Tourism Industry during a Pandemic

Takayuki Yamashita
Aoyama Gakuin University, Japan

yamashita.takayuki@gsc.aoyama.ac.jp
Introduction

• COVID-19 in 2020 has caused a significant loss to the local economies that rely on the tourism industry.

• The tourism industry is a basic industry to local economies with low economic potential because it is a labor-intensive industry.
Popular tourist route

New Infected People Map, 28th July
Industries in Shizuoka Prefecture

Manufacturing area

Resort area
Aim of this study

• To provide the economic prediction for next month.
 • A standard tool to estimate the economic impact of tourism is an input-output analysis. Unfortunately, the estimation is yearly based.
 • System dynamics must contribute to the needs of residents.

• To develop the socio-economic model for prolonged coronavirus.
 • Consumers are changing their propensity to consume.
 • Employment structure is changing.
Background of this study

• The tourism industry in Shizuoka Prefecture faces a trade-off between infection control and tourist income.
 • Infection control:
 • All prefectures request self-quarantine to stop the spread of the coronavirus.
 • The number of positives for the coronavirus in Shizuoka Prefecture correlates with the number of positives in Tokyo.
 • Tourist income:
 • A decline in sales.
 • Closing of restaurant and hotel business.
 • Dis-employment.

No first-time customers
Visitors to Shizuoka Prefecture

![Graph showing visitor numbers from 2019 to 2020. The graph indicates a peak in August 2019 and a significant drop in 2020.](image-url)
Model for Shizuoka Prefecture

Input-output analysis

Tourism demand → Regional GDP

Tourists

New cases of COVID-19

Input-output multiplier

Business suspension

Monthly data of guests

High correlation

New positives for the corona virus
Input-output analysis of tourism

\[
X = \left[I - (I - \hat{M})A \right]^{-1} (I - M_0)F
\]

- Outputs
- Technical coefficient matrix using TSA
- Tourism consumption
- Leontief inverse
- Self-sufficient ratios

TSA: Tourism Satellite Account
Input-output part of the model

- Number of tourists in 2019
- Number of tourists in 2020
- Travel consumption
- Leontief inverse table
- Self-sufficiency table
- Employment ratio
- Local employment
- Direct+indirect impact
Result 1: Economic ripple effect

- The ripple effect on Shizuoka’s economy due to tourism consumption was estimated to be ¥393 billion yen in 2020, 63% of ¥626 billion yen in 2019.
- The model revealed that the loss at a peak season (summer season) was significant in 2020.
Result 2: Employment effect

• The employment effect on Shizuoka’s economy due to tourism consumption was estimated to be 39,708 persons in 2020, which was 63% of 63,299 persons in 2019.
Conclusion

• 1) An input-out problem can be inverted into an equivalent system dynamics model. In system dynamics format, we can visualize processes that are not visible in the static model.

• 2) The system dynamics model with TSA clarifies the severity of the tourism industry in detail. For example, despite the “Go-To Travel” campaign, the decrease in tourists during the busy summer season damaged the tourism industry in Shizuoka Prefecture during the pandemic.

• 3) There are many deficiencies in regional economic data. The system dynamics model may reproduce the problem even in situations where limited data is available.

This research is partly supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (C)) Grant Number 19K01647.
Future work

• 1) The current model uses a 47x47 technical coefficient matrix. I am now updating it to the full 109x109 matrix.

• 2) A half of visitors in the Shizuoka Prefecture stay in the Izu Peninsula. Therefore, I am now making the Izu model.

• 3) The mudslide attacked Atami City in Shizuoka Prefecture on the 3rd July 2021. Atami city is a gate to the Izu Peninsula. This giant mudslide delays the recovery of tourism. I will add this effect.