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Improving Loops that Matter 
William Schoenberg, John Hayward, Robert Eberlein 
 
Abstract 
The Loops that Matter approach to understanding behavior has proven easy to use and broadly 
applicable, but it has a shortcoming in its original formulation in that it does not give the same 
results when flows equations are combined or separated. This is because the original 
formulation treats the impact of a flow on a stock relative to the net flow, so that all scores 
tend to get very large in magnitude as a stock approaches equilibrium, but how big depends 
strongly on how the flows are specified. By reformulating the link scores from a flow to stock as 
the score from the flow to the net flow for the stock, this topological dependency is removed. 
Using this approach makes it easier to see how two loops, especially balancing and reinforcing 
loops, can work together to achieve an equilibrium or steady state. This makes the analysis of 
models showing a transition to a steady state both easier and more insightful. In addition, the 
mathematics behind this approach lines up more closely with the Pathway Participation and 
Loop Impact analysis methods making the relationship among these different approaches clear. 
The result of this, when applying the analysis to a variety of models, is that the determination 
of the structure responsible for behavior is clearer, and more clearly tied to work already done 
using other techniques. 
 
Introduction 
Understanding models, and therefore reality, from a structure-based feedback perspective is of 
tantamount importance to the System Dynamics method.  For over 50 years the field has 
worked to develop tools and methods to perform automated, objective, loop dominance 
analysis (Graham, 1977; Forrester 1982; Eberlein, 1984; Davidsen, 1991; Mojtahedzadeh, 1996; 
Ford, 1999; Saleh, 2002; Mojtahedzadeh et al., 2004; Goncalves, 2009; Saleh et al., 2010; 
Kampmann, 2012; Hayward and Boswell, 2014; Moxnes and Davidsen, 2016; Oliva, 2016; Sato, 
2016; Hayward and Roach, 2017; Naumov and Oliva, 2018; Oliva, 2020; and Schoenberg et. al, 
2020).  A recent development in that long-standing stream of research is the invention of the 
Loops That Matter (LTM) method (Schoenberg et. al, 2020) and for the first time, the inclusion 
of an automated loop dominance analysis method (LTM) in commercially available software 
(Stella Architect & Professional 2.0) (Schoenberg & Eberlein, 2020).  LTM advanced the state of 
the art, not only in its ability to analyze a wide range of models including those with discrete 
and discontinuous elements, but also by enabling powerful visualizations including animated 
stock and flow diagrams, as well as algorithmically generated, machine simplified, animated 
causal loop diagrams (Schoenberg, 2019, Schoenberg & Eberlein, 2020).   
 
The LTM method uses link scores (a measure of a links contribution to behavior) across not only 
individual links between auxiliaries, but also across links between flows and their stocks while 
still allowing those scores to be chained together via multiplication.  To support this, LTM has 
two methods for measuring the link score, one for instantaneous connections 
(stock/auxiliary/flow to auxiliary /flow) and one for integration-based connections (flows to 
stocks).  While these two forms for the link score were designed to measure the same concept, 
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the specific mathematical steps taken to compute them, is different to account for the impact 
of the integration.   
 
In the course of continued experimentation, we discovered that the original LTM analysis is 
sensitive to the structure of the flows into a stock.  This means that choices made about the 
aggregation of flow components (for example combing two flows into a net flow) can make a 
significant difference to the results of the analysis.   
 
We solve this shortcoming by updating the method used to measure the link score between a 
flow and a stock and demonstrate the efficacy of the improved formulation.  We will show that 
the cause of the identified shortcoming in LTM is a product of the original formulation of the 
flow to stock link score being based on the value of the flows rather than the change in value.  
Furthermore, this paper will present an updated analysis of LTM relation to existing automated 
loop dominance analysis techniques such as the Pathway Participation Metric (Mojtahedzadeh 
et. al, 2004) (PPM), and the Loop Impact method (Hayward & Boswell, 2014).   
 
Problem Demonstration 
The link score is a measure which approximates the link gain and measures the “... contribution 
of a value change in an independent variable to a value change in a dependent variable and also 
the associated polarity [of that relationship]” (Schoenberg et. al, 2020).  Link scores are 
measured for all links in the network of model equations, including those which exist between 
flows and stocks (and therefore represent the integration process).  The original method for 
measuring the link score of a flow (𝑖 for inflow, 𝑜 for outflow) to stock (𝑆) relationship is 
reproduced below as Equation 1: 
 

𝐼𝑛𝑓𝑙𝑜𝑤:	𝐿𝑆(𝑖 → 𝑆) = 01
𝑖

𝑖 − 𝑜1 ∗ 15 				𝑂𝑢𝑡𝑓𝑙𝑜𝑤: 𝐿𝑆(𝑜 → 𝑆) = 9:
𝑜

𝑖 − 𝑜: ∗ −1; 

(1) 
In Equation 1 the contribution of a flow to the change in behavior of a stock is the portion of 
the net change in the stock resulting from the flow under analysis.   
 
This is in contrast to Equation 2 which defined the link score x → z where z is a flow or auxiliary 
defined by the equation 𝑧 = 𝑓(𝑥, 𝑦) 
 

𝐿𝑆(𝑥 → 𝑧) = @ A1
Δ!𝑧
Δz 1 ∙ 𝑠𝑖𝑔𝑛 0

Δ!𝑧
Δx 5H ,

0, Δz = 0	or	Δx = 0
 

(2) 
The first term in Equation 2 measures the contribution of 𝑥 to 𝑧 by reporting the proportion of 
the change in 𝑧 which originated from 𝑥, where the partial change in 𝑧, Δ!𝑧, is the change in 𝑧  
due to 𝑥 alone with 𝑦 held constant.  The second term measures the polarity of the link using 
Richardson’s (1995) method. For an in-depth discussion see Defining link scores for links 
without integration in Schoenberg et. al, 2020.   
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Let’s now demonstrate the problem with the original flow to stock form of the link score shown 
in Equation 1 using a simple model with one stock (𝑆), one inflow (𝑖𝑛) and one outflow (𝑜𝑢𝑡) 
with the values shown in Table 1: 
 

 
Figure 1: Diagrammatic depiction of system demonstrated in Table 1 

 
Table 1: Link score between out and S with a disaggregated flow structure using Equation 1 

Variable Time 1 Time 2 Link score magnitude  
Time 2 

in	 5	 10	 1
𝑖𝑛

𝑖𝑛 − 𝑜𝑢𝑡1 =
10
5 	

out	 4	 5	 1
𝑖𝑛

𝑖𝑛 − 𝑜𝑢𝑡1 =
5
5	

𝑺 = 	S(𝒊𝒏 − 𝒐𝒖𝒕)	

initial	=	100	

101	 106	 -	

 
Now let’s change the network structure of the model but keep it mathematically identical by 
aggregating the flows into a net flow (𝑛𝑒𝑡) and therefore turning the variables 𝑖𝑛 and 𝑜𝑢𝑡 into 
auxiliaries.  To get a value which is comparable to the link score between 𝑜𝑢𝑡 and 𝑠 compute 
the link score from 𝑜𝑢𝑡	to 𝑛𝑒𝑡 which is shown in Table 2 (the link between 𝑛𝑒𝑡 and 𝑆 is 1 so 
does not change the result when going to the stock).  

 
Figure 2: Diagrammatic depiction of system demonstrated in Table 2. 
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Table 2: Link score between out and net 

Variable Time 
1 

Time 
2 

Variable 
Change 

Partial Change in net Link score 
magnitude 

Time 2 

in	 5	 10	 Δin = 5	 Δ"#𝑛𝑒𝑡 = (10 − 4) − 1
= 5	 1

Δ"#𝑛𝑒𝑡
Δnet 1 =

5
4	

out	 4	 5	 Δout = 1	 Δ$%&𝑛𝑒𝑡 = (5 − 5) − 1
= −1	 1

Δ$%&𝑛𝑒𝑡
Δnet 1 =

1
4	

net	=	in	-	out	 1	 5	 Δnet = 4	 -	 -	

 
Comparing the analyses of the two mathematically equivalent models represented in Table 1 
and Table 2 we can clearly see that the link score magnitude from 𝑜𝑢𝑡 or 𝑖𝑛 to 𝑆 is not 
equivalent (1 does not equal 0.25).  The discrepancy is the result of the difference in the way 
that the link score is calculated for the flow to the stock.  Focusing on just the outflow, the 
original flow to stock link score formulation (Equation 1) overweighs the impact of the relatively 
small change in 𝑜𝑢𝑡 on	𝑆.  Focus for the moment on the outflow link score calculation 
demonstrated in Table 1.  Using the original flow to stock link score formulation (Equation 1), 
we are dividing 𝑜𝑢𝑡 (5) by the change in 𝑆 (5) to get a link score magnitude of 1.		Now focusing 
on the instantaneous form of the outflow to net flow relationship demonstrated in Table 2, 
using the instantaneous link score equation (Equation 2), we are dividing the change in 
𝑛𝑒𝑡	caused by 𝑜𝑢𝑡 (-1)	by the change in 𝑛𝑒𝑡 (4) yielding 0.25.  These are two very different 
calculations which obviously give different results, demonstrating the flaw in having such 
different calculation methods for determining the link score. 
 
Problem Solution: An improvement to calculating the link score from flows to stocks 
Ultimately the solution to this problem is simple, convert all disaggregated flows into a single 
aggregated net flow, then use a link score of 1 for all net flow to stock links.  At that point by 
definition the analysis is completely insensitive to the aggregation level of the flows because 
the flows are always aggregated before performing the analysis.  While tidy, this solution 
deserves an explanation demonstrating that it is theoretically sound and not arbitrary.   
 
To demonstrate that a special form for measuring the link score between flows and stocks isn’t 
necessary, we restate the instantaneous form of the link score (Equation 2) into Equation 3, the 
updated flow to stock link score, accounting for the integration process, but ultimately 
producing the same set of mathematical operations as if all flows were aggregated into a single 
net flow.  Equation 3 uses 𝑖 for an inflow, 𝑜 for an outflow, (𝑆) for the stock, and (𝑡) represents 
time.   
	

𝐼𝑛𝑓𝑙𝑜𝑤:	𝐿𝑆(𝑖 → 𝑆) = 01
∆𝑖

∆𝑆& −	∆𝑆&'(&
1 ∗ 15 				𝑂𝑢𝑡𝑓𝑙𝑜𝑤: 𝐿𝑆(𝑜 → 𝑆) = 01

∆𝑜
∆𝑆& −	∆𝑆&'(&

1 ∗ −15 
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(3) 
 
Comparing the updated flow to stock link score equation (Equation 3) to the instantaneous link 
score equation (Equation 2), ∆𝑖 and ∆𝑜 represent the first order partial change in the stock 𝑆 
with respect to the flow.  ∆𝑆& −	∆𝑆&'(& is the change in the net flow which is the second order 
change in the stock 𝑆.  The flow to stock link score magnitude in Equation 3 now measures the 
first order partial change in the stock due to the flow relative to the second order change of the 
stock.  This is a clear conceptual difference from the instantaneous form of the link score which 
is necessary to account for the integration process, but from an operational perspective the 
instantaneous and updated flow to stock link score equations now produce the same set of 
calculations which is demonstrated in Table 3 using the same example values from above.   
  
Table 3: Link score for in and out to S using Equation 3 

Variable Time 1 Time 2 Variable 
Change 

Link score 
magnitude 

Time 2 

in	 5	 10	 Δin = 5	 1
∆𝑖𝑛

∆𝑆& −	∆𝑆&'(&
1 =

5
4	

out	 4	 5	 Δout = 1	 1
∆𝑜𝑢𝑡

∆𝑆& −	∆𝑆&'(&
1 =

1
4	

𝑺 = 	S(𝒊𝒏 − 𝒐𝒖𝒕)	

initial	=	100	

101	 106	 ∆𝑆& −	∆𝑆&'(& = 5 − 1	
	

-	

 
Looking at Table 3 and Table 2, the result, and all of the steps along the way are now the same.  
Reinterpreting the instantaneous form of the link score shown in Equation 2, into the updated 
flow to stock link score equation shown in Equation 3, demonstrates that there is no need for a 
separate calculation method for measuring the link score between flows and stocks as long as 
all flows are aggregated during analysis.  Ultimately it is now up to the implementor of the LTM 
method to determine whether or not automated flow aggregation is advantageous to their 
implementation because the updated flow to stock link score equation (Equation 3) 
demonstrates that the level of flow aggregation is now irrelevant to the analysis.  
 
Placing LTM into the literature 
With the removal of the special case of the link score between flows and stocks the relationship 
of the link score to the Pathway Participation Metric (PPM) (Mojtahedzadeh et. al, 2004) and 
Loop Impact (Hayward & Boswell, 2014) becomes clearer and easier to understand.  The link 
score is closely related to the PPM with a single key difference in the interpretation of the sign 
of a link or path score. In PPM the sign measures the effect that the causal pathway has on the 
behavior of the stock, a positive value means the behavior of the stock is exponential 



 6 

(increasing or decreasing), whereas a negative value means the stock’s behavior is logarithmic 
(increasing or decreasing). In LTM, the sign measures the structural polarity of the causal 
pathway.  
 
To demonstrate this relationship lets again look at the link x → z where 𝑧 is characterized by the 
equation 𝑧 = 𝑓(𝑥, 𝑦).  Assume 𝑧 is not a stock. This link score for this link is shown in Equation 
2, which can be restated as  
 

𝐿𝑆(𝑥 → 𝑧) = ` 0
Δ!𝑧
Δx ∙ 1

Δx
Δz15 ,

0, Δ𝑧 = 0	or	Δ𝑥 = 0
 

(4) 
Or if we let all our deltas approach 0 (fundamentally 𝑑𝑡 approaches 0): 

𝐿𝑆(𝑥 → 𝑧) = ` 0
𝜕𝑧
𝜕x
∙ 1
𝑥̇
𝑧̇
1 , 5 ,

0, 𝑧̇ = 0	or	𝑥̇ = 0
 

(5) 
 
This expression of the link score (Equation 5) contains the gain between adjacent auxiliary 
variables )*

)!
 (Kampman, 2012, p. 373; Richardson, 1995, p. 75). These link gains are used in PPM 

(Mojtahedzadeh et. al, 2004, equation 3) and definition of impact (Hayward & Boswell, 2014, 
appendix 2).  The link gains obey the chain rule of partial differentiation so that )*

)!
 remains the 

gain regardless of the number of auxiliary variables between 𝑥 and 𝑧. Although loop score 
weights these gains by the value of time derivatives of the variables, :!̇

*̇
:, these weights cancel 

each other when applying the chain rule so the path score is always the gain multiplied by the 
relative time derivative of the two variables. 
 
For the link between a flow and stock, the denominator of Equation 3 is the change in ∆𝑆 over 
time, or said another way, the second order change in the stock. Letting 𝑑𝑡 approach zero allow 
us to restate Equation 3 as,  
 

𝐼𝑛𝑓𝑙𝑜𝑤:	𝐿𝑆(𝑖 → 𝑆) = d
𝑑𝑖
𝑑𝑡
𝑑,𝑆
𝑑𝑡,

d			 

(6) 
 

where we have assumed 𝑖 is an inflow (there would be a corresponding formula for outflows.) 
 
We next consider the link score between adjacent stocks in a causal chain in order to compare 
the LTM metric with PPM and Loop Impact.  
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Let 𝑆- be a source stock and 𝑆, be the target stock with flow 𝑓. Stock 𝑆- is connected to 𝑆, 
through 𝑓. The link score between 𝑆- and 𝑆, is the link score between 𝑆- and 𝑓  using equation 
(5) multiplied by the link score between 𝑓 and 𝑆, using equation (6), our revised formula. 
Ignoring the cases where the derivatives are zero,  
 

𝐿𝑆(𝑆- → 𝑆,) = 	𝐿𝑆(𝑆- → 𝑓) × 𝐿𝑆(𝑓 → 𝑆,) = 	
𝜕𝑓
𝜕𝑆-

f
𝑆-̇
𝑓̇
f f
𝑓̇

𝑆,̈
f =

𝜕𝑓
𝜕𝑆-

f
𝑆-̇
𝑆,̈
f 

(7) 
 
We note that the PPM and Loop Impact methods are related. Whereas impact measures the 
absolute value of the curvature in stock behavior, due to a source stock, PPM, from which loop 
impact is derived, measures the relative change in curvature compared with other influences on 
the stock. As the link score in equation (7) is an absolute measure, we first compare it with the 
impact between the two stocks.  The relationship between stocks 𝑆, and 𝑆- can be written as  
 

𝑑𝑆,
𝑑𝑡 = 𝑓(𝑆-, … ) + ⋯ 

(8) 
where the ellipses indicate the possible presence of other variables. The impact between the 
stocks is obtained by differentiating equation (8), (Hayward & Roach, 2017, appendix C; c.f. 
Mojtahedzadeh et. al, 2004, appendix 1) 
 

𝑑,𝑆,
𝑑𝑡, =

𝜕𝑓
𝜕𝑆-

𝑑𝑆-
𝑑𝑡 + ⋯ = A

𝜕𝑓
𝜕𝑆
𝑆-̇
𝑆,̇
H ×

𝑑𝑆,
𝑑𝑡 + ⋯ 

(9) 
 
Impact measures the contribution of the stock 𝑆- to the acceleration of 𝑆, relative to its rate 
change (.!

(&
. Thus, the impact of 𝑆- on 𝑆, is given by the bracketed expression in equation (9) 

 

Impact(𝑆- → 𝑆,) =
𝜕𝑓
𝜕𝑆-

𝑆-̇
𝑆,̇

 

(10) 
Comparing equations (7) and (10) gives: 
 

𝐿𝑆(𝑆- → 𝑆,) = 	Impact(𝑆- → 𝑆,) × f
𝑆,̇
𝑆,̈
f Signq𝑆-̇rSignq𝑆,̇r 

(11) 
 
Link score and impact differ in two aspects, the weighting by acceleration of the target stock, 

:.!̇
.!̈
:, and the polarity of the link, noted by the presence of the Sign functions in equation (11). 

Link score measures the impact between the stocks relative to the acceleration of the stock due 
to all influences. If the influence from stock 𝑆- were the only influence, link score would be 
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unity (Schoenberg et. al, 2020). Additionally, the polarity of the link score reflects the structure 
of the model, whereas impact (and thus PPM) measures the polarity (curvature) of the link’s 
behavior. Ultimately this difference is due to a difference in goals and design.  LTM is designed 
to report the polarity of the causal pathways it measures.  Whereas PPM and loop impact are 
designed to measure if a causal pathway is acting with or against a chosen stock’s behavior. 
 
For single stock models, the source and target stocks are the same, 𝑆, = 𝑆- and form a first-
order loop. Thus, from equation (10), impact is the loop gain 𝐺- as defined by Kampman, 2012:   
 

Impact(𝑆- → 𝑆-) =
𝜕𝑓
𝜕𝑆-

≜ 𝐺- 

(12) 
From equation (11), link score is a weighted loop gain: 

𝐿𝑆(𝑆- → 𝑆-) =
𝐺-

1𝑆-̈𝑆-
1
 

(13) 
 
referred to as loop score. In models with many loops, both PPM and LTM present normalized 
measures of loop influence. PPM is the percentage loop impact, equation (12), compared with 
all loops on a given stock (Mojtahedzadeh et. al, 2004; Hayward & Boswell, 2014). In LTM, 
relative loop score is the percentage form of the loop score, equation (13), (Schoenberg et. al, 

2020). Because the loop scores of all loops in a single stock will be weighted by :."̈
."
:, then the 

relative loop score will be identical to the PPM in single stock models. Thus, we expect LTM to 
produce the same analysis as PPM and the Loop Impact method for first-order systems.  
 
For models with more than one stock, LTM differs from PPM and Loop impact by providing a 
single measure for the whole loop. By contrast, the other two methods have a measure for 
each stock in the loop. For example, consider a two-stock loop where 𝑆, in equations (10–11) is 
connected back to 𝑆-. Using the loop impact theorem (Hayward & Boswell, 2014, appendix 3), 
the product of loop impacts in the loop equals the loop gain 𝐺,. Thus Impact(𝑆- → 𝑆,) ×
Impact(𝑆, → 𝑆-) = 𝐺,. The loop score of the loop is the product of the link scores, which 
becomes: 
 

𝐿𝑆(𝑆- → 𝑆-) = 𝐿𝑆(𝑆- → 𝑆,) × 𝐿𝑆(𝑆, → 𝑆-)

=
Impact(𝑆- → 𝑆,) × Impact(𝑆, → 𝑆-)

1𝑆-̈
𝑆-̇
1 1𝑆,̈
𝑆,̇
1

× 9Signq𝑆-̇rSignq𝑆,̇r;
,

=
𝐺,

1𝑆-̈
𝑆-̇
1 1𝑆,̈
𝑆,̇
1

 

 
(14) 
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using equation (11) and the loop impact theorem. Again, the loop score is directly related to the 
loop gain. In models with more than one stock, a loop dominance analysis using LTM will give 
different results to that of PPM and Loop Impact. However, if the link scores on a single stock 
were compared, the results would be the same as that of the other two methods, except for 
the link polarities following the model structure rather than behavior.   
 
Thus, we have shown that LTM is derived from PPM/Loop Impact apart from its treatment of 
link polarity. But LTM is distinct in its application, measuring dominance across the entire model 
(or connected components for models which are not fully connected via feedback).  It is this 
very difference between the link score and PPM, the sign of the link score measuring structural 
polarity, which yields the ability to chain through multiple stocks (e.g. equation 14) making for 
the largest difference between the other PPM based methods and LTM.  This is what allows for 
dominance to be measured model-wide as described by Schoenberg, et. al., 2020: 
 

[In LTM] We define loop dominance as a concept which relates to the entirety of 
a model, as opposed to loop dominance being something that affects a single 
stock. For loop dominance to apply to the entire model, we require that all stocks 
are connected to each other by the network of feedback loops in the model. For 
models where there are stocks that do not share feedback loops, we consider 
each subcomponent of interrelated feedback loops individually, and we refer to 
each model substructure as having a separate loop dominance profile. [In LTM,] 
our measurement of loop dominance is specific to the particular time period 
selected for analysis. We say that a loop (or set of loops) is dominant if the 
loop(s) describe at least 50% of the observed change in behavior across all stocks 
in the model over the selected time period. 

 
The implications of Equation 14, and therefore the meaning of the loop score are threefold.  
First, loop scores always measure the structural polarity of loops because of the absolute values 
of the loop impacts in the denominator.  Second if a stock is not changing (reaching a 
maximum, minimum, or equilibrium value), e.g., as 𝑆-̇ or 𝑆,̇ approaches 0, then the loop score 
approaches 0.  As a corollary, when loop gains are 0, the loop score is 0, which means inactive 
loops are never explanatory.  Third, as the acceleration in a stock ceases, for instance at 
inflection points, when stocks are changing the most, e.g., as 𝑆-̈ or 𝑆,̈ approaches 0 then the 
loop score approaches infinity.  All of this aligns well with the goal of the loop score, to measure 
the change in the behavior of the stocks in the model.  This leads to the understanding that 
LTM favors loops with large gains, which pass through stocks changing the most.  It also 
demonstrates the necessity of the relative loop score (where the loop scores are normalized 
across all feedback loops which interact) in order to make the infinities which happen at 
inflection points more easily interpreted.  Ultimately, dominance is a measure of relative 
importance, and therefore the values of the loop scores are only meaningful in relation to each 
other as relative numbers.  The only exception to that rule may be that the sum of the absolute 
values of the loops scores may have some use to express the magnitude of the change in the 
model at an instant in time. 
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Understanding carrying capacity models using LTM 
With the identified shortcoming of the LTM method addressed, now it can be used to better 
analyze models with disaggregated flows.  A well-known, simple model we can start with is a 
carrying capacity model which is looking at a population of critters, pictured below in Figure 3 in 
its aggregated and disaggregated form.  

 

 
 

Figure 3: A simple bathtub style carrying capacity model with its behavior and LTM analysis. Birth Rate = 0.05, Reference 
Lifetime = 50, Carrying Capacity = 500, Population=100, effect of crowding on deaths = EXP(5*(Population/carrying_capacity-1)) 

The analysis of this model in the lower left of Figure 3 shows us a straightforward explanation 
for the behavior.  There are two perspectives that can be used to explain the relative loop score 
plot.  From a mechanistic perspective, which is more useful for those already skilled in System 
Dynamics and understand the impacts of loop dominance analysis; the model starts with the 
reinforcing births loop (R1) as dominant up until the inflection point in Population at Time 29.  
Then, the model enters a short phase from Time 29 to 31.5 where it is dominated by both B1 
(the crowding loop) and B2 (the natural deaths loop).  After 31.5 the model behavior is 
dominated by B2, the crowding loop.  
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The second perspective on the LTM analysis is more intuitive, especially for those not so well 
versed in System Dynamics and the mechanistic concepts of dominance.  Initially the births 
process (R1) is most important to the governing of the behavior of the critter population by a 
very large margin, nearly completely overwhelming the natural deaths process (B2) and the 
deaths process from crowding (B1).  Because the births process (R1) is reinforcing, critters are 
being added to the population at an exponential rate.  This exponential increase in critters 
causes the magnitude of the relative loop score, or more colloquially, the relative importance of 
the natural deaths process (B2) and the deaths by crowding process (B1) to grow at the 
expense of the births process (R1).  It also important to note that the large majority of the 
relative importance lost by the births process (R1) is gained by the crowding process (B1), not 
the natural deaths process (B2).  As the reinforcing birth process (R1) is slowing, eventually the 
two deaths processes (B1 and B2) take over the governing of the behavior of the critter 
population.  This first happens at the inflection point (Time 29) and from this point forward the 
critter population is no longer growing exponentially, but rather logistically towards an 
equilibrium value because both of the deaths processes (B1 and B2) are balancing.  Because of 
this change in governance, the reinforcing births process (R1) is no longer giving up its relative 
importance exponentially, but rather logistically.  By Time 31.5 because the reinforcing births 
process (R1) is still adding more critters faster than they can be killed, the relative importance 
of the crowding process (B1) no longer relies on the natural deaths process (B2) to maintain 
control over the critter population.  Finally, because the population of the critters is still 
governed a balancing process (the crowding loop B1) by Time 60 the critter population reaches 
equilibrium. At this point the births process (R1) is no longer shedding any relative importance, 
and its remaining relative importance is exactly the same as that of the natural deaths process 
(B2). 
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Figure 4: Carrying capacity model in non-standard formulation with with an effect of crowding on births.  Its stock behavior is 
exactly the same as the model in Figure 3.  Also plotted is the system behavior with its LTM analysis. Birth Rate = 0.05, Reference 
Lifetime = 50, Carrying Capacity = 500, Population = 100, effect of crowding on births = 1 + ((1/birth_rate)/reference_lifetime) - 
(((1/birth_rate)/reference_lifetime) * (EXP(5*(Population/carrying_capacity-1)))) 

To demonstrate the robust nature of the updated LTM method we’ve taken the standard 
carrying capacity model from Figure 3 and created its exact behavioral analogue using an effect 
of crowding on births.  While the model in Figure 4 has the exact same stock values as the one 
in Figure 3, the effect of the change to the feedback structure is captured and reflected in the 
analysis.  While the same general mechanistic (shifting dominance pattern) and intuitive 
understanding of the model still applies from the first analysis there is one key structural 
difference which is reflected clearly by LTM.  Because the crowding process (B1) now retards 
the births process (R1) directly (rather than indirectly through creating more deaths), the births 
process is always relatively less important than it otherwise was in the standard formulation.  
Early on this allows the natural births process (B2) to be relatively more important (because 
crowding isn’t important in the beginning), but during the equilibrium phase this reduction in 
the relative importance of the births process (R1) is linked to the reduction in the relative 
importance of the natural deaths process (B2) as the two must be of equal relative importance 
during this period which transitively means the crowding process is relatively more important in 
this second formulation.   Finally, the inflection point is still Time 29 (the stock behavior is 
identical after all) and Time 29 is still when the two balancing processes (B1 and B2) take over 
from the reinforcing births process (R1).  
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The analysis of these carrying capacity models demonstrates that the updated LTM method is 
insensitive to the aggregation level of the flows, and properly captures the effects of changes to 
the feedback structure on the subtleties of loop dominance progression. 
 
LTM and oscillation 
One of the key advantages to LTM over the other PPM based methods is its clear interpretation 
of oscillatory models (Schoenberg, et. al., 2020).  To demonstrate that the change to the flow to 
stock link score hasn’t materially affected that advantage we analyze the two-stock oscillator 
pictured below in Figure 5.  The analyzed instance of the model has been parameterized to 
exhibit a dampened oscillation. The analysis was completed over the full-time range of [0, 100], 
but for the purposes of ease of understanding just a single cycle of the dominance pattern was 
chosen for a focused analysis [10, 30].  This time period corresponds with exactly one half 
period of the oscillation in either stock, 𝑥 or 𝑦.  The reason that the second cycle of the 
oscillation was chosen is because it is good practice to avoid any potential effects from the 
initialization of the system, although in this specific case that precautionary measure was not 
necessary because the pattern is unchanged throughout the entire simulation period. 
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Figure 5: Oscillatory system showing analysis over the full simulation time period and one period of the dominance analysis (half 
a period of the oscillation). a=-0.1, b=-0.15, c=0.2, d=0.6, X=2, Y=0.  <L1> <L2> and <L3> are the average relative loop scores of 
the loops, shown to the right of the lower right graph. 

The pattern of the shifting dominance does not change in this model which is logical because 
the causes of behavior are constant, and the behavior itself is fractal.  Also remember the 
relative loop score is a relative measure, therefore it does not distinguish between the larger 
earlier oscillations and the later smaller oscillations.  Studying the relative loop score plot in the 
lower right of Figure 5 yields the following understanding.  The strongest loop over this range 
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(and the full simulation period) is the major loop L3, the two-stock oscillatory loop.  We know 
this is the oscillatory loop because it connects two stocks, but if we ignore that information, 
LTM shows us that it is the most explanatory loop over the period, explaining 44% of the 
change in both stocks because the average magnitude of its relative loop score over that time 
range is 44% (Schoenberg, 2019).  Continuing our analysis, we notice that the minor loop L2 
describes 100% of the behavior of the system at time 16.5 and the minor loop L1 does the same 
at time 29.8.  In fact, the relative loop scores of both minor loops L1 and L2 are following the 
same pattern just shifted in time from each other.  Each minor loop grows from being 
completely unexplanatory to very nearly fully explanatory in an exponential fashion, and then 
loses its relative importance quickly in the same exponential fashion.  So, the explanation now 
becomes further clearer, L3 is the oscillatory loop whose relative importance is being changed 
by L1 and L2 as they undergo swings in their relative importance depending upon the amount 
of change currently being exhibited in the stock they are directly attached to.  L1 is dampening 
the oscillation because it’s a balancing loop, and L2 is attempting to explode the oscillation 
because it’s a reinforcing loop.  The reason this model produces a dampening oscillation is 
because L1 is relatively more important than L2 over the time period of the oscillation.  L1’s 
average relative loop score magnitude of 32% means its more explanatory then L2 whose 
average relative loop score magnitude is 24%.  This then begs the question of what is 
happening when L1 and L2 are fully explanatory?  At time 16.5 when L2 explains nearly all of 
the behavior of the system, the stock 𝑥 is at its minimum value, it’s not changing, which means 
L1 and L3’s loop scores approach 0 because both include links to and from 𝑥.  At 29.8 when L1 is 
fully explanatory the opposite is true, the stock 𝑦 is at its maximum, not changing which means 
L2 and L3’s loop scores approach 0 because both include links to and from 𝑦.   
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Figure 6: Analysis of the two stock oscillator from above with different values for d.  This adjusts the relative importance of L1 
and L2 relative to each other to create dampened, standing, and exploding oscillation. <L1> and <L2> are the average relative 
loop scores of the loops, shown to the left of the graphs. 

The first analysis shown in Figure 4 repeats the analysis from Figure 5 above and again shows us 
that L3 is the oscillatory loop, L1 dampens the oscillation, L2 tries to explode the oscillation but 
L2 is relatively less important then L1 therefore the oscillation dampens.  When the relative 
importance of L2 is increased above that of L1 by increasing the value of 𝑑 above 0.06 the 
behavior of the model moves to a slower dampening, until the point where the relative 
importance of L1 and L2 overtime are equal at 𝑑=0.1 when a standing oscillation is achieved.  
By further increasing the relative importance of L2 by increasing the value of 𝑑 above 0.1 L2 
then becomes relatively more important then L1 which causes the oscillation to explode.  The 
analysis of this two-stock oscillator shows that LTM is still able to clearly and concisely explain 
the origins of oscillation and identify the purpose of loops in oscillatory systems. 
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Conclusions 
The updates to the LTM method have resolved the identified shortcoming that the aggregation 
level of flows changes the analysis.  This change makes analysis more straightforward and has 
helped to better situate the LTM method within the pre-existing literature, bringing it closer to 
other PPM based methods in its theoretical underpinnings.  This paper has demonstrated that 
the update to LTM improves model understanding while maintaining LTMs ability to clearly and 
correctly analyze a variety of models, including oscillatory models.   
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