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Today human and nonhuman societies face many complex problems that require understanding, 
not merely through individual relationships, but entire systems so as to recognize unintended 
consequences.  This paper presents an overview of system dynamics, from modeling to critiques, 
as well as an explanation of where the structural origins of behaviors arise. The discussion 
includes white box vs. black box models, what makes models useful, and how to improve the 
quality of models via structural validation, as well as how to make use of the power and 
adaptability of machine learning. To improve the quality of models, we argue that feedback loop 
dominance profiles assist to illuminate the underlying causal structure, thus clarifying the 
feedback-based explanation of dynamics. Methods of feedback system neural networks and 
feedforward artificial neural networks are offered as ways to do exploratory data analyses which 
can help to ease model conceptualization processes.  From industrial, municipal, global 
dynamics, and their limits, the fields of system dynamics and machine learning offer new and 
emerging insights moving pragmatist inquiry forward in the 21st century. 
 

Modeling, Systems, and Dynamics 
 
Modeling as a concept has existed since the dawn of science.  At its core, science seeks to 
understand nature and the universe.  The underlying language of science is mathematics, which 
codifies science’s understanding of the universe in the forms of axioms, causal relationships, and 
natural laws.  The organization of related sets of mathematically codified understandings is the 
very definition of a model.  One of the greatest stories of modeling in human history is 
astronomy, where humans have since the dawn of antiquity collectively built a gigantic model to 
explain the motions, and origins of the Earth, the Sun, the stars, galaxies and the universe.  This 
model is astrophysics – all of its laws, theories, and axioms combined to create a mathematical 
model which can be used to understand, e.g., the retrograde motion of Mars, or the movement of 
galaxies through the giant voids of the universe.  Via that quest to understand all the objects in 
the universe, science has constantly developed and redeveloped entirely new models of physics 
and chemistry, starting from the classical physics of the ancient Greeks, Indians, and Chinese, to 
the scientific revolution and the development of Newtonian physics, or even modern-day 
quantum and particle physics. All of these developments are the evolution of a model built from 
a/the mathematically codified understanding of the world around us.  The very core of science, 
the scientific method, is constructed around the development and testing of models, and only 
those models that prove useful in generating understanding of the real-world phenomena that 
they represent survive.  
 
Colloquially, systems primarily are the natural phenomena modeled, although the word has a 
wider meaning when applied in the context of models themselves.  For instance, going back to 
astronomy, our solar system is just that – a system, a set of processes, which act on our sun, the 
planets and their moons, as well as all the asteroids, planetoids, gases and other matter contained 
within our celestial neighborhood.  That (natural) system, a set of processes, is modeled using a 
system of equations built from the laws of physics and is called celestial mechanics.  But the 



colloquial language we’ve so far developed is not fully specific between the natural world and 
our human representations and understandings of it.  Therefore, by taking a wider, more holistic 
view, the meaning of the word system is a set of interrelated processes that come together to 
produce dynamics.  The individual behaviors which celestial mechanics describe in the context 
of our solar system include the spin of the Earth around its axis, or the movement of Mars 
through space as it orbits the Sun.  The instantaneous and individual behaviors of the bodies 
within the solar system which happen in each moment, looked at together over a continuum of 
time and across a set of interacting bodies, are celestial dynamics.  Dynamics do not occur in 
isolation of time or by single elements alone; dynamics are the outcomes of a system composed 
of at least two elements observed over time.  Dynamics apply broadly across systems, both 
natural and mathematical. As long as there is interaction between the elements producing 
behavior over time, there are dynamics.  All of the work that science does to model systems is 
centered around creating an understanding of dynamics or the cause and effect interactions which 
exist between things. 
 
The current treatment of modeling used thus far has been exceedingly broad in its scope, but the 
underlying practices and disciplines are relatively easy to categorize.  This paper focuses on 
mathematical models, specifically mathematical (differential equation) models, as opposed to 
physical models.  Within the domain of mathematical modeling there are two general high-level 
categories of models: white box and black box.  White box models are the oldest and most 
widespread and all of the examples referred to so far are white box models based on explicit 
systems of equations, where the meaning of each variable and of those equations which house 
them, have direct and interpretable meaning.  In white box models each variable (or node) within 
the network of model equations that represent a system have a known and agreed upon real-
world analogues from the natural system being modeled.   
 
On the other hand, black box models are a relatively more modern tool with their origins traced 
back to the 1950s with the advent of artificial neurons, and later on artificial neural networks, 
random forests, etc.  Black box models are directly and fully based on experimental data, where 
the understanding they encode in the form of their mathematical structure is not directly 
interpretable.  Each of the nodes within their network of model equations does not have a direct 
known analogue to the natural system they represent.  To be clear, both white and black box 
models have an underlying mathematical structure. The key difference is the encoding of the 
understanding of the natural system which those models represent within their mathematical 
structure.  White box models present that understanding in the form of interpretable causal 
relationships, whereas black box models present that understanding via more opaque 
mathematical structures, such as networks of artificial neurons which do not provide any specific 
meaning when studied element by element. 
 
Within the realm of white box models, which are the primary focus of this paper, there are 
further sub-categories, which are useful for understanding the breadth of modeling techniques.  
There are models constructed of systems of differential equations (analytical or simulated), or 
models constructed by the interactions of agents (actors, particles, etc.) and models which create 
dynamics based upon the generation of a discrete sequence of events, among various others.  The 
ways to construct, interpret and analyze white box models are nearly as boundless as science 
itself, but that doesn’t mean there aren’t some useful abstractions that we can apply across wide 



swaths of those white and even black box models to help better integrate them all into our 
understanding.   
 
The first of these useful abstractions across all systems and models are states, which pertain to 
the memory of a system (natural, or mathematical) and provide the system with continuity across 
time as it creates dynamics.  In a model, states are designed to represent the same quantities they 
do in their natural system in an attempt to mimic that the natural system the model purports to 
represent.  In models, states have direct analogues to their natural equivalents.  Examples of 
states are the number of people in a city, or jelly beans in a jar, or the location of a planet in 
space.  This doesn’t mean that states have to be physical quantities, but can be used to track soft 
concepts, like the amount of knowledge that a person or group of people have about an idea, etc.   
 
A state represents a fundamental element of a system whose value at any given moment in time 
is dependent upon its previous value and any new changes brought about by the other elements 
within the system between the current moment and the next.  For instance, if time within a 
system were to stop, the states are the parts of the system that would still be measurable and have 
a value.  For instance, consider a basic system of a bathtub filling with water where there is a 
spigot which releases water to fill the tub, and a drain at the bottom of the tub which empties it.  
The amount of water in the bathtub is a state of that system; other states would be the size of the 
spigot or the size of the drain. Again, both exist outside of time and can be measured without the 
passage of time.  If we wanted to know how much water would be in the tub in the next instant, 
we would have to know how much water was in the tub in this instant, how much water is added 
to the tub between this instant and the next, and how much water leaves the tub through the drain 
or evaporation, etc. during the same time interval.  The amount of water which flows into the tub 
via the spigot or leaves via the drain are the rates which change the value of the states over time.  
Therefore, rate is the key property which defines a state.  States are the fundamental elements of 
systems whose value can only be changed over time.  The water in the bathtub cannot rise or 
lower in a single instant without the passage of time.  Water must be added over some interval of 
time, no matter how infinitesimal that interval is.  
 
The second useful abstraction across systems and models is feedback, or an abstraction used to 
represent processes which self-modify their own states over time without continued action from 
a source of action.  Let’s take, for example, a simple population model of planet Earth.  In this 
overly simplistic model, there is one state which represents the number of people, and two rates 
which modify the value of that state over time.  First, the birth rate which represents new arrivals 
added to the population, and second, the death rate, which represents existing members of the 
population who leave through death.  In this simple model, there are two feedback processes.  
The first is the more people in the population, the more births there are, which means over time 
(not withstanding anything else), there will be more people. This is a positive (or reinforcing) 
feedback loop which leads to, if left unchecked, exponential behaviors of either growth or decay. 
In other words, dramatic changes to the situation.  The second feedback process in this system 
says that the more people there are in a population, the more people die, which means fewer 
people in the population.  This is a negative (or balancing) feedback loop which leads to 
logarithmic stabilizing behaviors. 
 



Now that we have this set of abstractions for looking at and understanding systems and models, 
how can we apply that to the different popular modern day white box modeling paradigms e.g., 
agent-based, discrete event, and system dynamics models?  First, agent-based models use states 
to capture the attributes of actors (individuals) or items according to their location in space, their 
color, etc.  The interactions between agents can be looked at through the lens of feedback – any 
action that an agent takes which modifies one of its states that later comes back to affect that 
same state of that same agent, is a feedback loop.  Finally, the actions of agents or the impacts of 
other agents on an agent of interest are often delayed in time.  Discrete event models can be 
looked at the same way, as they are structures composed of states linked by feedback whose rates 
rather than being computed in a continuous fashion, over a series of uniform time intervals, 
change their states over a discrete continuum of time or in non-uniform intervals of time.  Lastly, 
system dynamics models are composed of stocks (or states) and flows (or rates), in other words, 
feedback loops which connect the stocks and often create time delays.  Each of these abstractions 
can be recognized in the network of model equations generated by all of these modeling 
paradigms.   
 
In the context of black box models (e.g. machine learning, specifically artificial neural 
networks)1, states can be thought of as nodes.  In recurrent neural networks, where nodes' values 
are dependent upon their previous states, it would be fair to call each recurrent node a state.  In 
supervised and reinforcement learning feedback exists in the context of training, but not in the 
mathematical structure of the final model itself.  Training connects the feedforward relationships 
from the input nodes to the output nodes using weights and biases set during backpropagation 
that depend upon the outputs of the neural network to re-adjust those weights and biases.  This 
feedback loop between outputs, and weights and biases back to outputs does not exist in the final 
form of the network of equations of a standard multilayer perceptron artificial neural networks.  
In fact, for the very large majority of artificial neural networks no feedback at all is present in the 
final structure. 
 
Now that we’ve laid the groundwork for understanding systems and models, we turn to the 
problem of defining and measuring what makes a model useful.  The context of this discussion 
will be on white box, differential equation models, e.g., models built according to the system 
dynamics methodology.  It is often noted that “All models are wrong, but some are useful.”  This 
begs the questions: what makes a model useful? how can we measure a model’s utility? and how 
can we be confident that the ways in which a model are wrong doesn’t affect the learning we are 
trying to do using the model? 
 

System Dynamics and its Modeling Process 
 
System dynamics2 as a field seeks to understand via simulation models3 the underlying 
nonlinear4 behavior of systems using accumulations (states), feedback and time delays and grew 
out of Jay W. Forrester's research in the 1950s at the Massachusetts Institute of Technology 
(MIT).  In the early 1960s, system dynamics was focused primarily on modeling and 
understanding problems in business or management as Forrester was a professor at the recently 
formed Sloan School of Management at MIT and published Industrial Dynamics in 1961. In the 
late 1960s, Forrester's Urban Dynamics (1969) demonstrated the beginnings of the broad utility 
of the system dynamics methodology with the study of the management of a city. Branching out 



from businesses and cities ultimately led him to the Club of Rome in 1970, where he became 
deeply interested in global socioeconomic modeling and managing global systems, publishing 
World Dynamics in 1971.  Subsequently, World Dynamics laid the groundwork for The Limits to 
Growth (Meadows, et al., 1972), which became a seminal publication because it was one of the 
first to take the position that humanity could grow to surpass the physical carrying capacity of its 
habitat, planet Earth. (Also see The 30-Year Update, Meadows, et al., 2004).   
 
Since the 1970s, there has been a continuing history of good modeling work coming out of the 
system dynamics field including Peter M. Senge’s The Fifth Discipline: The Art & Practice of 
the Learning Organization ([1990] 2006), John D. Sterman’s Business Dynamics: Systems 
Thinking and Modeling for a Complex World (2000), and more recent work such as 
HealthBound, PRISM, ReThink Health, and all the work done by Climate Interactive.  As a 
method, system dynamics is very broad and generally applicable to a wide variety of systems, 
deriving power and utility from its laser focus on the understanding of systems regardless of the 
context of those systems.  In a general sense, the purpose of the system dynamics method is to 
help people make better decisions in the face of complexity (Sterman, 2000). 
 
After reading the above you may think that system dynamics is a magical method with the ability 
to shed light and understanding on a huge variety of systems across a wide domain of subjects.  
To better understand the critical discourse around system dynamics, it is important to understand 
the system dynamics method as it is practiced and implemented.   
 
In 1994, Forrester described the practice of system dynamics in general as the process of 
understanding and improving systems.  In the same paper, Forrester laid out the general steps of 
the modeling process shown in Figure 1.  The process is clearly not linear, and exposes many 
opportunities for iteration and revision.  

 
FIGURE 1: The system dynamics modeling process (Forrester 1994). 

 
Figure 1 illustrates how the system dynamics process at its core generalizes real-world 
observations into complex (computational) mathematical models, which can be seen in steps one 
and two.  It then uses those mathematical models as a basis for developing, then sharing 
inferences (policies) which are then used as the basis for either education, and/or making 



decisions in the real-world, which can be seen in steps three through six.  As an example, we can 
apply this process to understanding a typical business issue of declining revenues, or an 
environmental problem such as climate change.  Step 1 would be to describe how the business 
operates, or how products are demanded, produced, and sold.  For the climate system it would be 
to enumerate how the Earth’s various natural systems work together to regulate the climate.  The 
second step would be to encode that understanding into a series of equations (a model), making 
sure to get more descriptions of the system as questions about the specifics of the problem arise.  
Step 3 involves the modeler simulating that model (which can require that more equations be 
written, or more information be solicited). If done properly, this results in a depiction of the 
original problem by the model.  In the fourth step, the modeler looks for solutions to the problem 
in the model.  For the business example of declining revenue, perhaps by adding more 
salespeople, lowering the price, etc., which may influence each of the previous steps.  For the 
climate system by adjusting human GHG emissions, or land use rates.  Step 5 is to use the model 
to educate the key stakeholders about what the model says and why, which includes the 
possibility of learning more and therefore adjusting previous steps.  Thus, in the sixth step, the 
stakeholders can implement the change and either fix the original problem which would end the 
process, or go back to any of the other steps and understand other ways to improve the model). 
 
Delving deeper into some of the philosophy of science issues involved at the foundation of the 
field of system dynamics requires an understanding of empiricism and rationalism as they apply 
to the field.  Yaman Barlas and Stanley Carpenter (1990) developed and refined these 
philosophies into worldviews as they apply to system dynamics.  The large majority of the 
critical sentiment surrounding system dynamics related to the validation of models and 
determining model utility. Barlas and Carpenter’s work was summarized by Barlas (1996), who 
classified the philosophies of science surrounding system dynamics into two opposing 
philosophies.  The first is the traditional reductionist/logical positivist worldview that takes a 
theoretically valid model as an objective representation of a real system.  Under this worldview, 
the model is either right or wrong and by matching it with real-world empirical data, the model’s 
usefulness is determined.  The second worldview is the relativistic, holistic pragmatism that 
takes a valid model as just one of many possible understandings of a real-world system, and 
views a model as a vessel for its author’s worldview.  To this second perspective, models aren’t 
right or wrong in a binary state, but exist on a sliding scale somewhere between the two 
concepts.  Barlas and Carpenter (1990) argued that the second worldview is most complementary 
to the system dynamics approach. 
 
Early criticisms of the work of Forrester and other system dynamists is typified by the 
neoclassical economist William D. Nordhaus, in his paper, "World Dynamics: Measurement 
Without Data" (1973), which was written in response to Forrester's World Dynamics (1971).  
Nordhaus took issue with Forrester's neo-Malthusian position and criticized the method of 
system dynamics and computer simulation by saying “…without an accurate model there is no 
assurance that systems dynamics is better than mental models; the main result is a spurious and 
misleading precision.” (p. 1157) He argued that the model was “measurement without data” and 
that none of the relationships between the variables in the model are couched in empirical studies 
or observed data.  Essentially Nordhaus was claiming that by abstracting to such a degree as 
Forrester did, all meaning and connection with the real-world was lost and that inferences drawn 



from this model could not in any way contribute to the understanding of that real-world system, 
again a traditional reductionist/logical positivist perspective.   
 
Nordhaus continued by pointing out that there was insufficient validation done through empirical 
testing.  Applying a reductionist/local positivist perspective to this work would result in an 
argument that insufficient sensitivity analysis was performed on this model yielding an incorrect 
perception of accuracy and precision.  In fact, one of the things Nordhaus did in his paper was to 
perform a sensitivity analysis on the parameters and relationships in the world dynamics model 
to demonstrate the possible range of outcomes and policies that could be produced.  As a key 
proponent of the second holistic, pragmatist worldview, I believe that Forrester would argue 
against Nordhaus by saying that the model has value because it informs discussion and thinking 
on the topics of boundless economic and population growth. 
 
More recently, the system dynamics process been expanded with a few steps added to the high-
level process shown in Figure 1.  Validation and uncertainty testing now are done on any model 
before it can be realistically used to provide policy recommendation or serve as a basis for 
education in response to the criticisms of the subscribers to the traditional reductionist/logical 
positivist worldview.  Barlas described the process for model validation in his seminal work, 
"Formal Aspects of Model Validity and Validation in System Dynamics" (1996).  Barlas’ major 
departure from the process is to place emphasis on the modeler to ensure that their models are 
structurally and behaviorally valid between simulation and policy analysis.  At a very high-level, 
behavioral validation means that the model is generally capable of reproducing historical data 
with a high degree of accuracy without the model having foreknowledge of that history.  And at 
the same high-level, structural validation refers to the concept that the model is producing that 
behavior for the right reasons, e.g. that the system of equations that the model is composed of are 
logically and empirically valid.  
 
Building upon the previous examples of a business with declining revenues or global climate 
change, between the simulation and policy steps (3 and 4), as well as between the policy 
construction steps and the education steps (4 and 5), the modeler now must explicitly focus on 
validation, where it was more implicit before.  For instance, in the business example the modeler 
must check that their model reproduces the decline in revenue with a high-level of accuracy.  In 
the climate case, they must confirm that their model accurately portrays historical climate data.  
They may confirm with subject matter experts and existing bodies of literature that the system of 
equations used to encode the knowledge that they gathered about the system is logical and borne 
out by data.  Other tests include assessing their model’s sensitivity to parameters to make sure 
point estimates are not the primary cause for behavior, or to identify specific assumptions which 
must be further tested and validated.  They typically also subject their model to extreme 
conditions tests to make sure that, for instance in the business case, when there are no 
salespeople, there are no sales, etc.  At its core, Barlas’ addition is to make sure that the 
modeling process emphasizes the scientific process of exposing a theory to data to try and find 
cases where the model doesn’t explain the data. 
 
Barlas produced a list of all the validation tests a model must go through before being considered 
useful for policy recommendations.  He breaks these tests down into three categories: direct 
structure tests, structure-oriented behavior tests, and behavior pattern tests.  He demonstrates 



how these tests confirm and validate structure (the relationships between the variables that 
Nordhaus criticized Forrester for), as well as behavior and also quite importantly cover model 
purpose, and problem identification (the issue of boundaries).  
 

Addressing the Criticisms of Modeling (System Dynamics)  
via Automated Feedback Loop Dominance Analysis 

 
System dynamics models are constructed through the heavy use of feedback loops.  A typical 
system dynamics model of consequence to policy can contain as few as 3-5 feedback loops or as 
many as tens of millions, as was the case for the model underlying Urban Dynamics.  By 
studying the relationships between the feedback loops in a system dynamics model, we can 
understand where model behavior comes from, and via the process of induction, relate that back 
to real-world processes that are responsible for the problem being modeled. 
 
The normal mode of operation for model understanding today comes from years of experience 
and training through either (and oftentimes both) repeated practice or training during a Masters 
and/or Doctoral education.  In the literature, this process is often referred to as the art of 
modeling or model analysis. Richardson (1996) perfectly captures the essence of this process: 
  

For more than 35 years practitioners have relied on a time-consuming and often 
incomplete process that iterates from formulation to parametrization, testing, 
observation, hypothesizing and back again. […] Understanding connections 
between complex model structure and behavior comes, if one is skillful and/or 
lucky, after a prolonged series of model tests of deepening sophistication and 
insight. 

 
This process requires much experience, knowledge and practice and sets a high barrier to entry 
into the field of useful system dynamics modeling in a policy making context, which acts in part 
as a safe-guard for the policy maker who must ultimately undertake any responsibility for 
making actionable decisions based upon the recommendations from system dynamics models. 
On the other hand, this process is error prone and may not yield a proper understanding of model 
behavior and therefore may lead to real-world determinants of system behavior which can drive 
policy makers to make sub-optimal decisions based on improperly understood stories and 
narratives of system behavior. 
 
From the perspective of a traditional reductionist/logical positivist, the art of the model analysis 
approach described above is a major problem.  There is no clear right and wrong and 
understanding is purely in the eye of the beholder.  The traditionalist worldview within the 
system dynamics field has developed two rarely used (in a policy context), and hard to apply 
(even from an expert perspective) mathematical techniques for objectively performing this 
process of model understanding.   
 
The current methods (both mathematical and art of analysis) relate model behavior back to the 
underlying feedback loop structure.  This process whether done by hand or algorithm is called 
feedback loop dominance analysis. The current state of the art in the system dynamics field for 
performing feedback loop dominance analysis relies on either practitioner intuition and 



experience (the art of modeling and model analysis) or complex algorithmic feedback loop 
dominance analysis. The former is taught as part of the methodology of model building, while 
the latter comes from 40 years of work on techniques to derive and explain model behavior based 
on the analysis of structure (for example, see Graham, 1977; Forrester 1982; Eberlein, 1984; 
Davidsen, 1991; Mojtahedzadeh, 1996; Ford, 1999; Saleh, 2002; Mojtahedzadeh et al., 2004; 
Goncalves, 2009; Saleh et al., 2010; Kampmann, 2012; Hayward and Boswell, 2014; Moxnes 
and Davidsen, 2016; Oliva, 2016; Sato, 2016; Hayward and Roach, 2017; Naumov and Oliva, 
2018; Oliva, 2020).  
 
David Ford (1999, pp. 4-5) most clearly states the needs of the system dynamics field as it relates 
to loop dominance analysis: 
  

To rigorously analyze loop dominance in all but small and simple models and 
effectively apply analysis results, system dynamicists need at least two things: (1) 
automated analysis tools applicable to models with many loops and (2) a clear and 
unambiguous understanding of loop dominance and how it impacts system 
behavior.  

 
Loop dominance analysis sheds light on the origins of behavior in system dynamics models by 
relating observed behavior back to the feedback process(es) that created it (Forrester 1961; 
Richardson 1991).  Loop dominance analysis is concerned with the discovery of the strength and 
polarity of the key feedback loops existent within models as time progresses within those models 
(Richardson, 1995).  Over any period of time in a simulating model, some feedback loops are 
most important to the expressed dynamics of the model above all others, and those feedback 
loops are referred to as the dominant feedback loops.  Loop dominance is a concept measured at 
each and every specific point in time when the model simulates.  This means during some points 
in time (for instance, in a simple SIR [Susceptible-Infectious-Recovered] epidemic model), the 
behavior of the model early on may be dominated by a reinforcing feedback loop which spreads 
the diseases to new susceptible suitable hosts, but later on the behavior of the model may come 
to be dominated by a balancing feedback loop which limits the spread of the disease due to 
running out of susceptible, suitable hosts.  This continuum or pattern of shifting feedback loop 
dominance is called the feedback loop dominance profile.   
 
By identifying the feedback loop dominance profile of a model, we better understand the causes 
for the observed behavior over that period of time from a mathematical perspective. For instance, 
by changing the gain of the feedback loops by changing model parameters or inputs, or even by 
modifying the loop structures themselves, we modify the feedback loop dominance profile of the 
model, and of course change the behavior of the model.  In other words, the explanation of the 
causes for the dynamics exhibited by the model changes as the structure or inputs into that model 
change.  However, it must be noted that the feedback loop dominance profile on its own says 
nothing about whether or not the model is structurally valid and relevant to the problem being 
studied.  It still requires expert assessment to validate if the measured feedback loop dominance 
profile captures the essence of the underlying system being modeled.  To a traditionalist, the 
ability to identify the feedback loop dominance profile of a model (assuming it is a perfect 
representation of the underlying system) is the key to the development of robust policy options, 
to perform impact assessment by way of simulation and to the formulation of policy 



recommendations.  This is because by understanding which feedback processes are most 
meaningful and how they contribute to the dynamics being changed (again only if you assume 
your model is a perfect representation of reality), demonstrates complete mastery of the system 
and the ability to intervene safely and productively, knowing everything that will happen is a 
consequence of your intervention. 
 
From the perspective of the traditional reductionist/logical positivist once you move past the 
issues typified by Nordhaus and addressed by Barlas’ emphasis on model validation (both 
behavioral and structural) you’re left with just a single strong criticism of the system dynamics 
approach, and generally speaking, of modeling as a general practice.  The core of that criticism is 
that modelers cannot provably demonstrate that their models are actually representative of the 
systems they purport to embody.  Validation is a process of elimination, subjecting the model to 
batteries of tests aimed at finding flaws, where the model clearly and importantly misrepresents 
reality.  The validation techniques in use today both within the system dynamics field, and 
modeling in general do not fully address the problem that a model may not be truly 
representative of the system it purports to understand.  Each of the validation practices in use 
today—confirming that models are able to replicate historical dynamics without foreknowledge, 
or confirming that the equations within a model are each logical and valid in isolation—helps to 
build confidence that the model is an accurate representation of the system.  The paradigm here, 
and of science in general, is that you can never prove a model right only wrong.  Within that 
paradigm there is another step that we can take to address the concern that a model may not be 
representative of the system it purports to embody via feedback loop dominance analysis.  One 
of its holy grail pursuits within the field of system dynamics is a mathematical system capable of 
performing loop dominance analysis algorithmically using a mathematical process to understand 
which feedback processes are responsible for the behavior of the model at each and every point 
in time (Sterman, 2000).  
 
Recently there has been a break though in automating model analysis via an easy to use, and 
widely applicable automated method for objectively measuring feedback loop dominance called 
Loops That Matter (LTM) depicted in Figure 2 (Schoenberg et al., 2019).  LTM tells the modeler 
which feedback loops are responsible for producing the dynamics generated by the model at each 
point in time while it simulates.  It does this by analyzing each equation in the model to 
determine the importance of each independent variable to its dependent variable(s) and uses that 
information to generate a measurement of feedback loop importance which is compared across 
all feedback loops in a model (Schoenberg et.al, 2019, Schoenberg et. al, 2021). By knowing the 
importance of each link and feedback loop in the model is, modelers can speak with confidence 
about where specifically in their model behavior is being generated.  The theory underlying LTM 
is very broad in its scope, even while the implementation of the algorithm is currently limited in 
its application to system dynamics style models.  The primary reason that LTM represents a 
major breakthrough is because it can be used as a very powerful new structural validation test 
measuring whether or not the model produces behavior for the right reasons, or in other words, 
that the feedback loop dominance of the model matches with an empirically derived 
understanding of the system which the model represents.  For instance, we could rule out the SIR 
epidemic model as useful if during the exponential spread of the disease, the model’s behavior is 
being dominated by a feedback loop or set of loops which has nothing to do with disease spread.   
By algorithmically calculating the feedback loop dominance profile, LTM makes it abundantly 



clear why a model produces the behavior it does, which allows the modeler and other subject 
matter experts to validate whether the model provided reasonable explanations of the underlying 
system.  
 

 
FIGURE 2: Diagram of how Loops That Matter (LTM) process works. 

 
Therefore, to address the aforementioned philosophical criticism of system dynamics; that 
models may not properly represent reality, the system dynamics modeling process needs to be 
once again amended.  The change adds an LTM analysis to the model validation step so that the 
generated explanation for dynamics, the feedback loop dominance profile, can be validated 
against both the pre-existing understanding of the system being modeled, and the empirical data 
gathered about that system.  Thus, modelers can be assured that if their model passes the existing 
battery of validation tests, it is much less likely to be random coincidence. Therefore, the model 
is a much more useful tool for answering questions where we do not understand how the system 
will respond to perturbations.  So even though “all models are wrong,” we’ll at least know which 
models are useful, and that those will be the models in which the descriptions of where behavior 
comes from match reality in all cases where we currently understand the system under study. 
 

Turning a Black Box Model into a White Box Model 
 
Modern day machine learning5 methods including probabilistic modeling, kernel machines or 
deep learning, have arisen from a strong, almost single minded, focus on empiricism making use 
of the extraordinary amounts of observational data available from a plethora of sources 
(Ghahramani, 2015; Schölkopf and Smola, 2008; Goodfellow, et al., 2016).  When viewed 
through the lens of accurate prediction power, machine learning has proven to be quite 
successful, but present-day techniques typically fail to reveal the fundamental causal 
mechanisms driving behavior. Although it cannot be ignored that interpreting the structure 
behind black box, deep learning models is an active research area (Montavon et. al, 2018).  To 
make full use of the technological advancements in machine learning, significant emphasis must 



be placed on finding a valid and interpretable causal understanding of the underlying real-world 
system (Runge, et al., 2019). 
 
The study of observational causal inference exists alongside the field of machine learning and is 
focused on drawing conclusions about causal connections between variables by studying the 
response in an effect variable when a cause is being changed (Pearl, 2009).  Largely based on 
statistics, observational causal inference started with the seminal works of Norbert Wiener and 
Clive W. J. Granger and has been growing and developing since the 1950s (Wiener, 1956; 
Granger, 1969).  The most well-known method is Granger causality6, which tests whether 
omitting the past of a time series 𝑋 in a time series model including 𝑌’s own and other 
covariates’ past, increases the prediction error of the next time step of 𝑌 (Granger, 1969).  
Granger causality is useful in discovering specific causal links in a system, but it fails to 
generalize to complex nonlinear systems, typically failing to identify all of the links in the 
networks of feedback relationships which govern these systems from a holistic perspective 
(Spirtes and Zhang, 2016). 
 
Non-Granger methods in observational causal inference have been categorized into the following 
three broad frameworks: nonlinear state-space methods, causal network learning algorithms, and 
structural causal models (Runge et al., 2019).  These approaches are designed to discover 
causality in directed acyclic graphs and are incapable of operating in complex dynamic 
feedback-rich environments, which has been argued to be at the core of the most intractable and 
relevant problems (Sterman, 2000). Taking into account the current state of the art in machine 
learning and automated observational causal inference, it becomes clear that the machine 
learning field lacks a direct understanding of the relevance of the causal structures underlying 
their models to real-world systems. 
 
The power of the LTM method for discovering the origins of behavior in models has direct 
utility outside of the field of system dynamics.  By combining states, feedback loops, and 
feedforward artificial neural networks, we’re now able to do automated causal inference using a 
machine learning approach and relying on LTM to turn the generated black box model into a 
white box model in all the ways that matter, namely, the ability to generate a feedback loop 
dominance profile (Schoenberg, 2019).  This approach, called a feedback system neural network 
(FSNN), constructs a model with one state for each dimension in the dataset.  Each state is 
connected to each and every other state (including itself) using a standard multilayer perceptron 
artificial neural network (MLPANN) forming a system of ordinary differential equations, a 
system dynamics model with a factorial of the number of states (stocks) feedback loops, 
typically an amazingly large number (trillions, quintillions, a Googleplex or more!).  That model 
is parameterized (trained) via calibration (back-propagation) to fit the empirical data.  That 
parameterized black box model is then analyzed using LTM to discover the origins of behavior 
via its feedback loop dominance profile ultimately turning the black box model transparent 
enough to reason about, visualize and understand what the model has learned about the data, and 
therefore to validate the generated model’s mathematical structure.   



 

 
FIGURE 3: High-level overview the machine learning approach to causal inference including LTM. 

 
The FSNN method (presented in Figure 3) acts as a machine that produces behaviorally accurate, 
feedback rich structural hypotheses directly from data where the polarity and contribution of 
each link between all states in the system is known.  The machine takes time series data 
measured from the real-world as its input, and, with no additional input, produces a behaviorally 
relevant causal dynamic hypothesis, which is much more easily validated by subject matter 
experts than standard neural nets and other machine learning technologies.  The validation 
performed also is of a much higher quality because it is a structural validation of the machine 
learned understanding of the system rather than a behavioral validation of the outputs of the 
model.   
 
By combining system dynamics and machine learning FSNN’s demonstrate a powerful new 
machine learning technique for finding the causality in arbitrary data sets.  By using MLPANNs 
to represent the relationships between the states the universal approximation theorem (Cybenko, 
1989) ensures that each relationship is capable of reproducing the real-world function which 
links the states together.  By linking all states together in a directed cyclic graph this new 
machine learning method becomes much more likely to find accurate causal models for the data.  
As Jay W. Forrester might say, this is because nonlinear feedback systems are at the heart of 
complex dynamic real-world problems and those systems are best represented in mathematics as 
systems of ordinary differential equations containing feedback, which this new method does as a 
matter of purpose.  
 
FSNNs are not cure-alls which replace the existing system dynamics modeling process. They are 
most useful when you’re trying to describe and understand the potential causal relationships in 
the system in the early phases of the modeling process. FSNN’s are useful for exploratory data 
analysis, but are not meant to be the end of the process, but rather at the beginning. They are 
especially useful for intractable problems which exist in inscrutable systems where there is a lot 
of data, but precious little understanding of the high-level relationships which govern the 
processes responsible for generating the observed dynamics.  An example of such a case may be 
in genomics where there is a glut of empirical evidence on gene expression, but much less 
understanding of how those gene expressions are related. 
 

Using Modeling to Solve Problems and General Conclusions 
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Today human and nonhuman communities face many complex problems, including 
environmental change, food insecurity, worsening inequality, etc.  Solving these problems 
requires understanding, not merely individual relationships, but entire systems, so as to recognize 
unintended consequences.  The tools, techniques, and problem-solving, or in other words, 
technologies (Swartz, et al., 2019), necessary to make progress on the development of society 
may be based in part on models, whether white box or black box.  Following the processes laid 
out by Forrester and amended by Barlas is an excellent start to developing models, but as 
previously suggested, there are at least two steps forward that modelers and systems scientists 
can embrace. 
 
First is to improve the quality of models by doing better structural validation using LTM to 
produce a feedback loop dominance profile that illuminates the underlying causal structure, 
clarifying the feedback-based explanation of dynamics.  Whether the model is system dynamics, 
agent-based, or black/white box, it is no longer sufficient to state that a model represents a 
system because it reproduces behavior or has some pieces of logical structure which can be 
verified as existing in the natural system.  Modelers must now demonstrate that their models 
reproduce the behavior of the systems they purport to represent for the right reasons, by 
demonstrating the feedback loop dominance profile of their models matches what is known 
about the systems in reality.  Without this, those models are objectively less useful because there 
is no assurance that they will accurately respond to non-historically observed inputs.  Essentially, 
the link between model and reality is severed!  
 
Second, modelers can use techniques like FSNNs to make use of the amazing power and 
adaptability of machine learning models to quickly build hypotheses to do exploratory data 
analysis which ought to ease the model conceptualization process.  The major overarching 
emphasis here is on structural validation and ensuring that models are useful because they 
demonstrably capture the essence of reality for more reasons than just behavior matching in the 
past. 
 
The solutions to the aforementioned major problems facing the world are not generated by 
technologies (including analytics) alone.  A key to developing robust societies capable of 
tackling systemic issues is systems education.  Organizations like the Creative Learning 
Exchange7 and others who work to get systems thinking and systems sciences integrated into the 
K-12 education curriculum are vital to the future abilities of societies to solve these challenges 
and potentially avoid future intractable problems.  It’s not just the scientists, or the modelers, or 
the analysts who need to be trained to think systemically.  It is also the educators, policy makers, 
stakeholders, artists, and everyone living, breathing and functioning as parts of systems—all of 
whom can bring forth interventions to solve and validate difficult problems. From industrial, 
municipal, global dynamics, and their limits, the fields of system dynamics and machine learning 
offer new and emerging insights into public health, epidemiology, systems biology, 
environmental science, restoration ecology, public policy, disaster management, education, and 
beyond. 
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1 Machine learning algorithms are typically broken down into 3 high level categories – supervised learning, unsu-
pervised learning, and reinforcement learning.   

• Supervised learning is when the input data to the algorithm contains paired sets of inputs with outputs, and 
the algorithm develops a model using that input data which can map any arbitrary input to its specific and 
correct output.   

• Unsupervised learning is when the input data to the algorithm does not contain any outputs.  An 
unsupervised learning algorithm creates a model which classifies and groups the given data as it sees fit 
without any preconceived notion for how the inputs should be arranged into outputs.   

• Reinforcement learning is when an algorithmically generated model receives feedback about its output as it 
navigates the problem space.  Rather than pairing each input with a specific output (supervised learning), 
the algorithm trains the model by giving it rewards as it produces certain outputs.   

Deep learning refers specifically to artificial neural networks with multiple layers where a deep neural network is 
one which allows for universal approximation as defined by the universal approximation theorem. 
2 ßThe history of the tools used to develop system dynamics models may be of interest to some readers.  The earliest 
system dynamics (SD) modeling language was DYNAMO developed in the late 1950s at MIT and has a program-
ming language like interface.  The first of the visual SD tools based around programmable stock and flow diagrams 
was STELLA developed by High Performance Systems (now isee systems) and was first released in 1985 for the 
Macintosh.  Other popular visual SD modeling tools are Vensim (produced by Ventana), and Powersim which was 
initially called Constructor, now Studio.  Other tools exist, these four though are the most notable.       
3 As opposed to systems of differential equations which are analytically solved which are typically referred to as 
Dynamic Systems. 
4 Nonlinear behavior is when a change in the inputs to the system do not create a proportional change in the outputs. 
5 Machine learning refers to computer models (algorithms) which self-modify their state through trial and error 
(optimization, backpropagation) on a given set of empirical data. 
6 Granger causality is a statistical concept which uses prediction to measure if a change in an independent variable 
causes a change in a dependent variable.  The technique is based on linear regression, although there are nonlinear 
methods which are difficult to apply. 
7 The Creative Learning Exchange, http://www.clexchange.org/cle/about.asp. 
 


