlos Silva, and Alexander

Introduction

Model

Results

Jsage (I)
Jsage (I)
Measured
availability (M)
Reported
availability (R)
Analyzed / predicted
availability (P)
Decision
availability (D)
Effective
availability (E)
Mt =
$$\frac{C_t}{U_t} \div \frac{C_0}{U_0}$$

 $R_t = \begin{cases} M_{\max(0,t-\frac{\rho}{dt})}, \frac{\rho}{dt} \in \mathbb{Z} \text{ if } t \mod \omega = 0 \\ R_{t-dt} \text{ otherwise} \end{cases}$
 $P_t = R_t$
 $D_t = P_t$

Langarudi, Carlos Silva, and Alexande Fernald

Introductio

Model

Results

Summary

Ą

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$R_{t} = \begin{cases} M_{\max(0,t-\frac{\rho}{dt})}, \frac{\rho}{dt} \in \mathbb{Z} \text{ if } t \mod \omega = 0\\ R_{t-dt} \text{ otherwise} \end{cases}$$

$$P_{t} = R_{t}$$

$$D_{t} = P_{t}$$

$$E_{t} = D_{t}$$

Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

Usac

Ą

Introductio

Model

Results

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$R_{t} = \begin{cases} M_{\max(0,t-\frac{\rho}{dt})}, \frac{\rho}{dt} \in \mathbb{Z} \text{ if } t \mod \omega = 0 \\ R_{t-dt} \text{ otherwise} \end{cases}$$

$$P_{t} = R_{t}$$

$$D_{t} = P_{t}$$

$$E_{t} = D_{t}$$

$$V_{t} = \delta Y_{t}E_{t}$$

STATE

Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

Introduction

Model

Results

Summary

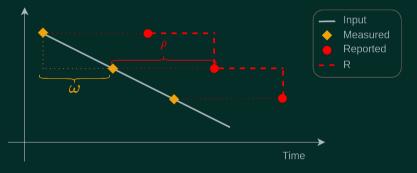
Usage (U) <---- Comm J Measured availability (R)

Partial information perception

$$M_{t} = \frac{C_{t}}{U_{t}} \div \frac{C_{0}}{U_{0}}$$

$$R_{t} = \begin{cases} M_{\max(0, t - \frac{\rho}{dt})}, \frac{\rho}{dt} \in \mathbb{Z} & \text{if } t \mod \omega = 0\\ R_{t-dt} & \text{otherwise} \end{cases}$$

$$P_{t} = R_{t}$$


$$D_{t} = P_{t}$$

$$E_{t} = D_{t}$$

$$V_{t} = \delta Y_{t} R_{t}$$

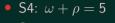
Reported availability (R_t)

$$R_t = egin{cases} M_{\max(0,t-rac{
ho}{\mathrm{d}t})}, rac{
ho}{\mathrm{d}t} \in \mathbb{Z} & ext{if } t egin{array}{c} \mathrm{mod} \ \omega = 0 \ R_{t-dt} & ext{otherwise} \end{cases}$$

Measurement interval (ω), reporting delay (ρ)

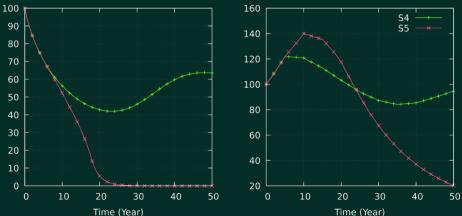
Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

Introductio


Mode

Results

Summary


Measurement and reporting bias

• S5: $\omega + \rho = 9$

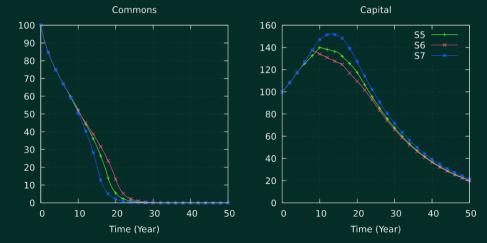
Commons

Capital

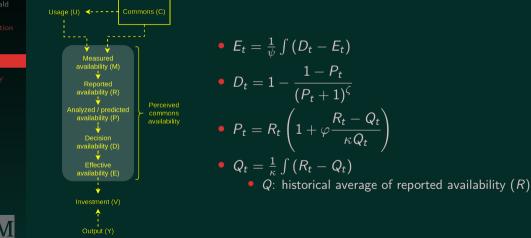
Saeed P. Langarudi, Carlos Silva, and Alexande Fernald

Introduction

Mode


Results

Summary



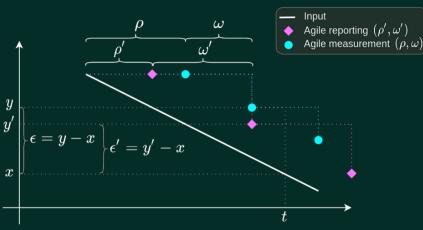
More measurement vs faster reporting

- S6: $\omega = 8, \rho = 1$ (faster reporting)
- S7: $\omega = 1, \rho = 8$ (more measurement)

Results are robust!

vs Reportin

Saeed P. Langarudi, Carlos Silva, and Alexande Fernald


Introduction

Model

Results

Why faster reporting pays off better?

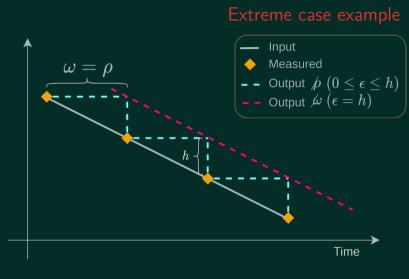
Faster reporting generates less perception error than more measurement; measurement interval (ω), reporting delay (ρ)

Langarudi Carlos Silv and Alexand Fernald

Introductio

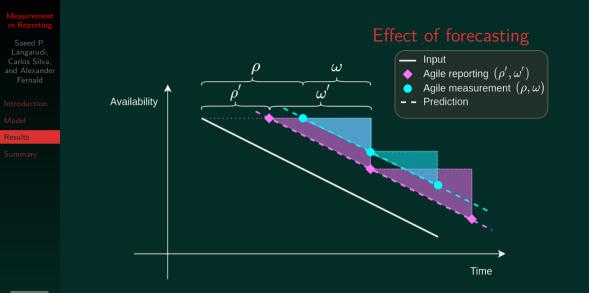
Model

Results


Saeed P. Langarudi, Carlos Silva, and Alexander Fernald

Introductio

Mode


Results

Summary

Measurement interval (ω), reporting delay (ρ)

Forecasting has a greater impact in a system with a relatively quicker reporting; measurement interval (ω), reporting delay (ρ)

Langarudi, Carlos Silva, and Alexande Fernald

Introduction

Mode

Results

Summary

• Measurement interval and reporting delay cause systematic errors sufficient for a tragedy of the commons.

Introduction

Mode

Results

- Measurement interval and reporting delay cause systematic errors sufficient for a tragedy of the commons.
- In a system with declining resources, faster reporting has greater leverage than more measurement; the opposite occurs in a system with increasing resources.

Introduction

Mode

Results

- Measurement interval and reporting delay cause systematic errors sufficient for a tragedy of the commons.
- In a system with declining resources, faster reporting has greater leverage than more measurement; the opposite occurs in a system with increasing resources.
- Oscillatory systems need flexible resource allocation switching priority between measurement and reporting depending on the trends.

Introduction

Mode

Results

- Measurement interval and reporting delay cause systematic errors sufficient for a tragedy of the commons.
- In a system with declining resources, faster reporting has greater leverage than more measurement; the opposite occurs in a system with increasing resources.
- Oscillatory systems need flexible resource allocation switching priority between measurement and reporting depending on the trends.
- Forecasting is more effective in a system that has relatively faster reporting.

Introduction

Mode

Results

- Measurement interval and reporting delay cause systematic errors sufficient for a tragedy of the commons.
- In a system with declining resources, faster reporting has greater leverage than more measurement; the opposite occurs in a system with increasing resources.
- Oscillatory systems need flexible resource allocation switching priority between measurement and reporting depending on the trends.
- Forecasting is more effective in a system that has relatively faster reporting.
- Results remain robust under relaxed assumptions.

Acknowledgment

Introduction

Model

Results

ummary

Funding for this research was provided by:

- The National Science Foundation INFEWS/T1 Program under Award No. 1739835,
- The U.S. Bureau of Reclamation / New Mexico State University Cooperative Agreement R16AC00002, and
- The State of New Mexico Legislature NMWRRI2018.

References

Saeed P. Langarudi,

Carlos Silva, and Alexande Fernald

Introduction

Model

Results

Summary

📄 Anderson, J. M. (1974)

A Model for "The Tragedy of the Commons". IEEE Transactions on Systems, Man, and Cybernetics, SMC-4(1):103–105.

Magnuson, M. L., Valdez, J. M., Lawler, C. R., Nelson, M., and Petronis, L. (2019). New Mexico Water Use By Categories 2015. Technical Report 55, New Mexico Office of the State Engineer, Water Use and Conservation Bureau, Santa Fe, NM.

💼 Moxnes, E. (1998)

Not Only the Tragedy of the Commons: Misperceptions of Bioeconomics. *Management Science*, 44(9):1234–1248.

Misperceptions of Basic Dynamics: The Case of Renewable Resource Management. *System Dynamics Review*, 20(2):139–162.

Saeed P. Langarudi, Carlos Silva, and Alexandeı Fernald

Introductic

Mode

Result

Summary

Thank You!

NM STATE